

정답 및 풀이

수학 ③(상)

▶ 빠른 정답 찾기 「빠른 정답 찾기는 각 문제의 정답만을 빠르게 확인할 수 있습니다.	2
▶ 자세한 풀이	
I 제 곱근 과 실수	
01 제 곱근 의 뜻과 성질	10
02 무리수와 실수	18
03 근호를 포함한 식의 계산(1)	25
04 근호를 포함한 식의 계산 (2)	33
II 인수분해	
05 인 수분 해	45
III 이차방정식	
06 이차방정식의 풀이	55
07 이차방정식의 활용	66
IV 이차함수	
08 이차함수의 그래프 (1)	74
09 이차함수의 그래프 (2)	83
10 이차함수의 활용	91
》부록 대단원 모의고사	100

01 제곱근의 뜻과 성질

₩ A단계 기본 Training

본책 8~11쪽

0001 49, 49, 7, -7	0002	$\frac{1}{4}$,	$\frac{1}{4}$,	$\frac{1}{2}$,	$-\frac{1}{2}$
---------------------------	------	-----------------	-----------------	-----------------	----------------

0005 0 0006
$$\frac{3}{2}$$
, $-\frac{3}{2}$

0013
$$\frac{2}{9}$$
, $-\frac{2}{9}$ **0014** $\frac{7}{12}$, $-\frac{7}{12}$

0021 (1)
$$\sqrt{3}$$
 (2) $-\sqrt{3}$ (3) 0.4 (4) -0.4 (5) 6 (6) -6

$$(7) \frac{3}{2} (8) - \frac{3}{2}$$

0022
$$\pm\sqrt{12}$$
 0023 $\pm\sqrt{24}$ 0024 $\pm\sqrt{0.3}$ 0025 $\pm\sqrt{\frac{8}{27}}$

0026
$$\sqrt{7}$$
 0027 $-\sqrt{7}$ 0028 $\pm\sqrt{7}$ 0029 $\sqrt{7}$

0030 6 0031
$$\frac{1}{14}$$
 0032 -10 0033 -1.5

0034
$$\pm 3$$
 0035 ± 9 0036 $imes$ 0037 \odot

0038
$$\bigcirc$$
 0039 \bigcirc 0040 5 0041 $\frac{1}{2}$

0046 7 0047
$$\frac{1}{3}$$
 0048 8 0049 0.1

0050
$$-2$$
 0051 $-\frac{5}{4}$ 0052 11 0053 -5

0054 18 **0055** -1 **0056**
$$3a$$
 0057 $\frac{1}{5}a$

0058
$$10a$$
 0059 $-\frac{3}{4}a$ 0060 $-2a$ 0061 $-2a$

0062
$$>$$
, $a-2$ **0063** $<$, $a-2$

0068 (7) 25 (4)
$$>$$
 (4) 20 **0069** $<$ **0070** $<$

0071 > 0072 > 0073 6,
$$\sqrt{45}$$
, 7, $\sqrt{50}$

Y B단계 유형 Training

본책 12~18쪽

0076 ②	0077 ⑤	0078 ± a	0079 57
0080 ②	0081 ±25	0082 ①	0083 ④
0084 ②, ⑤	0085 7	0086 15	0087 ⑤
0088 ③	0089 2	0090 ③, ④	0091 ③
0092 ⑤	0093 ④	0094 ②, ③	0095 -4

0100 ④ 0101
$$-\frac{a}{4}$$
 0102 ②, ④ 0103 a

0104 ⑤ 0105
$$\frac{2}{3}$$
 0106 ⑤

0107
$$-a+b+2$$
 0108 7 0109 6

0121 (1)
$$2 < \sqrt{5}$$
 (2) 0 0122 (5) 0123 8 0124 26 0125 7

학교시험 Preview

본책 19~21쪽

0126 ③, ⑤ **0127** ⑤ **0128**
$$-2$$
 0129 (¬), (\square)

0134 ① **0135**
$$-x+5$$
 0136 ③ **0137** 15

0140
$$\sqrt{\frac{13}{4}}$$
, $\sqrt{2.8}$, $\frac{3}{2}$, $-\sqrt{3.2}$, -2 **0141** ②

02 무리수와 실수

₩ A단계 기본 Training

본책 22~24즉

149 무	0150 두	₽ 0151	유	0152	유

0169 (1) 5 (2)
$$\sqrt{5}$$
 (3) $\sqrt{5}$

0170 (1)
$$\sqrt{2}$$
, $1-\sqrt{2}$ (2) $\sqrt{2}$, $1+\sqrt{2}$ **0171** \bigcirc

0175
$$3-\sqrt{10}$$
, < , < , < 0176 < 0177 >

Y B단계 유형 Training

본책 25~30쪽

0184 2 **0185** ③ **0186** ④

0190 ⑤ 0191 ①, ④ 0192 ②, ⑤ 0193 22 0194 ③ 0195 7.497 0196 ⑤ 0197 점D 0198 $-5-\sqrt{5}$ 0199 ③ 0200 $-1+\sqrt{10}$ 0201 ④ 0202 ④ 0203 다혜, 인수 0204 ⑤ 0208 ③ 0207 ⑥ 0208 ③

0209 (1) x < y (2) x > z (3) y 0210 $\sqrt{5}-2$ 0211 구간 C 0212 점 D 0213 ③

0214 구간 F, 구간 A, 구간 D 0215 ① 0216 ⑤ 0217 ③ 0218 12

학교시험 Preview

본책 31~33쪽

0219 ①, ③ 0220 ① 0221 ④ 0222 ③

0223 400 **0224** ④ **0225** 10 **0226** ②

0227 ③ **0228** ②, ⑤ **0229** *C*<*A*<*B*

0230 ⑤ 0231 ② 0232 ③

0233 $P(4-\sqrt{2})$, $Q(4+\sqrt{10})$ 0234 C < A < B0235 22 0236 35 0237 ② 0238 C

0239 (¬), (≥), (ы)

03 근호를 포함한 식의 계산 (1)

₩ A단계 기본 Training

로책 34~36쪽

0240 $\sqrt{20}$ 0241 $\sqrt{91}$ 0242 $\sqrt{14}$ 0243 $\sqrt{\frac{4}{5}}$

0244 $10\sqrt{33}$ 0245 $-\sqrt{84}$ 0246 $\sqrt{\frac{5}{4}}$ 0247 $\sqrt{42}$

0248 $\sqrt{10}$ 0249 $\sqrt{2}$ 0250 $\sqrt{5}$ 0251 $\sqrt{15}$

0252 $\sqrt{\frac{1}{8}}$ 0253 $-\sqrt{2}$ 0254 $\frac{\sqrt{2}}{2}$

0255 $-\frac{1}{3}\sqrt{\frac{7}{3}}$ 0256 $\frac{3}{4}\sqrt{\frac{1}{7}}$ 0257 $\sqrt{\frac{11}{3}}$

0258 $\sqrt{\frac{8}{5}}$ 0259 16, 4 0260 6, 6 0261 18, 9, 3

0262 $2\sqrt{2}$ **0263** $6\sqrt{3}$ **0264** $-2\sqrt{10}$ **0265** $-4\sqrt{6}$

0266 $\frac{\sqrt{10}}{3}$ 0267 $-\frac{\sqrt{7}}{5}$ 0268 $\frac{\sqrt{35}}{12}$ 0269 $\frac{\sqrt{41}}{10}$

0270 $\frac{\sqrt{26}}{10}$ **0271** $\frac{\sqrt{3}}{5}$ **0272** 5, 75 **0273** 16, $\frac{3}{4}$

0274 3, $\frac{4}{3}$ **0275** $\sqrt{72}$ **0276** $\sqrt{300}$ **0277** $-\sqrt{54}$

0278 $-\sqrt{175}$ 0279 $\sqrt{\frac{3}{16}}$ 0280 $-\sqrt{\frac{1}{2}}$ 0281 $-\sqrt{\frac{11}{49}}$

0282 $\sqrt{\frac{3}{50}}$ **0283** $\sqrt{\frac{8}{25}}$ **0284** $\sqrt{\frac{25}{12}}$

0285 (7) $\sqrt{2}$ (4) $\sqrt{2}$ **0286** (7) $\sqrt{11}$ (4) $\frac{\sqrt{33}}{11}$

0287 (7) $\sqrt{7}$ (4) $\frac{\sqrt{14}}{21}$ **0288** $\frac{\sqrt{3}}{3}$ **0289** $-\frac{\sqrt{15}}{15}$

0290 $\frac{5\sqrt{6}}{6}$ 0291 $-\frac{2\sqrt{7}}{7}$ 0292 $\frac{\sqrt{30}}{10}$ 0293 $\frac{\sqrt{26}}{13}$

0294 $\frac{7\sqrt{2}}{6}$ **0295** $\frac{\sqrt{42}}{12}$

0296 (7) $\sqrt{45}$ (4) 3 (5) $\frac{\sqrt{5}}{15}$ (2) $\sqrt{5}$ (0) 15 **0297** $\frac{\sqrt{2}}{4}$

0298 $-\frac{\sqrt{2}}{6}$ 0299 $\frac{3\sqrt{5}}{10}$ 0300 $-\frac{\sqrt{3}}{3}$ 0301 $\frac{\sqrt{14}}{8}$

0302 $\frac{\sqrt{15}}{9}$ **0303** $\frac{3\sqrt{6}}{10}$ **0304** $\frac{\sqrt{15}}{6}$

Y B단계 유형 Training

본책 37~42쪽

 0305 5 0306 20 0307 13 0308 48

 0309 4 0310 5 0311 30 0312 -1

 0313 4 0314 100 0315 1 0316 $2\sqrt{21}$

 0317 3 0318 $5\sqrt{2}$ 0319 2 0320 12

0317 30318 $5\sqrt{2}$ 0319 ②0320 120321 ④0322 270323 320324 ③, ⑤

0325 ② 0326 ① 0327 ① 0328 ④

0329 2 0330 4 0331 3 0332 5

0333 11 **0334** 3 **0335** $\frac{\sqrt{10}}{\sqrt{11}}$ **0336** ③

0337 20 0338 4 0339 4 0340 4 0341 $2\sqrt{15}$ 0342 5 0343 $2\sqrt{5}$ cm 0344 1

학교시험 Preview

본책 43~45쪽

0345 ④ **0346** ③ **0347** ④ **0348** 7

0349 ① **0350** $\frac{\sqrt{8}}{10} < \sqrt{0.56} < \sqrt{\frac{144}{225}}$ **0351** 10

0352 ⑤ **0353** ② **0354** ② **0355** 19

0356 81 **0357** ③ **0358** ② **0359** $\frac{3\sqrt{10}}{5}$

0360 3 cm **0361** 100 **0362** -1 **0363** A < B

0364 $3\sqrt{2}$ **0365** ④ **0366** ① **0367** $\frac{3\sqrt{2}}{2}$

04 근호를 포함한 식의 계산 (2)

(中) A단계 기본 Training

본책 46~47쪽

0368	6√3	0369
	_	

0369
$$2\sqrt{2}$$
 0370 $4\sqrt{5}$

0371
$$-2\sqrt{6}-\sqrt{10}$$
 0372 $6\sqrt{2}$ **0373** $4\sqrt{5}$

0373
$$4\sqrt{5}$$

0374
$$\sqrt{3}$$
 0375 $3\sqrt{3} - 7\sqrt{2}$ 0376 $\frac{3\sqrt{2}}{2}$

0376
$$\frac{3\sqrt{2}}{2}$$

0377
$$-\frac{\sqrt{6}}{6}$$
 0378 $4\sqrt{6}$ 0379 0

0380
$$2\sqrt{3} + 2\sqrt{10}$$

0380
$$2\sqrt{3} + 2\sqrt{10}$$
 0381 $\sqrt{7} - \sqrt{3}$ **0382** $7 + 4\sqrt{3}$

0383 3 **0384** (71)
$$\sqrt{3}$$
 (4) $\sqrt{15} + 3\sqrt{2}$

0385 (71)
$$\sqrt{5}$$
 (41) $3\sqrt{5} - \sqrt{5}$

0385 (7)
$$\sqrt{5}$$
 (4) $3\sqrt{5} - \sqrt{35}$ **0386** $\frac{\sqrt{14} + \sqrt{21}}{7}$

0387
$$\frac{3\sqrt{10}-\sqrt{35}}{5}$$

0387
$$\frac{3\sqrt{10}-\sqrt{35}}{5}$$
 0388 $\frac{6\sqrt{3}-\sqrt{66}}{6}$

0389
$$\frac{2\sqrt{3}+3}{6}$$

0389
$$\frac{2\sqrt{3}+3}{6}$$
 0390 $\frac{2\sqrt{10}+3\sqrt{30}}{15}$

0391
$$\frac{2\sqrt{15}-9}{6}$$

0392 (71)
$$\sqrt{13} + 2\sqrt{3}$$
 (4) $\sqrt{13} + 2\sqrt{3}$

0393 (7)
$$3+\sqrt{7}$$
 (4) $16+6\sqrt{7}$ (5) $8+3\sqrt{7}$ **0394** $\sqrt{3}-\sqrt{2}$

0395
$$4+\sqrt{14}$$

0395
$$4+\sqrt{14}$$
 0396 $\frac{\sqrt{10}-\sqrt{6}}{2}$

0397
$$5\sqrt{2} + 3\sqrt{5}$$

0398
$$3-2\sqrt{2}$$

0399
$$\frac{17+4\sqrt{15}}{7}$$

(Y) B단계 유형 Training

본책 48~56쪽

0400	8
0404	$7\sqrt{2}$

0409
$$\frac{\sqrt{3}}{6}$$
 0410 ③

0413
$$\frac{4}{3}$$

0419
$$\sqrt{10}$$

0424
$$-2-4\sqrt{6}$$

0428
$$6\sqrt{6}$$
 0429 (4)

0437 18
$$0441 \sqrt{10} - 3$$

0450 ②

$$0444 \ 6\sqrt{5}$$
 $0445 \ 4$

0447 80 **0448** 22 **0451** (1) 38 (2)
$$2\sqrt{10}$$

0449 ④ 0452
$$5+2\sqrt{2}$$

0458 66 cm² **0459**
$$(10\sqrt{6}-20)$$
 cm

0461 11 **0462**
$$\sqrt{10} - 2\sqrt{5}$$

(♥) 학교시험 Preview

본책 57~59쪽

0467
$$-4\sqrt{7}$$
 0468 ③
 0469 6

 0471 $\sqrt{3}$
 0472 ①
 0473 ①

0475 8 **0476**
$$2\sqrt{5}$$

0478
$$7\sqrt{10}$$
 cm **0479** $\sqrt{5}$ **0481** 10 **0482** $\frac{3\sqrt{2}+3}{2}$

0482
$$\frac{3\sqrt{2}+3}{2}$$

0483
$$-72\sqrt{2}$$

05 인수분해

(屮) A단계 기본 Training

0487
$$2x+2$$
 0488 $3x^2-x$ **0489** x^2-4x+4

$$-x$$
 0489 $x^2 - 4x + 4$

0490
$$6x^2 + 7x - 20$$
 0491 $x, x(1-y)$

0494
$$a(ax-2y)$$

0495
$$ab(-5a+b)$$

1496
$$xyz(x+y+z)$$

0496
$$xyz(x+y+z)$$
 0497 $(x+5)(y+1)$ **0498** $(a-b)(a-b+2)$ **0499** $(3x-y)(-a+2b)$

0500
$$(x+3)^2$$

0501
$$(a-5)^2$$

0502
$$(2x+1)^2$$

0503
$$\left(a + \frac{1}{2}\right)^2$$

0504
$$(3x-2)^2$$

0505
$$(x+4y)^2$$

0506
$$(3a-b)^2$$

0507
$$2(x+2)^2$$

508
$$-3(x+1)^2$$

0508
$$-3(x+1)^2$$
 0509 64 0510 36

0511 16 **0512** 121 **0513**
$$\pm 14$$
 0514 ± 20 **0515** ± 10 **0516** $(x+3)(x-3)$

$$515 \pm 10 \quad 0516$$

0517
$$(a+4)(a-4)$$
 0518 $(6+x)(6-x)$

0519
$$(2x+y)(2x-y)$$
 0520 $(3a+4b)(3a-4b)$

0521
$$\left(\frac{1}{2}x + \frac{1}{3}y\right)\left(\frac{1}{2}x - \frac{1}{3}y\right)$$

0522 (1) 1, 4 (2)
$$-2$$
, 6 (3) -3 , -2 (4) -5 , 4 **0523** (1) -4 , -2 (2) $(x-4)(x-2)$

0523 (1)
$$-4$$
, -2 (2) $(x-4)(x-2)$
0524 $(x+7)(x+1)$ **0525** $(x+6)(x-8)$

0526
$$(a+12)(a-2)$$

0527
$$(a+3b)(a-b)$$

0528
$$(x+y)(x-4y)$$

0530
$$(x+2)(3x+1)$$
 (?) 3 (4) 2 (4) 6 (2) 1
0530 $(x-1)(6x+5)$ (?) 6 (4) -1 (4) 5 (2) -6

- **0532** (x+1)(5x+3)**0533** (6a-5)(a-1)**0538** -2(5a+1)(3a-2) **0539** 2(5a+6b)(a-b)**0540** $(x+6)^2$ **0541** $(a+1)^2$ **0542** 2a(2a-3)**0543** (3x+y+1)(15x+5y-2)
- **0544** A+B, x+2**0545** (x+4y+3)(x-4y+3)**0546** (7x-4)(5x+6)**0547** (a+2)(b+2)**0548** (3a+b+2)(3a-b-2) **0549** 630 **0550** 10000 **0551** 2500 **0552** 1680

(Y) B단계 유형 Training **본책** 67~75쪽 **0555** 2x-40553 ③ 0554 ② **0556** (a-b-2c)(x-2)0557 (4) **0558** a=2, b=50559 4 **0560** 38 **0561** 45 **0562** 30 **0563** 4 0564 ② **0565** 49 **0566** ⑤ **0567** 1 **0568** 13 **0569** (5) **0570** (1) 0571 ③ **0572** (x+3)(x-9)**0573** -19 **0574** ② 0575 (5) **0576** 45 0577 ④ 0578 4 **0579** ③ **0580** 19 0581 ② 0582 ③ 0583 ① 0584 ① 0585 -100586 ① 0587 - 6 0588 (4) 0589 ② **0590** (1) $2x^2+9x+10$ (2) (2x+5)(x+2)**0591** (2x+1)(3x-1)0592 ③ 0593 (5) **0594** 2x+3 **0595** (3x-y+6)(3x-y-1)**0596** ②, ⑤ **0597** 24 **0598** (1) \bigcirc (2) (7x-5)(11x-7)0599 ② 0600 ③ **0601** 0 **0602** ① **0603 ④ 0604 ③**, **④ 0605** −4 **0606 ⑤ 0607** ③ **0608** 1760 **0609** 8 **0610** ⑤ **0612** (4) **0613** $25\sqrt{2}$ **0614** 28x-80611 1 **0615** 10*a*-8 **0616** ② **0617** 4

학교시험	Preview		본책 76~78쪽
0618 ③	0619 8	0620 25	0621 ⑤
0622 ②	0623 ⑤	0624 ②	0625 -36
0626 (x+14	(x-4)	0627 ③	0628 ②
0629 2	0630 ⑤	0631 14	0632 ④
0633 2x+7	0634 120	0635 7	0636 $8\sqrt{5}$
0637 <i>x</i> +7	0638 2	0639 ①	0640 ②

06 이처방정식의 풀이

(中) A단계 기본 Training **본책** 80~84쪽 0641 × 0642 × 0643 ○ 0644 🔾 0645 × 0646 ○ 0647 × 0648 🔾 0649 × 0650 × 0651 \bigcirc 0652 x=1**0653** x=0 또는 x=2 **0654** x = -7 또는 x = 00655 $x = -\frac{1}{2}$ $x = \frac{1}{5}$ 0656 x = -9 x = 00657 x = -7 또는 x = 7 0658 x = -1 또는 x = 70659 x=-1 또는 $x=\frac{3}{2}$ 0660 x=-2 또는 $x=\frac{1}{3}$ 0661 O 0662 × 0663 × 0664 x=-10(중군) 0665 $x=\frac{1}{3}(중군)$ 0666 $x = \frac{1}{6}$ (중군) 0667 $x = \frac{4}{3}$ (중군) 0668 $x = \pm \sqrt{6}$ 0669 $x = \pm \frac{8}{3}$ **0670** $x = -5 \pm \sqrt{15}$ **0671** $x = \frac{3 \pm 2\sqrt{3}}{4}$ **0672** $x = \frac{2 \pm \sqrt{5}}{3}$ **0673** $(x-4)^2 = 12$ **0674** $(x-1)^2 = \frac{3}{4}$ $0675 \ \ ^{(2)}\ 1 \ \ ^{(L)}\ 1 \ \ ^{(L)}\ \frac{5}{2} \ \ ^{(2)}\ \frac{\sqrt{10}}{2} \ \ ^{(0)}\ 1\pm\frac{\sqrt{10}}{2}$ **0676** $x=5\pm\sqrt{23}$ **0677** $x=-2\pm\frac{\sqrt{21}}{2}$ **0678** $x = -3 \pm 2\sqrt{3}$ **0679** (71) 3 (4) -3 (4) $\frac{3\pm\sqrt{41}}{4}$ **0680** $x = \frac{3 \pm \sqrt{21}}{2}$ **0681** $x = \frac{-5 \pm \sqrt{17}}{4}$ 0682 $x = \frac{9 \pm \sqrt{105}}{6}$ 0683 $x = \frac{7 \pm \sqrt{33}}{8}$ 0684 $x = \frac{11 \pm \sqrt{105}}{2}$ 0685 $x = \frac{-7 \pm \sqrt{73}}{6}$ **0686** (71) -3 (4) 1 (F) $\frac{-3\pm\sqrt{3}}{6}$ 0687 $x = -2 \pm 2\sqrt{2}$ 0688 $x = 4 \pm \sqrt{19}$ 0689 $x = \frac{3 \pm \sqrt{3}}{2}$ 0690 $x = \frac{-3 \pm \sqrt{5}}{4}$ **0691** $x = \frac{2 \pm \sqrt{10}}{3}$ **0692** $x = \frac{-4 \pm \sqrt{10}}{3}$

N697	$_{\infty} = 1 \pm \sqrt{6}$
0077	$x={5}$

0698
$$x = -1$$
 $\mathcal{L} = \frac{5}{2}$

0699
$$x = \frac{3 \pm \sqrt{17}}{2}$$

0700
$$x = \frac{-1 \pm \sqrt{33}}{4}$$

0701 풀이 57쪽

(Y) B단계 유형 Training

본책 85~94쪽

07 이차방정식의 활용

0796 (1) 33 (2) 2

0804 0 **0805** 1

0813 (1) $x^2 - 2x - 35 = 0$ (2) 7

(Y) B단계 유형 Training

0823 ④ 0824 ④

0841 ③ 0842 ③

0845 ① **0846** 15

0855 $18(\sqrt{2}-1)$ cm

0827 (4)

0833 ②

0849 2초

0852 ②

0825 (1) -3 (2) $-\frac{5}{2}$ (3) 14

0817 ② **0818** (∟), (≥) **0819** ⑤

0821 (1) $k < \frac{1}{3}$ (2) $k = \frac{1}{3}$ (3) $k > \frac{1}{3}$

0828 (1) $\alpha + \beta = -5$, $\alpha \beta = 3$ (2) $x^2 + 2x - 15 = 0$

0834 ④ 0835 11

0850 (1) 100 (2) 10초

0843 ②

0847 ③

0854 (4)

0856 ③

0860 ②

0829 ⑤ **0830** 3 **0831** 4

0837 23 **0838 4 0839** 45

0853 9 cm

0859 2 m

0863 ①

0800 2

0808 $\frac{5}{6}$, $\frac{1}{6}$

0812 $x^2 - \frac{1}{9} = 0$

(3) 3

(🍟) A단계 기본 Training

0798 (1) 100 (2) 2 **0799** (1) 0 (2) 1

0810 $x^2 + 2x = 0$ **0811** $x^2 - 2x + 1 = 0$

0814 풀이 66쪽 **0815** (1) 0 m (2) 16초 **0816** (1) (9-x) cm, (6-x) cm (2) $x^2-15x+36=0$

0702	2	0703	4	

0710 ④ 0711 ① 0712 14
0714
$$-3$$
 0715 $-\frac{3}{2}$ 0716 10

0714 -3

0718 1 0722 ②

0723 (1)
$$(4x+1)(3x-2)$$
 (2) $x=-\frac{1}{4}$ $x=\frac{2}{3}$

0724 ③ **0725** ② **0726**
$$x=1$$

0726
$$x=1$$

0727
$$x = -4$$
 $\stackrel{\leftarrow}{}$ $x = -2$ **0728** ⑤

0730
$$x = -\frac{2}{3}$$
0731 $x = \frac{1}{2}$ **0732** ③

0734 ④ 0738
$$\frac{1}{4}$$

0747
$$\frac{7}{2}$$
 0748 ②

0754
$$-6\sqrt{3}$$
 0755 ⑤ 0756 ③ 0757 $\frac{\sqrt{13}}{3}$

$$0.767$$
 $\sqrt{13}$

$$0.762 - 5$$
 $0.763 A = -3, B = -1$ $0.764 3$

$$B = -1$$

0768
$$x=2$$

0769 1 0770 ① 0771
$$\sqrt{11}$$
 0772 $\frac{4}{45}$

(V) 학교시험 Preview

0788 9
$$-\sqrt{2}$$

0862 3

0858 2 m

(屮) 학교시험 Preview

0865 ②

본책 98~99쪽

0797 (1) -11 (2) 0

0806 2, -3 **0807** 0, -2

본책 100~106쪽

0820 4

0822 ⑤

0826 4

0832 ⑤

0840 ③

0848 (2)

0851 4 m

0857 4 m

0861 12 cm

0836 10명

0844 13살

0801 0 0802 1 0803 2 0805 1 0806 2, -3 0807 0

0809 $x^2 - 8x + 15 = 0$

0877
$$-\frac{13}{4} \le m < \frac{2}{3}$$
 0878 $x = -2 \stackrel{\text{H}}{=} x = 8$

0880 (1)
$$(-2x^2+54x)$$
cm² (2) 12 cm, 15 cm

0882 ④ **0883**
$$(-6+6\sqrt{5})$$
cm

08 이차함수의 그래프(1)

(↳) A단계 기본 Training

본책 112~115쪽

ngg/.	×	UOOL	

0914 (7) **0915** (E) **0916**
$$y=2x^2-1$$

0917
$$y = -x^2 + 3$$
 0918 $y = -\frac{1}{3}x^2 - \frac{1}{2}$

0921
$$y=(x+2)^3$$

0919 풀이 74쪽 0920 풀이 74쪽 0921
$$y=(x+2)^2$$
 0922 $y=-5(x-1)^2$

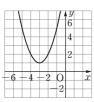
0923
$$y = \frac{4}{5} \left(x + \frac{1}{3} \right)^2$$
 0924 풀이 75쪽

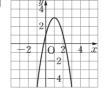
0925 풀이 75쪽 **0926**
$$y=5(x-1)^2+3$$

0927
$$y = -3(x+1)^2 - 2$$

0927
$$y = -3(x+1)^2 - 2$$
 0928 $y = \frac{1}{3}(x-3)^2 - \frac{1}{3}$

0929
$$y = -\frac{4}{5}\left(x + \frac{1}{2}\right)^2 + 1$$





0934
$$x = -1$$

0935 꼭짓점의 좌표:
$$(-2, -1)$$
, 축의 방정식: $x=-2$

0936 꼭짓점의 좌표:
$$(3, 4)$$
, 축의 방정식: $x=3$

0937 꼭짓점의 좌표:
$$\left(\frac{1}{3}, 5\right)$$
, 축의 방정식: $x = \frac{1}{3}$

0938 꼭짓점의 좌표:
$$\left(-\frac{1}{2}, 2\right)$$
, 축의 방정식: $x=-\frac{1}{2}$

Y B단계 유형 Training

본책 116~123쪽

0939 ②, ⑤ **0940** 4 **0941** ⑤ **0942**
$$k \neq -6$$

0942
$$k \neq -6$$

0951
$$-1 < a < -\frac{1}{3} \stackrel{\text{H}}{=} \frac{1}{3} < a < 1$$
 0952 ② 0953 ②, ④ 0954 ③ 0955 ④ 0956 -6

$$0956 - 6$$

0957
$$-\frac{2}{3}$$
 0958 ① **0959** (1) $y = -x^2$ (2) $2\sqrt{2}$

0960 ③ **0961** 18 **0962**
$$\frac{1}{2}$$
 0963 ②

0964 (7), (E) **0965**
$$y=(x-1)^2-3$$

0983
$$-2+2\sqrt{2}$$
 0984 ⑤ **0985** $\frac{1}{6}$

0985
$$\frac{1}{6}$$

본책 124~126쪽

1008 -2 **1009** 16 **1010** -14 **1011** ③

1000 ④ 1001 24 1002 (0, 16) 1003 5 1004 ③ 1005 10 1006
$$-\frac{4}{3}$$
 1007 $-\frac{3}{2}$

09 이차함수의 그래프 (2)

(♥) A단계 기본 Training 본책 128~129쪽

1012
$$y=(x-1)^2-2$$

1012
$$y=(x-1)^2-2$$
 1013 $y=-2(x-3)^2+23$

1014
$$y=3(x+1)^2$$
 1015 $y=-\frac{1}{2}(x-2)^2+3$

1021 (0, -6)

1023 (1) > (2) > , > (3) <

1024 (1) < (2) < , > (3) >

1025 >, <, < 1026 >, >, > 1027 <, >, < 1028 <, <, >

(Y) B단계 유형 Training

본책 130~135쪽

1029 ⑤ **1030** ④ **1031** 7 **1032** 5

1033 ③ 1034 ⑤ 1035 ② **1036** 0

1037 ② **1038** -12 **1039** ⑤

1040 (0, -14) 1042 ① **1041** 8

1044 ② 1045 ③ 1043 ③ 1046 ②

1047 x < -3 **1048** -2 **1049 5** 1050 ②

1051 ⑤ **1052** 9 1053 ① **1054** (1, 12)

1056 ④ **1055** −8 **1057** 32 1058 ②

1059 (1) C(0, -4) (2) 5 (3) 10 1061 ③, ⑤ 1062 ④ 1063 ③

본책 136~138쪽

1060 ④

1064 $\frac{11}{2}$ 1065 4 1066 2 1067 2

1068 3 **1069** 12 **1070** ② **1071** ④

1072 ⑤ **1073** 9 **1074** 18 **1075** ②

1076 ① 1077 ② **1078** (-1, -7)

1079 *a*>-5 **1080** 17 1081 제3사분면

1082 $\frac{1}{4} < k < \frac{11}{4}$ **1083** 12 1084 (5)

10 이처함수의 활용

(屮) A단계 기본 Training

1085 $y=2(x+1)^2+1$ **1086** $y = -(x-1)^2 + 4$

1087 $y = -(x+2)^2 + 3$ **1088** $y = (x+2)^2 - 3$

1089 $y = -2(x-2)^2 + 3$ **1090** $y = \frac{1}{2}(x-1)^2 + \frac{1}{2}$

1091 (7) -2 (4) -3 (7) a+b+c (2) 1 (9) 2 (H) $y = x^2 + 2x - 2$

1092 $y = -2x^2 - 3x + 5$ **1093** $y = -8x^2 + x + 2$

1094 $y=2x^2+4x-1$

1095 (71) x-4 (4) -1 (4) y=-(x+2)(x-4)

1096 y=2(x+2)(x-2) **1097** y=-3(x+3)(x-1)

1098 $y = -\frac{1}{2}(x+1)(x-4)$

1099 (1) $y = -2(x+1)^2 + 9$ (2) 최댓값: 9, x = -1

1100 최솟값: 5, x=2 **1101** 최댓값: 3, x=0

1102 최댓값: 39, x=6 **1103** 최솟값: -9, x=-2

1104 최솟값: -5, x=-1 **1105** 최댓값: 7, x=-2

1106 (7) x+12 (4) x(x+12) (4) 12 (4) 6 (9) -6 (4) -36

1107 (1) (18-x)cm (2) y=x(18-x) (3) 81 cm²

(4) 9 cm

(Y) B단계 유형 Training

본책 143~149쪽

1108 ① **1109** (0, 5) **1110** ② **1111** -2

1112 ③ 1113 6 1114 ② 1115 ①

1116 $\left(-\frac{1}{4}, \frac{7}{8}\right)$ 1117 20 1118 16

1119 ② 1120 3 1121 $\left(2, \frac{16}{3}\right)$ 1122 $\frac{19}{3}$

1123 ② 1124 ⑤ 1125 ③ 1126 ⑤

1127 ① 1128 $-\frac{25}{4}$ 1129 ② 1130 11

1131 ⑤ **1132** ④ **1133** -2 **1134** -10

1135 ⑤ **1136** 10 **1137** ② 1138 ⑤

1139 -11 **1140 4 1141** 5

1142 $y = -\frac{1}{3}x^2 + 2x - 3$ **1143** ② **1144** 0

1145 (1) x=8+2y (2) -8 1146 (2) 1147 800 cm²

1148 7 cm **1149** ② **1150** 5 cm **1151** ③

1152 ② 1153 (1) 500만 원 (2) 100개

(♥) 학교시험 Preview

본책 150~152쪽

1154 1 **1155** -5 **1156** ⑤ **1157** ②

1158 ④ 1159 ⑤ 1160 ③ **1161** ①

1162 -9 **1163 4 1164 4 1165** ③

1169 2

1166 ② **1167** 5 **1168** 50 m

1170 (1, 3) **1171** -9

1172 (1) y=4-x (2) 8 (3) x=2, y=2**1173** ③

1174 ② **1175** P(4, 2)

부록 대단원 모의고사

I. 제곱근과 실수

루록 1~4쪽

- 01 ⑤ 02 ③ 03 ② 04 ③ 05 ④ 06 ③ 07 ④ 08 ④ 09 ④ 10 ② 11 ③ 12 ①
- 13 **4** 14 **5** 15 **4** 16 **5** 17 **5** 18 **3**
- **19** 20 **20** 15 **21** 33 **22** 5 **23** 3개
- **24** $32\sqrt{3}\pi$ cm³ **25** $\frac{14\sqrt{10}}{5}$ m/s

■ 인수분해

부록 5~8쪽

- 01 4 02 3 03 5 04 4 05 2 06 2
- 07 ③ 08 ① 09 ① 10 ② 11 ① 12 ①
- 13 3 14 5 15 2 16 1 17 3 18 4
- **19** 16 **20** M=17, m=-17 **21** 5x-9
- **22** $\frac{5}{36}$ **23** 4 **24** -6 **25** 81

◎ Ⅲ. 이차방정식

부록 9~12쪽

- 01 4 02 4 03 4 04 2 05 3 06 5
- 07 2 08 2 09 4 10 5 11 5 12 4
- 13 ⑤ 14 ③ 15 ⑤ 16 ④ 17 ③, ⑤
- **18 4 19** 7 **20** 3 **21** 25 **22** $\frac{5}{2}$
- **23** x=-1 **24** $x=-2\pm\sqrt{10}$ **25** 8, 9, 10

◎ Ⅳ. 이차함수

부록 13~16쪽

- 01 ② 02 ④ 03 ⑤ 04 ⑤ 05 ⑤ 06 ③ 07 ⑥ 08 ① 09 ③ 10 ④ 11 ③ 12 ⑥
- 07 ⑤ 08 ① 09 ③ 10 ④ 11 ③ 12 ⑤
- 13 ② 14 ⑤ 15 ④ 16 ③ 17 ③ 18 ③
- **19** $-\frac{3}{2}$ **20** $\sqrt{2}$ **21** 3 **22** 27 **23** $\frac{25}{8}$
- **24** -2, 2 **25** 2

Ⅰ . 제곱근과 실수

01) 제곱근의 뜻과 성질

- 0001 **월** 49, 49, 7, −7
- $\blacksquare \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, -\frac{1}{2}$ 0002
- 0003 ☐ 1, -1
- **0004 월** 5, −5
- 0005 **3** 0
- **0006** $\blacksquare \frac{3}{2}, -\frac{3}{2}$
- 0007 $\blacksquare 0.1, -0.1$
- 8000 $\blacksquare 0.6, -0.6$
- 0009 **월** 4, −4
- 0010 **3** 8, −8
- 0011 **■** 12, −12
- **0012 ■** 16, −16
- 0013
- 0015 $\blacksquare 0.2, -0.2$
- 0016 **월** 1.1, −1.1
- 0017 **2**
- 0018 **1**
- 0019 **2**
- 0020 **3** 0
- $(1)\sqrt{3}$ $(2)-\sqrt{3}$ (3) 0.4 (4) -0.4 0021

 - (5) 6 (6) -6 (7) $\frac{3}{2}$ (8) $-\frac{3}{2}$
- \Box $\pm\sqrt{12}$ 0022
- 0023 $\blacksquare \pm \sqrt{24}$
- 0024 $\pm \sqrt{0.3}$

- 0026 \Box $\sqrt{7}$
- **0027** \Box $-\sqrt{7}$
- 0028 \Box $\pm\sqrt{7}$
- 0029
- \Box $\sqrt{7}$
- 0030 6²=36이므로 $\sqrt{36} = 6$
- **3** 6
- $\left(\frac{1}{14}\right)^2 = \frac{1}{196}$ 이<u>므로</u> $\sqrt{\frac{1}{196}} = \frac{1}{14}$ 0031
- $\blacksquare \frac{1}{14}$

- **0032** $(-10)^2 = 100$ 이므로 $-\sqrt{100} = -10$ **및** -10
- 0033 (-1.5)²=2.25이므로 $-\sqrt{2.25} = -1.5$

-1.5

冒 ±3

- **0034** $3^2 = 9$, $(-3)^2 = 9$ 이므로 $\pm \sqrt{9} = \pm 3$
- 0035 $9^2 = 81, (-9)^2 = 81$ 이므로 $\pm \sqrt{81} = \pm 9$

1 ±9

0036 $7^2 = 49$ 에서 $\sqrt{49} = 7$ 이고 7의 제곱근은 $\pm \sqrt{7}$ 이다.

B ×

- 0037
- 8의 양의 제곱근: $\sqrt{8}$, 제곱근 8: $\sqrt{8}$ 0038

- 제곱근 a는 \sqrt{a} 이므로 항상 양수이다. 0039
- 0041 $extbf{1}$ 0040 **3** 5
- 0042 **2** 2 0043 **3** 0.3
- 0044 0045 \Box -6 $\blacksquare -0.01$
- $\blacksquare \frac{1}{3}$ 0046 0047 **3** 7
- 0048 **B** 8 0049 图 0.1
- 0051 $\Box = -\frac{5}{4}$ 0050 $\blacksquare -2$
- **0052** $(\sqrt{5})^2 + (-\sqrt{6})^2 = 5 + 6 = 11$ 图 11
- **0053** $(-\sqrt{4})^2 \sqrt{9^2} = 4 9 = -5$ $\blacksquare -5$
- **0054** $\sqrt{144} \times \sqrt{\left(-\frac{3}{2}\right)^2} = \sqrt{12^2} \times \sqrt{\left(-\frac{3}{2}\right)^2}$ $=12\times\frac{3}{2}=18$
- **0055** $-\sqrt{0.2^2} \div \sqrt{0.04} = -\sqrt{0.2^2} \div \sqrt{0.2^2}$
- $=-0.2 \div 0.2 = -1$ \Box -1

■ 3*a*

0057
$$-\frac{1}{5}a < 0$$
이므로 $\sqrt{\left(-\frac{1}{5}a\right)^2} = -\left(-\frac{1}{5}a\right) = \frac{1}{5}a$

 $\blacksquare \frac{1}{5}a$

0058
$$4a>0$$
, $-6a<0$ 이므로 $\sqrt{(4a)^2}+\sqrt{(-6a)^2}=4a+\{-(-6a)\}=10a$

월 10a

0059
$$\frac{3}{4}a < 0$$
이므로 $\sqrt{\left(\frac{3}{4}a\right)^2} = -\frac{3}{4}a$

 $\Box -\frac{3}{4}a$

0060
$$-2a > 0$$
이므로 $\sqrt{(-2a)^2} = -2a$

 \Box -2a

0061
$$-7a>0$$
, $5a<0$ 이므로 $\sqrt{(-7a)^2}-\sqrt{(5a)^2}=-7a-(-5a)$

$$=-2a$$

 \Box -2a

 $\therefore \sqrt{(a-2)^2} = a-2$

 $\blacksquare > , a-2$

 $\therefore \sqrt{(2-a)^2} = -(2-a) = a-2$

 $\blacksquare < , a-2$

0064 2<3이므로
$$\sqrt{2}$$
< $\sqrt{3}$

日 <

0065
$$\frac{1}{2} > \frac{1}{3}$$
이므로 $\sqrt{\frac{1}{2}} > \sqrt{\frac{1}{3}}$

0066
$$\sqrt{2} < \sqrt{3}$$
이므로 $-\sqrt{2} > -\sqrt{3}$

图 >

0067
$$\sqrt{\frac{1}{2}} > \sqrt{\frac{1}{3}}$$
이므로 $-\sqrt{\frac{1}{2}} < -\sqrt{\frac{1}{3}}$

3 <

0069 $1=\sqrt{1}$ 이므로 $1<\sqrt{2}$

目 <

0070
$$4=\sqrt{16}$$
이므로 $\sqrt{15}<4$

目 <

0071
$$\frac{1}{2} = \sqrt{\frac{1}{4}}$$
이므로 $\sqrt{\frac{1}{2}} > \frac{1}{2}$

B >

$$\therefore -6 > -\sqrt{37}$$

日 >

0073 6=√36, 7=√49이므로 $6 < \sqrt{45} < 7 < \sqrt{50}$

0074 1 11, 12, 13, 14

0075 $5=\sqrt{25}$, $6=\sqrt{36}$ 이므로 $\sqrt{25}<\sqrt{x}<\sqrt{36}$ $x = 26, 27, 28, \dots, 35$

26, 27, 28, ···, 35

다른풀이 $5^2=25$, $(\sqrt{x})^2=x$, $6^2=36$ 이므로

25 < x < 36

 $x=26, 27, 28, \dots, 35$

0076 ① 음수의 제곱근은 없다.

- ③ 0의 제곱근은 0이다.
- (4) 제곱근 6은 √6이다.
- (5) 제곱근 2는 $\sqrt{2}$ 이고 2의 제곱근은 $\pm \sqrt{2}$ 이므로 같지 않다.

(2)

冒(5)

0077 x가 6의 제곱근이므로 $x=\pm\sqrt{6}$

0078 제곱하여 a^2 이 되는 수는 a, -a이므로 a^2 의 제곱근 은 $\pm a$ 이다. $\blacksquare \pm a$

0079 $A=(\pm\sqrt{8})^2=8$, $B=(\pm7)^2=49$

 $\therefore A+B=57$

3 57

0080 (1), (3), (4), (5) ± 4 (2) 4

P(2)

0081 a^2 의 양의 제곱근이 25이므로 $a^2 = 25^2 = 625$

 $\therefore a = \pm 25$

冒 ±25

0082 ($\sqrt{81}$ =9이고 제곱근 9는 $\sqrt{9}$ =3

(L) 음수의 제곱근은 없다.

(c) $(\pm 0.\dot{4})^2 = (\pm \frac{4}{9})^2 = \frac{16}{81} \neq 0.\dot{1}\dot{6}$

(리) 0의 제곱근은 1개이다.

이상에서 옳은 것은 (ㅋ), (ㄴ)이다.

(1)

다음을 이용하면 쉽고 빠르게 순환소수를 분수로 나타낼 수 있어.

- ① 분모: 순환마디를 이루는 숫자의 개수만큼 9를 적고, 그 뒤에 소 수점 아래 순환마디에 포함되지 않는 숫자의 개수만큼 0을 적어
- ② 분자: 전체의 수에서 순환하지 않는 부분의 수를 빼서 적어 줘.

0083
$$\sqrt{16}$$
=4이므로 $A=\sqrt{4}=2$
($-\sqrt{25}$) $^2=25$ 이므로 $B=-\sqrt{25}=-5$
 $\therefore A+B=-3$

0084
$$0.\dot{1} = \frac{1}{9}$$
이므로 $\frac{1}{9}$ 의 제곱근은 $\pm \frac{1}{3}$

2, (5)

0085 225의 제곱근은 ±15이므로

$$a=15, b=-15 (\because a>b)$$
 ... \bullet

$$\therefore 2a-b+4=2\times 15-(-15)+4=49$$

... ❸

따라서 49의 양의 제곱근은 7이다.

图 7

... 2

채점 기준	비율
lacktriangle a, b 의 값을 구할 수 있다.	40%
② $2a-b+4$ 의 값을 구할 수 있다.	30%
③ $2a-b+4$ 의 양의 제곱근을 구할 수 있다.	30%

0086 √625=25이고 제곱근 25는 5이므로

$$a=5$$
 ····

100의 제곱근은 ±10이므로

$$b = -10 \,\, \text{E} = 10 \,\, \dots$$

따라서 a-b의 최댓값은

$$5-(-10)=15$$

15

채점 기준	비율
1 a의 값을 구할 수 있다.	30%
② b의 값을 구할 수 있다.	30%
	40%

0087 주어진 도형의 넓이는

 $\pi \times 3^2 + \pi \times 4^2 = 25\pi \text{ (cm}^2\text{)}$

 $x^2\pi = 25\pi$ 이므로 $x^2 = 25$

따라서 x는 25의 양의 제곱근이므로

0088 3
$$\sqrt{\frac{121}{36}} = \sqrt{\left(\frac{11}{6}\right)^2} = \frac{11}{6}$$

(3)

0089 주어진 수의 제곱근을 각각 구하면

64
$$\Rightarrow \pm \sqrt{64} = \pm 8$$

$$0.04 \Rightarrow \pm \sqrt{0.04} = \pm 0.2$$

$$\frac{32}{225}$$
 \Rightarrow $\pm \sqrt{\frac{32}{225}}$

$$0.\dot{6} \implies \pm \sqrt{0.\dot{6}} = \pm \sqrt{\frac{6}{9}} = \pm \sqrt{\frac{2}{3}}$$

$$\frac{3}{4} \implies \pm \sqrt{\frac{3}{4}}$$

따라서 주어진 수의 제곱근 중 근호를 사용하지 않고 나타낼 수 있는 것은 64, 0.04의 2개이다. 图 2

0090 ① $\sqrt{144}$ =12이고 12의 제곱근은 $+\sqrt{12}$

②
$$\sqrt{(-5)^2} = 5$$
이고 5의 제곱근은 $\pm \sqrt{5}$

③
$$\sqrt{\frac{256}{625}} = \frac{16}{25}$$
이고 $\frac{16}{25}$ 의 제곱그은 $\pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}$

④
$$2.\dot{7} = \frac{25}{9}$$
이고 $\frac{25}{9}$ 의 제곱그승 $\pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3}$

⑤ 14.4의 제곱근은 $\pm \sqrt{14.4}$

3, 4

0091 (1) $(\sqrt{7})^2 = 7$

②
$$(-\sqrt{11})^2 = 11$$

$$(4) - \sqrt{(\frac{4}{5})^2} = -\frac{4}{5}$$

$$(5) - \sqrt{(-1.5)^2} = -1.5$$

3

0092 ①, ②, ③, ④ 10 ⑤
$$-10$$

$$(5) -10$$

0093 ①
$$\left(\frac{1}{5}\right)^2 = \frac{1}{25}$$
 ② $\sqrt{\frac{1}{25}} = \frac{1}{5}$

$$(3)\sqrt{\left(\frac{1}{4}\right)^2} = \frac{1}{4}$$

$$4\sqrt{\left(-\frac{1}{3}\right)^2} = \frac{1}{3}$$

$$(5)\left(-\sqrt{\frac{1}{9}}\right)^2 = \frac{1}{9}$$

따라서 가장 큰 수는 ④이다.

冒(4)

0094 (1) $-\sqrt{1.3^2} = -1.3$ 이므로 음수의 제곱근은 없다.

- (4) $(-\sqrt{3})^2 = 3$ 이고 3의 제곱근은 $\pm \sqrt{3}$
- (5) $0.\dot{4} = \frac{4}{9}$ 이고 $\frac{4}{9}$ 의 제곱그은 $\pm \frac{2}{3} = \pm 0.\dot{6}$

2, 3

a>0일 때. $(\sqrt{a})^2$. $(-\sqrt{a})^2$. $\sqrt{a^2}$. $\sqrt{(-a)^2}$ 의 제곱근 구하기

- (i) 주어진 수를 간단히 한다.
 - $(\sqrt{a})^2 = a, (-\sqrt{a})^2 = a, \sqrt{a^2} = a, \sqrt{(-a)^2} = a$
- (ii) 제곱근을 구한다.
 - $\bigcirc \pm \sqrt{a}$

$$A\!=\!-6$$
 ... \bullet $\sqrt{(-4)^2}\!=\!4$ 이고 4의 양의 제곱근은

채점 기준	비율
lacksquare A 의 값을 구할 수 있다.	40%
② B의 값을 구할 수 있다.	40%
③ $A+B$ 의 값을 구할 수 있다.	20%

- ② (주어진 식)=4×10÷5=8
- ③ (주어진 식)= $\frac{1}{2}+\frac{1}{2}-3=-2$
- ④ (주어진 식)= $\frac{8}{3} \times \frac{3}{2} \times 6 = 24$
- (5) (주어진 식)= $(-0.4)\times0.2+0.01=-0.07$

4

a 0

0098 ① (주어진 식)=2-4=-2

- ② (주어진 식)=21÷(-7)=-3
- ③ (주어진 식)=2+3-5=0
- ④ (주어진 식)=0.2×(-5) $\div \frac{1}{10}$ =-10

(5) (주어진 식)=
$$30 \div 2 + \frac{5}{3} \times \frac{3}{5} = 15 + 1 = 16$$

0099
$$A = \sqrt{13^2} \times (\sqrt{2})^2 - \sqrt{(-1)^2}$$

$$=13\times2-1=25$$
 ... \bullet

따라서 제곱근 25는 5이다.

4

채점 기준	비율
lacksquare A 의 값을 구할 수 있다.	60%
lacktriangle 제곱근 A 를 구할 수 있다.	40%

0100 ① 2a > 0이므로 $\sqrt{(2a)^2} = 2a$

- ② -3a < 0이므로 $\sqrt{(-3a)^2} = -(-3a) = 3a$
- ③ 4a > 0이므로 $-\sqrt{(4a)^2} = -4a$
- ④ 9a²=(3a)²이고 3a>0이므로 $-\sqrt{9a^2} = -\sqrt{(3a)^2} = -3a$

$$-\sqrt{(-8a)^2} = -\{-(-8a)\} = -8a$$

0101
$$\frac{a^2}{16} = \left(\frac{a}{4}\right)^2$$
이고 $\frac{a}{4} < 0$ 이므로

$$\sqrt{\frac{a^2}{16}} = \sqrt{\left(\frac{a}{4}\right)^2} = -\frac{a}{4}$$

0102 ①
$$\sqrt{a^2} = -a > 0$$

- $(2) \sqrt{a^2} = -(-a) = a < 0$
- (3) a > 0이므로 $\sqrt{(-a)^2} = -a > 0$
- $(4) \sqrt{(-a)^2} = -(-a) = a < 0$
- $(5) (-\sqrt{-a})^2 = (\sqrt{-a})^2 = -a > 0$

2 (2), (4)

0103
$$\frac{25a^2}{9} = \left(\frac{5}{3}a\right)^2$$
이고 $\frac{5}{3}a > 0$ 이므로

$$\sqrt{\frac{25a^2}{9}} = \sqrt{\left(\frac{5}{3}a\right)^2} = \frac{5}{3}a$$

 $9a^2 = (3a)^2$ 이고 3a > 0이므로

$$-\frac{\sqrt{9a^2}}{2} = -\frac{\sqrt{(3a)^2}}{2} = -\frac{3}{2}a$$

$$-3a < 0$$
이므로 $-\sqrt{(-3a)^2} = -\{-(-3a)\} = -3a$
 $-4a < 0$ 이므로 $\sqrt{(-4a)^2} = -(-4a) = 4a$...

이때 a > 0이므로 가장 큰 수는 4a, 가장 작은 수는 -3a이다. 따라서 구하는 합은

$$4a + (-3a) = a$$

... 2 $\blacksquare a$

채점 기준	비율
❶ 주어진 수의 근호를 없앨 수 있다.	80%
② 가장 큰 수와 가장 작은 수의 합을 구할 수 있다.	20%

0104
$$\sqrt{9b^2} = \sqrt{(3b)^2}$$
이고 $-2a < 0$, $3b < 0$ 이므로 (주어진 식)= $-(-2a)-(-3b)=2a+3b$

(5)

0105
$$\frac{2}{3}a < 0$$
, $-a > 0$ 이므로

(주어진 식)=
$$\left(-\frac{2}{3}a\right)$$
÷ $\left(-a\right)=\frac{2}{3}$

 $\blacksquare \frac{2}{2}$

0106 a-1>0, 1-a<0이므로

(주어진 식)=
$$(a-1)+\{-(1-a)\}$$

= $a-1-1+a$

$$=2a-2$$

$$= -(a-1) + (b+1)$$

$$= -a+1+b+1$$

 $\Box -a+b+2$

정답 및 풀0

채점 기준	비율
• $a-1, b+1$ 의 부호를 알 수 있다.	40%
② 주어진 식의 근호를 없앨 수 있다.	40%
❸ 식을 간단히 할 수 있다.	20%

0108
$$a-4<0$$
, $a+3>0$ 이므로
(주어진 식)= $-(a-4)+(a+3)$
= $-a+4+a+3=7$

0109 150을 소인수분해하면

 $150 = 2 \times 3 \times 5^2$

 $\sqrt{150x} = \sqrt{2 \times 3 \times 5^2 \times x}$ 가 자연수가 되려면 $x = 2 \times 3 \times ($ 자연수)² 꼴이어야 한다.

따라서 가장 작은 자연수 x는

0110 252를 소인수분해하면

 $252 = 2^2 \times 3^2 \times 7$

$$\sqrt{\frac{252}{x}} = \sqrt{\frac{2^2 \times 3^2 \times 7}{x}}$$
이 자연수가 되려면 x 는 252의 약수이면

서 7×(자연수)² 꼴이어야 한다.

따라서 가장 작은 자연수 x는 7이다.

3

图 7

0111 90을 소인수분해하면

 $90 = 2 \times 3^2 \times 5$

 $\sqrt{90a} = \sqrt{2 \times 3^2 \times 5 \times a}$ 가 자연수가 되려면

 $a=2\times5\times($ 자연수)² 꼴이어야 한다.

따라서 두 자리 자연수 *a*는

 2×5 , $2\times5\times2^2$, $2\times5\times3^2$

의 3개이다.

··· 2

...

채점 기준	비율
$lack a=2 imes5 imes($ 지연수 $)^2$ 꼴임을 알 수 있다.	70%
② <i>a</i> 의 개수를 구할 수 있다.	30%

0112 147을 소인수분해하면

 $147 = 3 \times 7^2$

 $\sqrt{\frac{147}{a}} = \sqrt{\frac{3 \times 7^2}{a}}$ 이 자연수가 되려면 a는 147의 약수이면서

 $3 \times ($ 자연수 $)^2$ 꼴이어야 한다.

$$\therefore a=3, 3\times7^2$$

..... 🦳

48을 소인수분해하면 $48=2^4 \times 3$

 $\sqrt{48a} = \sqrt{2^4 \times 3 \times a}$ 가 자연수가 되려면 $a = 3 \times (\text{자연수})^2$ 꼴이 어야 한다.

$$\therefore a=3, 3\times 2^2, 3\times 3^2, \cdots$$

.....(L)

 \bigcirc , \bigcirc 에서 가장 작은 자연수 a는 3이다.

3

0113 $\sqrt{22+x}$ 가 자연수가 되려면 22+x는 22보다 큰 제곱 인 자연수이어야 하므로

 $22+x=25, 36, 49, \cdots$

 $x=3, 14, 27, \cdots$

따라서 가장 작은 자연수 x의 값은 3이다.

3

0114 $\sqrt{17-x}$ 가 정수가 되려면 17-x는 17보다 작은 제곱 인 자연수이거나 0이어야 하므로

$$17-x=16, 9, 4, 1, 0$$

$$\therefore x=1, 8, 13, 16, 17$$

(4)

 $82+a=100, 121, 144, \cdots$

 $\therefore a = 18, 39, 62, \cdots$

따라서 가장 작은 자연수 a는 18이다.

... ①

$$a=18$$
일 때 $b=\sqrt{82+18}=\sqrt{100}=10$

... 8

$$\therefore a+b=28$$

28

채점 기준	비율
1 a의 값을 구할 수 있다.	60%
② <i>b</i> 의 값을 구할 수 있다.	30%
	10%

0116 A 색종이의 한 변의 길이는 $\sqrt{40-x}$ 이고 이 값이 자연수가 되어야 하므로

40-x=36, 25, 16, 9, 4, 1

$$\therefore x = 4, 15, 24, 31, 36, 39$$

..... 🗇

B 색종이의 한 변의 길이는 $\sqrt{34+x}$ 이고 이 값이 자연수가 되어 야 하므로

 $34+x=36, 49, 64, 81, \cdots$

$$\therefore x=2, 15, 30, 47, \cdots$$

..... L

¬, □에서 x=15

0117 ② $\sqrt{2} < \sqrt{3}$ 이므로 $-\sqrt{2} > -\sqrt{3}$

③
$$\frac{1}{2} = \sqrt{\frac{1}{4}}$$
이므로 $\sqrt{\frac{1}{3}} > \frac{1}{2}$

④ $1.1 = \sqrt{1.21}$ 이므로 $1.1 > \sqrt{1.1}$

(5) 3=√9이므로 √8<3 ∴ -√8>-3

1 (1), (5)

0118
$$(3)\sqrt{\frac{18}{5}} = \sqrt{3.6}$$

$$(5) \sqrt{\frac{19}{4}} = \sqrt{4.75}$$

따라서 $1 < \sqrt{2.25} < \sqrt{3} < \sqrt{\frac{18}{5}} < \sqrt{\frac{19}{4}}$ 이므로 두 번째로 작은 수는 $\sqrt{2.25}$ 이다. **(4)**

$$\therefore -\sqrt{27} < -3 < -\sqrt{5.5}$$

$$\therefore a = -\sqrt{27}$$

$$\sqrt{(-4)^2} = \sqrt{16}$$
이므로 $\sqrt{\frac{6}{5}} < \sqrt{(-4)^2} < \sqrt{17}$

$$b=\sqrt{17}$$

$$\therefore a^2 - b^2 = (-\sqrt{27})^2 - (\sqrt{17})^2$$
$$= 27 - 17 = 10$$

10

0120 ①
$$\frac{1}{3}$$
 ② $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$ ③ $\sqrt{\frac{1}{3}}$

$$2\left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

$$3\sqrt{\frac{1}{3}}$$

(4) 3 $(5)\sqrt{3}$

따라서 가장 작은 것은 ②이다.

(2)

$$(2) 2-\sqrt{5} < 0, \sqrt{5}-2 > 0$$
이므로

$$=-2+\sqrt{5}-\sqrt{5}+2$$

$$=0$$

$$\blacksquare$$
 (1) 2< $\sqrt{5}$ (2) 0

채점 기준	비율
① $29\sqrt{5}$ 의 대소를 비교할 수 있다.	40%
② $2-\sqrt{5}$ 와 $\sqrt{5}-2$ 의 부호를 알 수 있다.	20%
③ 주어진 식을 간단히 할 수 있다.	40%

0122 $3<\sqrt{n}<4$ 에서 $3^2<(\sqrt{n})^2<4^2$

$$\therefore 9 < n < 16$$

따라서 자연수 n은 10, 11, 12, 13, 14, 15의 6개이다.

(5)

0123
$$2 < \sqrt{\frac{n}{2}} < 3$$
에서 $2^2 < \left(\sqrt{\frac{n}{2}}\right)^2 < 3^2$

$$4 < \frac{n}{2} < 9$$
 : $8 < n < 18$

따라서 a=17, b=9이므로

$$a - b = 8$$

B 8

0124 (i) $1 < \sqrt{x} < 3$ 에서 $1^2 < (\sqrt{x})^2 < 3^2$

$$\therefore 1 < x < 9$$

따라서 이를 만족시키는 자연수 x의 값은

$$(ii)$$
 $\sqrt{17} < x < \sqrt{82}$ 에서 $(\sqrt{17})^2 < x^2 < (\sqrt{82})^2$

$$17 < x^2 < 82$$

따라서 이를 만족시키는 자연수 x의 값은

(i), (ii)에서 두 부등식을 동시에 만족시키는 자연수 x는 5, 6, 7. 8이므로 구하는 합은

$$5+6+7+8=26$$

... 🔞

26

채점 기준	비율
$1 < \sqrt{x} < 3$ 을 만족시키는 자연수 x 의 값을 구할 수 있다.	40%
$2\sqrt{17} < x < \sqrt{82}$ 를 만족시키는 자연수 x 의 값을 구할 수 있다.	40%
③ 두 부등식을 동시에 만족시키는 모든 자연수 x 의 값의 합을	20%
구할 수 있다.	20%

0125 $\sqrt{49} < \sqrt{63} < \sqrt{64}$ 이므로 $7 < \sqrt{63} < 8$

$$[\sqrt{63}] = 7$$

3 7

0126 전략》 음수의 제곱근은 없음을 이용한다.

물이 음수의 제곱근은 없으므로 제곱근을 구할 수 없는 것은 ③. ⑤이다.

3 (5)

0127 a > 0일 때, a의 제곱근은 $\pm \sqrt{a}$, 제곱근 $a \vdash \sqrt{a}$ 임 을 이용한다.

>풀이 ① 13의 제곱근은 ±√13이다.

- $(2)\sqrt{0.36}=0.6$
- (3) $4^2 = 16$ 이고 16의 제곱근은 ±4이다.
- ④ 제곱하여 0이 되는 수는 0이다.
- (5) 81의 제곱근은 ± 9 이고 9+(-9)=0이다.

(5)

0128 전략 a>0일 때, a의 양의 제곱근은 \sqrt{a} , 음의 제곱근은 $-\sqrt{a}$ 임을 이용한다.

 \ge 풀이 $(-11)^2=121$ 이므로 A=-11

$$B = \sqrt{\left(-\frac{2}{11}\right)^2} = \frac{2}{11}$$
이므로

$$AB = (-11) \times \frac{2}{11} = -2$$

 $\blacksquare -2$

0129 전략 어떤 수의 제곱인 수의 제곱근은 근호를 사용하지 않고 나타낼 수 있음을 이용한다.

>풀이 (¬)
$$-\sqrt{4} = -\sqrt{2^2} = -2$$

$$\text{(1)}\sqrt{\frac{169}{225}} = \sqrt{\left(\frac{13}{15}\right)^2} = \frac{13}{15}$$

이상에서 근호를 사용하지 않고 나타낼 수 있는 수는 (기). (미)이다.

冒(¬), (ロ)

0130 전략 a > 0일 때, $(\sqrt{a})^2 = (-\sqrt{a})^2 = a$. $\sqrt{a^2} = \sqrt{(-a)^2} = a$ 임을 이용한다.

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{8}$

따라서 가장 작은 수는 (5)이다.

图 (5)

国 12

0131 전략 $x^2 = k$ 이면 x가 k의 제곱근임을 이용한다.

물이 조건 (개)에서 a가 81의 양의 제곱근이므로

$$a = \sqrt{81} = 9$$

조건 (나)에서 $b=\sqrt{a}=\sqrt{9}=3$

$$\therefore a+b=12$$

0132 전략 제곱근의 성질을 이용하여 근호를 없앤 후 계산한다.

>풀이 A=15-3=12

$$B = (-7) \div \frac{7}{2} \times 6 = (-7) \times \frac{2}{7} \times 6 = -12$$

$$\therefore \frac{A}{B} = -\frac{12}{12} = -1$$

0133 전략 *a*의 부호를 구한다.

>풀이 $\sqrt{a^2} = -a$ 에서 a < 0

①
$$-a > 0$$
이므로 $-\sqrt{(-a)^2} = -(-a) = a$

(2)
$$4a^2 = (2a)^2$$
이고 $2a < 0$ 이므로 $\sqrt{4a^2} = \sqrt{(2a)^2} = -2a$

$$(3) -9a > 0$$
이므로 $\sqrt{(-9a)^2} = -9a$

(4)
$$16a < 0$$
이므로 $\sqrt{(16a)^2} = -16a$

⑤
$$25a^2 = (5a)^2$$
이고 $5a < 0$ 이므로
 $-\sqrt{25a^2} = -\sqrt{(5a)^2} = -(-5a) = 5a$

0134 전략 $\sqrt{x^2} = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$ 임을 이용한다.

$$= \sqrt{\frac{1}{9}a^2} = \sqrt{\frac{1}{9}a^2} = \sqrt{\left(\frac{1}{3}a\right)^2}, \sqrt{4a^2} = \sqrt{(2a)^2}$$

a<0이므로

(주어진 식)=
$$3\sqrt{a^2}+\sqrt{\left(\frac{1}{3}a\right)^2}-\sqrt{(2a)^2}$$
$$=3(-a)+\left(-\frac{1}{3}a\right)-(-2a)$$
$$=-\frac{4}{3}a$$
 및 ①

0135 전략 먼저 제곱하는 식의 부호를 조사한다.

0136 전략 12를 소인수분해하여 근호 안의 모든 소인수의 지수 가 짝수가 되도록 n의 값을 정한다.

물이 12를 소인수분해하면 $12 = 2^2 \times 3$

 $\sqrt{12n} = \sqrt{2^2 \times 3 \times n}$ 이 자연수가 되려면 $n = 3 \times (\text{자연수})^2$ 꼴이어 야 한다.

 $\widehat{1}$ 12=3×2²

(2) $27 = 3 \times 3^2$

(3) 36=3×12

(4) 48=3×4² (5) 75=3×5²

따라서 자연수 n이 될 수 없는 것은 (3)이다.

3

0137 전략 375를 소인수분해하여 근호 안의 모든 소인수의 지 수가 짝수가 되도록 x의 값을 정한다.

물에 잔디밭의 한 변의 길이는

375를 소인수분해하면 375=3×5³

$$\sqrt{rac{375}{x}}$$
 = $\sqrt{rac{3 imes 5^3}{x}}$ 이 자연수가 되려면 x 는 375의 약수이면서

 $3\times5\times($ 자연수 $)^2$ 꼴이어야 한다.

따라서 가장 작은 자연수 x는

$$3 \times 5 = 15$$

0138 전략 A는 최대이고 B는 최소일 때 A-B의 값이 최대 임을 이용한다.

둘에 주어진 식의 값이 가장 큰 자연수가 되려면 $\sqrt{200-x}$ 는 가장 큰 자연수가 되어야 하고, $\sqrt{10+y}$ 는 가장 작은 자연수가 되어야 한다.

200-x는 200보다 작은 제곱인 자연수 중에서 가장 큰 수이어 야 하므로

200 - x = 196 $\therefore x = 4$

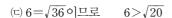
10+y는 10보다 큰 제곱인 자연수 중에서 가장 작은 수이어야 하므로

$$10+y=16 \qquad \therefore y=6 \\
\therefore x+y=10$$

0139 전략 a>0, b>0일 때, a< b이면 $\sqrt{a}<\sqrt{b}$ 임을 이용한

>풀이 (¬)
$$4=\sqrt{16}$$
이므로 $\sqrt{18}>4$ (ப) $\frac{2}{9}>\frac{1}{6}$ 이므로 $\sqrt{\frac{2}{9}}>\sqrt{\frac{1}{6}}$

9



$$\therefore -6 < -\sqrt{20}$$

(리)
$$2.2 = \sqrt{4.84}$$
이므로 $\sqrt{4.5} < 2.2$

$$\therefore -\sqrt{4.5} > -2.2$$

이상에서 옳은 것은 (니), (리)이다.

(4)

0140 전략 주어진 수를 음수와 양수로 나누어 음수는 음수끼 리, 양수는 양수끼리 대소를 비교한다.

$$\geq$$
풀이 $2=\sqrt{4}$ 이므로 $2>\sqrt{3.2}$

$$\therefore -2 < -\sqrt{3.2}$$

$$\sqrt{2.\dot{8}} = \sqrt{\frac{26}{9}}, \ \frac{3}{2} = \sqrt{\frac{9}{4}}$$
이고 $\frac{9}{4} < \frac{26}{9} < \frac{13}{4}$ 이므로 $\frac{3}{2} < \sqrt{2.\dot{8}} < \sqrt{\frac{13}{4}}$

$$\therefore \sqrt{\frac{13}{4}} > \sqrt{2.8} > \frac{3}{2} > -\sqrt{3.2} > -2$$

$$\blacksquare \sqrt{\frac{13}{4}}, \sqrt{2.8}, \frac{3}{2}, -\sqrt{3.2}, -2$$

0141 전략 주어진 부등식의 각 변을 제곱한 후 부등식의 성질 을 이용하여 n의 값의 범위를 구한다.

>풀이 $5 < \sqrt{4n-1} \le 9$ 에서 $25 < 4n - 1 \le 81$

 $26 < 4n \le 82$

$$\therefore \frac{13}{2} < n \le \frac{41}{2}$$

따라서 자연수 n은 7, 8, 9, ···, 20의 14개이다.

 \square (2)

부등식의 기본 성질

- ① 부등식의 양변에 같은 수를 더하거나 양변에서 같은 수를 빼 도 부등호의 방향은 바뀌지 않는다.
 - \bigcirc a < b 이면 a+c < b+c, a-c < b-c
- ② 부등식의 양변에 같은 양수를 곱하거나 양변을 같은 양수로 나누어도 부등호의 방향은 바뀌지 않는다.

$$\bigcirc a < b, c > 0$$
이면 $ac < bc, \frac{a}{c} < \frac{b}{c}$

- ③ 부등식의 양변에 같은 음수를 곱하거나 양변을 같은 음수로 나누면 부등호의 방향이 바뀐다.
 - $\bigcirc a < b, c < 0$ 이면 $ac > bc, \frac{a}{c} > \frac{b}{c}$

0142 전략 x>0일 때, x의 양의 제곱근은 \sqrt{x} , 음의 제곱근은 $-\sqrt{x}$, 제곱근 $x = \sqrt{x}$ 임을 이용한다.

>풀이
$$\sqrt{(-16)^2}$$
=16이므로

$$a = \sqrt{16} = 4$$

 $(-\sqrt{169})^2 = 169$ 이므로

$$b = -\sqrt{169} = -13$$

... 2

$$c = \sqrt{64} = 8$$

$$a-b+c=4-(-13)+8=25$$

25

채점 기준	비율
1 a의 값을 구할 수 있다.	30%
❷ <i>b</i> 의 값을 구할 수 있다.	30%
	30%
$oldsymbol{a} - b + c$ 의 값을 구할 수 있다.	10%

0143 전략》
$$\sqrt{x^2} = \begin{cases} x \ (x \ge 0) \\ -x \ (x < 0) \end{cases}$$
임을 이용한다.

>풀이 a>0, b<0이므로

$$\sqrt{(3b)^{2}} - \sqrt{81a^{2}} + \sqrt{(-10a)^{2}} - \sqrt{16b^{2}}$$

$$= \sqrt{(3b)^{2}} - \sqrt{(9a)^{2}} + \sqrt{(-10a)^{2}} - \sqrt{(4b)^{2}}$$

$$= -3b - 9a + \{-(-10a)\} - (-4b)$$

$$= -3b - 9a + 10a + 4b$$

$$= a + b$$
... 2

 $\square a+b$

-비고 기조	шо
채점 기준	비율
❶ 주어진 식의 근호를 없앨 수 있다.	70%
② 식을 간단히 할 수 있다.	30%

0144 전략 먼저 제곱하는 식의 부호를 조시한다.

도플이
$$x-2>0$$
, $6-x<0$ 이므로 … $\sqrt{(x-2)^2}+\sqrt{(6-x)^2}=(x-2)+\{-(6-x)\}$
$$=x-2-6+x$$

즉 2x-8=10이므로 2x = 18

$$\therefore x=9$$
 ... §

3 9

채점 기준	비율
① $x-2$, $6-x$ 의 부호를 알 수 있다.	30%
② 주어진 식의 좌변을 간단히 할 수 있다.	40%
③ <i>x</i> 의 값을 구할 수 있다.	30%

 $\sqrt{42-x}$ 가 자연수가 되도록 하는 자연수 x 중에서 조건 (4)를 만족시키는 x의 값을 구한다.

둘이 조건 (카에서 $\sqrt{42-x}$ 가 자연수가 되려면 42-x는 42보 다 작은 제곱인 자연수이어야 하므로

$$42-x=36, 25, 16, 9, 4, 1$$

$$\therefore x = 6, 17, 26, 33, 38, 41$$

····· (¬) ··· •

조건 (내)에서 각 변을 제곱하면

$$4^2 < (\sqrt{x})^2 < (\sqrt{35})^2$$

..... (L) ... (2)

 \bigcirc , \bigcirc 에 의하여 조건을 모두 만족시키는 x는

17, 26, 33

따라서 구하는 합은

$$17+26+33=76$$

... 🔞

2 76

채점 기준	비율
① 조건 여름 만족시키는 x 의 값을 구할 수 있다.	40%
② 조건 따를 만족시키는 x 의 값의 범위를 구할 수 있다.	40%
③ 조건 (개), (내를 모두 만족시키는 x 의 값의 합을 구할 수 있다.	20%

0146 전략 먼저 제곱하는 식의 부호를 조사한다.

 \geq 풀이 a-b>0, b-c<0, c-a>0이므로

(주어진 식)=
$$c(a-b)-a\{-(b-c)\}+b(c-a)$$

= $ac-bc+ab-ac+bc-ab$
=0

0147 전략 96을 소인수분해하여 분모, 분자의 모든 소인수의 지수가 짝수가 되도록 x^3 의 값을 정한다.

물에 96을 소인수분해하면

$$\sqrt{\frac{96}{x^3}} = \sqrt{\frac{2^5 \times 3}{x^3}}$$
을 근호를 사용하지 않고 나타내려면

 $x^3 = 2 \times 3 \times ($ 자연수 $)^2$ 꼴이어야 한다.

이때 x가 자연수이므로 $2 \times 3 \times ($ 자연수 $)^2$ 이 어떤 자연수의 세제 곱이어야 한다.

따라서 가장 작은 자연수 x에 대하여

$$x^3 = 2 \times 3 \times (2 \times 3)^2 = 2^3 \times 3^3 = 6^3$$

0148 전략 $2.2 \le \sqrt{n} \le 5.7$ 의 각 변을 제곱하여 n의 값의 범위 를 구한다.

>풀이 $2.2 \le \sqrt{n} \le 5.7$ 에서 $4.84 \le n \le 32.49$

이때 n은 자연수이므로

a = 32, b = 5

 $\sqrt{32+5+c} = \sqrt{37+c}$ 가 자연수가 되려면 37+c는 37보다 큰 제 곱인 자연수이어야 하므로

 $37+c=49, 64, 81, \cdots$

 $\therefore c=12, 27, 44, \cdots$

따라서 가장 작은 자연수 c의 값은 12이다.

12

Ⅰ. 제곱근과 실수

무리수와 실수

0149 **립** 무

0150 **립**무

0151 를 유 0152 **급**유

0153 유 0154 日무

0155 **말** 무 0156 **급** 유

 $\sqrt{1.7} = \sqrt{\frac{16}{9}} = \frac{4}{3}$ 0157

를 유

留×

日 ×

0158 🗈 무

0159 目 〇

0160 순환소수는 무한소수이지만 유리수이다.

0161 目〇

0162 目〇

9의 제곱근인 ±3은 유리수이다. 0163

0164 目 3,225

0165 3.450

0166 3.550

0167 **3.674**

0168 \blacksquare -3.406

0169 (1) $3 \times 3 - 4 \times \left(2 \times 1 \times \frac{1}{2}\right) = 5$

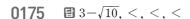
(1) 5 (2) $\sqrt{5}$ (3) $\sqrt{5}$

0170 $\square ABCD = 2 \times 2 - 4 \times \left(1 \times 1 \times \frac{1}{2}\right) = 2$

이므로 정사각형 ABCD의 한 변의 길이는 $\sqrt{2}$ 이다.

 $\blacksquare (1)\sqrt{2}, 1-\sqrt{2} (2)\sqrt{2}, 1+\sqrt{2}$

0171 0173 目 〇



0176
$$\sqrt{2}+3-(\sqrt{3}+3)=\sqrt{2}-\sqrt{3}<0$$

 $\therefore \sqrt{2}+3<\sqrt{3}+3$

图 <

다른풀이 $\sqrt{2}$ < $\sqrt{3}$ 이고 양변에 같은 수 3을 더해도 부등호의 방 향은 바뀌지 않으므로

 $\sqrt{2}+3<\sqrt{3}+3$

0177
$$2-\sqrt{5}-(2-\sqrt{7})=\sqrt{7}-\sqrt{5}>0$$

 $\therefore 2-\sqrt{5}>2-\sqrt{7}$

图 >

0178
$$\sqrt{10} + \sqrt{13} - (\sqrt{13} + \sqrt{6}) = \sqrt{10} - \sqrt{6} > 0$$

$$\therefore \sqrt{10} + \sqrt{13} > \sqrt{13} + \sqrt{6}$$

日 >

0179
$$(\sqrt{20} - \sqrt{15}) - (\sqrt{30} - \sqrt{15}) = \sqrt{20} - \sqrt{30} < 0$$

$$\therefore \sqrt{20} - \sqrt{15} < \sqrt{30} - \sqrt{15}$$

0180
$$(2+\sqrt{12})-6=\sqrt{12}-4=\sqrt{12}-\sqrt{16}<0$$

$$\therefore 2 + \sqrt{12} < 6$$

0181
$$(3-\sqrt{2})-1=2-\sqrt{2}=\sqrt{4}-\sqrt{2}>0$$

$$3-\sqrt{2}>1$$

🔡 >

0182
$$(3+\sqrt{7})-(\sqrt{7}+\sqrt{8})=3-\sqrt{8}=\sqrt{9}-\sqrt{8}>0$$

$$3+\sqrt{7}>\sqrt{7}+\sqrt{8}$$

目 >

0183 $(\sqrt{15}-\sqrt{5})-(4-\sqrt{5})=\sqrt{15}-4=\sqrt{15}-\sqrt{16}<0$

$$1.0 \sqrt{15} - \sqrt{5} < 4 - \sqrt{5}$$

目 <

0184 $\sqrt{0.4} = \sqrt{\frac{4}{9}} = \frac{2}{3}, \sqrt{\frac{1}{16}} = \frac{1}{4}, (-\sqrt{6})^2 = 6$

이므로 $\sqrt{0.4}$, $\sqrt{\frac{1}{16}}$, $(-\sqrt{6})^2$ 은 유리수이다.

따라서 무리수는 $\sqrt{40}$, $5-\sqrt{3}$ 의 2개이다.

2

제곱근의 성질

- ① 양수 a에 대하여 a의 제곱근을 제곱하면 a가 된다.
 - $(\sqrt{a})^2 = a, (-\sqrt{a})^2 = a$
- ② 근호 안의 수가 어떤 수의 제곱이면 근호를 사용하지 않고 나 타낼 수 있다.
 - $\bigcirc \sqrt{a^2} = a, \sqrt{(-a)^2} = a$ (단, a > 0)

0185 각 원의 반지름의 길이는

(1) $\sqrt{2}$ (2) $\sqrt{6}$ (3) 4 (4) $\sqrt{24}$ (5) $\sqrt{32}$ 따라서 반지름의 길이가 유리수인 것은 ③이다.

3

반지름의 길이가 r인 원에서

① 넓이: πr^2

② 둘레의 길이: 2πr

0186 (1) $\sqrt{(-2)^2} = 2$

- (2) 3× $\sqrt{4}$ =3×2=6
- $3\sqrt{2.25}=1.5$

$$(5)\sqrt{2.7}-1=\sqrt{\frac{25}{9}}-1=\frac{5}{3}-1=\frac{2}{3}$$

冒(4)

0187 (¬) $-\sqrt{49} = -7$ (□) $-\sqrt{5.4} = -\sqrt{\frac{49}{9}} = -\frac{7}{3}$

유리수가 아닌 실수는 무리수이고, 무리수인 것은 (ㄴ), (ㄹ), (ㅂ)이 [] (니), (리), (비)

 \sqrt{x} 가 유리수이려면 x가 제곱인 자연수이어야 한다. 30 이하의 자연수 중에서 제곱인 자연수는

$$1^2$$
, 2^2 , 3^2 , 4^2 , 5^2

의 5개이다.

따라서 \sqrt{x} 가 무리수가 되도록 하는 x의 개수는

$$30 - 5 = 25$$

... 2

...

冒 25

채점 기준	비율
$lackbr{0}$ \sqrt{x} 가 유리수가 되도록 하는 x 의 개수를 구할 수 있다.	50%
$ ot\!\! iggr y \sqrt{x}$ 가 무리수가 되도록 하는 x 의 개수를 구할 수 있다.	50%

0189 ① 자연수는 양의 정수이다.

- ② 정수는 분모가 1인 기약분수로 나타낼 수 있다.
- ④ 순환하지 않는 무한소수는 무리수이므로 실수이다.

3, (5)

- 0190 (기 순환소수는 분모, 분자가 정수인 분수로 나타낼 수 있으므로 유리수이다.
- (L) 무한소수가 아닌 소수는 유한소수이므로 유리수이다. 이상에서 (¬), (L), (E) 모두 옳다.

(5)

0191 ② 순환소수는 유리수이다.

- ③ 근호를 없앨 수 있는 수는 유리수이다.
- ⑤ 유한소수로 나타낼 수 있는 수는 유리수이다.

1 (1), (4)

0192 ① 무리수이다.

- ③ 순환하지 않는 무한소수로 나타내어진다.
- ④ 기약분수로 나타낼 수 없다.

2, **5**

0193 $\sqrt{3.42}$ =1.849이므로 a=1.849 $\sqrt{3.51}$ =1.873이므로 b=3.51

10a+b=18.49+3.51=22

22

0194 a=4.733, b=4.483이므로 a-b=0.25

3

$$\sqrt{55.3}$$
=7.436이므로 b =55.3

$$\frac{a+b}{2}$$
=56.2이므로

$$\sqrt{\frac{a+b}{2}} = \sqrt{56.2} = 7.497$$

... ❸

3 7,497

채점 기준	비율
lacktriangle a 의 값을 구할 수 있다.	30%
② b 의 값을 구할 수 있다.	30%
$\odot\sqrt{rac{a+b}{2}}$ 의 값을 구할 수 있다.	40%

0196 $\square ABCD = 2 \times 2 - 4 \times \left(1 \times 1 \times \frac{1}{2}\right) = 2$

이므로 정사각형 ABCD의 한 변의 길이는 $\sqrt{2}$ 이다.

- $\therefore \overline{AB} = \overline{AP} = \overline{AQ} = \sqrt{2}$
- $\therefore P(2+\sqrt{2}), Q(2-\sqrt{2})$

3 (5)

0197 $3+\sqrt{2}$ 를 나타내는 점은 3에서 오른쪽으로 $\sqrt{2}$ 만큼 떨어진 점이다.

한 변의 길이가 1인 정사각형의 대각선의 길이가 $\sqrt{2}$ 이므로 $3+\sqrt{2}$ 를 나타내는 점은 D이다.

급 점 D

넓이가 a인 정사각형의 대각선의 길이를 x라 하자. 정사각형은 마름모이므로

$$\frac{1}{2} \times x \times x = a$$
, $x^2 = 2a$

즉 x는 2a의 양의 제곱근이므로 $x=\sqrt{2a}$

0198 $\square ABCD = 3 \times 3 - 4 \times \left(1 \times 2 \times \frac{1}{2}\right) = 5$ 이므로

 $\overline{BP} = \overline{BA} = \sqrt{5}, \overline{BQ} = \overline{BC} = \sqrt{5}$

... 🚹

점 Q가 나타내는 수가 $\sqrt{5}$ -5이므로 점 B가 나타내는 수는 -5이다.

따라서 점 P가 나타내는 수는 $-5-\sqrt{5}$

... ❸

 $-5-\sqrt{5}$

채점 기준	비율
$lackbox{f BP}, \overline{f BQ}$ 의 길이를 구할 수 있다.	40%
② 점 B가 나타내는 수를 구할 수 있다.	30%
❸ 점 P가 나타내는 수를 구할 수 있다.	30%

0199 두 정사각형의 넓이를 구하면

$$2\times2-4\times\left(1\times1\times\frac{1}{2}\right)=2$$

$$3\times3-4\times\left(1\times2\times\frac{1}{2}\right)=5$$

이므로 두 정사각형의 한 변의 길이는 각각 $\sqrt{2}$, $\sqrt{5}$ 이다.

따라서 네 점 A, B, C, D의 좌표는

$$A(-1-\sqrt{2})$$
, $B(-1+\sqrt{2})$, $C(3-\sqrt{5})$, $D(3+\sqrt{5})$

(3)

0200 $\square ABCD = 4 \times 4 - 4 \times \left(1 \times 3 \times \frac{1}{2}\right) = 10$ 이므로

 $\overline{AB} = \sqrt{10}$

따라서 $\overline{\rm AP}\!=\!\overline{\rm AB}\!=\!\sqrt{10}$ 이므로 점 P가 나타내는 수는 $-1\!+\!\sqrt{10}$

 $-1+\sqrt{10}$

- **0201** ① 서로 다른 두 자연수 사이에는 무수히 많은 무리수가 있다.
- ② 정수 0과 1 사이에는 정수가 없다.
- ③ 서로 다른 두 유리수 사이에는 무수히 많은 무리수가 있다.
- (5) 수직선은 실수를 나타내는 점들로 완전히 메울 수 있다.

4

0202 ④ 1에 가장 가까운 무리수는 정할 수 없다.

...

0203 수정: 0에 가장 가까운 유리수는 정할 수 없다. 동건: 모든 유리수를 수직선 위에 점으로 나타낼 수 있다. 이상에서 옳은 설명을 한 학생은 다혜, 인수이다.

답 다혜, 인수

0204 ①
$$(\sqrt{11}-1)-(-1+\sqrt{10})=\sqrt{11}-\sqrt{10}>0$$

 $\therefore \sqrt{11}-1>-1+\sqrt{10}$

②
$$(\sqrt{0.3}-1)-(\sqrt{0.3}-2)=1>0$$

 $\therefore \sqrt{0.3}-1>\sqrt{0.3}-2$

$$(3) \left(5 - \sqrt{\frac{1}{6}}\right) - \left(5 - \sqrt{\frac{1}{3}}\right) = \sqrt{\frac{1}{3}} - \sqrt{\frac{1}{6}} > 0$$

$$\therefore 5 - \sqrt{\frac{1}{6}} > 5 - \sqrt{\frac{1}{3}}$$

ⓐ
$$(\sqrt{5}-2)-2=\sqrt{5}-4=\sqrt{5}-\sqrt{16}<0$$

∴ $\sqrt{5}-2<2$

(5)
$$(6+\sqrt{8})-9=\sqrt{8}-3=\sqrt{8}-\sqrt{9}<0$$

∴ $6+\sqrt{8}<9$

3 (5)

0205
$$B = \sqrt{10} - \sqrt{(-2)^2} = \sqrt{10} - 2$$
 ... \bullet
 $A - B = (\sqrt{10} - \sqrt{5}) - (\sqrt{10} - 2)$
 $= 2 - \sqrt{5} = \sqrt{4} - \sqrt{5} < 0$... \bullet

이므로

 $\blacksquare A < B$

채점 기준	비율
$lacksymbol{0}$ B 를 간단히 할 수 있다.	20%
	60%
❸ A와 B의 대소를 비교할 수 있다.	20%

0206 (7)
$$(4+\sqrt{3})-6=\sqrt{3}-2=\sqrt{3}-\sqrt{4}<0$$

 $\therefore 4+\sqrt{3}<6$

(L)
$$-5 - (-3 - \sqrt{5}) = \sqrt{5} - 2 = \sqrt{5} - \sqrt{4} > 0$$

 $\therefore -5 > -3 - \sqrt{5}$

(E)
$$(-\sqrt{7}-\sqrt{3})-(-\sqrt{7}-\sqrt{5})=\sqrt{5}-\sqrt{3}>0$$

 $\therefore -\sqrt{7}-\sqrt{3}>-\sqrt{7}-\sqrt{5}$

$$\stackrel{(\equiv)}{(24-\sqrt{12})} - \stackrel{(5-\sqrt{12})}{(5-\sqrt{12})} = \sqrt{24} - 5 = \sqrt{24} - \sqrt{25} < 0$$

$$\therefore \sqrt{24} - \sqrt{12} < 5 - \sqrt{12}$$

이상에서 옳은 것은 (ㄴ), (ㄸ)이다.

3

0207 ①
$$(\sqrt{2}-3)-(\sqrt{5}-3)=\sqrt{2}-\sqrt{5}<0$$

 $\therefore \sqrt{2}-3 \le \sqrt{5}-3$
② $(\sqrt{19}+1)-(\sqrt{20}+1)=\sqrt{19}-\sqrt{20}<0$

$$\therefore \sqrt{19} + 1 \leq \sqrt{20} + 1$$

③
$$(\sqrt{12}-\sqrt{10})-(-\sqrt{10}+4)=\sqrt{12}-4=\sqrt{12}-\sqrt{16}<0$$

∴ $\sqrt{12}-\sqrt{10} \le -\sqrt{10}+4$
④ $3-(\sqrt{27}-2)=5-\sqrt{27}=\sqrt{25}-\sqrt{27}<0$
∴ $3 \le \sqrt{27}-2$
⑤ $\sqrt{(-5)^2}=5$ 이므로

$$(7-\sqrt{3})-5=2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$$

$$\therefore 7-\sqrt{3} > \sqrt{(-5)^2}$$

0208
$$a-b=3-(\sqrt{18}-2)=5-\sqrt{18}=\sqrt{25}-\sqrt{18}>0$$

이므로 $a>b$
 $a-c=3-(1+\sqrt{5})=2-\sqrt{5}=\sqrt{4}-\sqrt{5}<0$
이므로 $a< c$
 $\therefore b < a < c$

0209 (1)
$$x-y=(\sqrt{30}+\sqrt{24})-(6+\sqrt{24})$$

= $\sqrt{30}-6=\sqrt{30}-\sqrt{36}<0$

이므로
$$x < y$$
 ... ① (2) $x - z = (\sqrt{30} + \sqrt{24}) - (4 + \sqrt{30})$ $= \sqrt{24} - 4 = \sqrt{24} - \sqrt{16} > 0$ 이므로 $x > z$... ②

$$(3)$$
 $z < x < y$ 이므로 가장 큰 수는 y 이다. \cdots ③

 $\blacksquare (1) x < y (2) x > z (3) y$

채점 기준	비율
① x 와 y 의 대소를 비교할 수 있다.	40%
② x 와 z 의 대소를 비교할 수 있다.	40%
❸ 가장 큰 수를 구할 수 있다.	20%

0210 $\sqrt{6}-4=\sqrt{6}-\sqrt{16}$ 이므로 음수이고 나머지는 양수이 다.

$$(\sqrt{8}-2)-1=\sqrt{8}-3=\sqrt{8}-\sqrt{9}<0$$
이므로 $\sqrt{8}-2<1$ $(\sqrt{8}-2)-(\sqrt{5}-2)=\sqrt{8}-\sqrt{5}>0$ 이므로 $\sqrt{8}-2>\sqrt{5}-2$

따라서 주어진 수를 작은 수부터 차례로 나열하면

 $\sqrt{6}-4, \sqrt{5}-2, \sqrt{8}-2, 1$

이므로 구하는 수는 $\sqrt{5}$ - 2이다.

0211
$$\sqrt{49} < \sqrt{50} < \sqrt{64}$$
, 즉 $7 < \sqrt{50} < 8$ 이므로 $4 < \sqrt{50} - 3 < 5$

따라서 $\sqrt{50}$ -3을 나타내는 점은 구간 C에 있다.

립 구간 C

0212 $\sqrt{64} < \sqrt{75} < \sqrt{81}$, 즉 $8 < \sqrt{75} < 9$ 이므로 $\sqrt{75}$ 를 나타 내는 점은 D이다. 점 D

0213 $\sqrt{25} < \sqrt{32} < \sqrt{36}$, 즉 $5 < \sqrt{32} < 6$ 이므로

$$-6 < -\sqrt{32} < -5$$

따라서 $-\sqrt{32}$ 를 나타내는 점은 구간 C에 있다.

3

0214 $\sqrt{4} < \sqrt{6} < \sqrt{9}$, 즉 $2 < \sqrt{6} < 3$ 이므로 $\sqrt{6}$ 을 나타내는 점은 구간 F에 있다. ... ①

 $\sqrt{4} < \sqrt{5} < \sqrt{9}$, 즉 $2 < \sqrt{5} < 3$ 이므로

$$-3 < -\sqrt{5} < -2$$

따라서 $-\sqrt{5}$ 를 나타내는 점은 구간 A에 있다.

 $1<\sqrt{3}<\sqrt{4}$, 즉 $1<\sqrt{3}<2$ 이므로

$$-2 < -\sqrt{3} < -1$$
 $\therefore 0 < 2 - \sqrt{3} < 1$

따라서 $2-\sqrt{3}$ 을 나타내는 점은 구간 D에 있다.

■ 구간 F, 구간 A, 구간 D

채점 기준	비율
$lue{1}$ $\sqrt{6}$ 을 나타내는 점이 있는 구간을 구할 수 있다.	20%
② $-\sqrt{5}$ 를 나타내는 점이 있는 구간을 구할 수 있다.	30%
	50%

0215 $3=\sqrt{9}$, $4=\sqrt{16}$ 이므로 3과 4 사이에 있는 수는 $\sqrt{12.5}$. $(-\sqrt{3.5})^2$

의 2개이다.

0216 (1) $\sqrt{5}+0.2=2.236+0.2=2.436$

- $2\sqrt{7}-0.01=2.646-0.01=2.636$
- $3\frac{5}{2}=2.5$
- $\textcircled{4} \frac{\sqrt{5} + \sqrt{7}}{2} = \frac{2.236 + 2.646}{2} = 2.441$
- (5) $\frac{3+\sqrt{7}}{2} = \frac{3+2.646}{2} = 2.823 > \sqrt{7}$

(5)

0217 $\sqrt{9} < \sqrt{15} < \sqrt{16}$, 즉 $3 < \sqrt{15} < 4$ 이고

 $\sqrt{36} < \sqrt{40} < \sqrt{49}$, 즉 $6 < \sqrt{40} < 7$ 이다.

- $(7)\sqrt{15}$ 와 $\sqrt{40}$ 사이에 있는 정수는 4, 5, 6의 3개이다.
- (L) $\sqrt{18.7} = \sqrt{\frac{169}{9}} = \frac{13}{3}$ 이므로 $\sqrt{18.7}$ 은 $\sqrt{15}$ 와 $\sqrt{40}$ 사이에 있는 유리수이다.
- (E) 5<√15+2<6이므로

$$\sqrt{15} < \sqrt{15} + 2 < \sqrt{40}$$

따라서 $\sqrt{15}+2$ 는 $\sqrt{15}$ 와 $\sqrt{40}$ 사이에 있는 무리수이다. 이상에서 옳은 것은 (\neg) , (\Box) 이다.

3

 $2 < \sqrt{8} < 3$

... •

 $\sqrt{16} < \sqrt{18} < \sqrt{25}$, 즉 $4 < \sqrt{18} < 5$ 이므로

$$5 < 1 + \sqrt{18} < 6$$

... 2

따라서 $\sqrt{8}$ 과 $1+\sqrt{18}$ 사이에 있는 정수는 3, 4, 5이므로 구하는 합은

$$3+4+5=12$$

... **③**

채점 기준	비율
\bigcirc $\sqrt{8}$ 의 범위를 구할 수 있다.	20%
② $1+\sqrt{18}$ 의 범위를 구할 수 있다.	30%
③ $\sqrt{8}$ 과 $1+\sqrt{18}$ 사이에 있는 모든 정수의 합을 구할 수 있다.	50%

0219 전략 a>0일 때, a의 제곱근은 $\pm \sqrt{a}$ 임을 이용한다.

>풀이 (1) 5의 제곱<u>근</u>은 ±√5

- ② $\frac{81}{16}$ 의 제곱그은 $\pm \sqrt{\frac{81}{16}} = \pm \frac{9}{4}$
- ③ 10의 제곱근은 $\pm\sqrt{10}$
- ④ $\frac{49}{4}$ 의 제곱근은 $\pm \sqrt{\frac{49}{4}} = \pm \frac{7}{2}$
- (5) 16의 제곱근은 ±4
- 이상에서 제곱근이 무리수인 것은 ①, ③이다.

(1), (3)

0220 전략 순환하지 않는 무한소수는 무리수임을 이용한다.

둘에 □는 순환하지 않는 무한소수, 즉 무리수이다.

$$2 \frac{\sqrt{16}}{10} = \frac{4}{10}$$

$$3\sqrt{\frac{25}{81}} = \frac{5}{9}$$

$$4\sqrt{7.1} = \sqrt{\frac{64}{9}} = \frac{8}{3}$$

$$(5)\sqrt{0.09}=0.3$$

이상에서 무리수인 것은 ①이다.

图(1)

0221 전략 유리수와 무리수의 뜻을 이용한다.

>풀이 (4) $\sqrt{4}$ =2이므로 $\sqrt{4}$ 는 유리수이다.

(4)

0222 절략 유리수가 아닌 실수는 무리수임을 이용한다.

 $> \equiv 0$ (1) $a^2 = (\sqrt{5})^2 = 5$

- (2) $\sqrt{5a^2} = \sqrt{5 \times 5} = \sqrt{25} = 5$
- $(3)\sqrt{(-a)^2} = \sqrt{a^2} = a = \sqrt{5}$
- $(4) 3-a^2=3-5=-2$
- $(5)\sqrt{a^2-1} = \sqrt{5-1} = \sqrt{4} = 2$
- 이상에서 유리수가 아닌 것은 ③이다.

0223 전략 제곱근표를 이용하여 a, b의 값을 구한다.

>풀이 $\sqrt{9.26}$ =3.043이므로 a = 9.26

 $\sqrt{9.45}$ =3.074이므로 b=3.074

 $\therefore 10a+100b=92.6+307.4=400$

目 400

0224 전략 넓이가 a인 정사각형의 한 변의 길이는 \sqrt{a} 임을 이 용한다.

- (L) $\square EFGH = 4 \times 4 4 \times \left(1 \times 3 \times \frac{1}{2}\right) = 10$
 - 이므로 정사각형 EFGH의 한 변의 길이는 $\sqrt{10}$ 이다.
- (c) 정사각형 ABCD의 한 변의 길이가 $\sqrt{5}$ 이므로 점 P가 나타내 는 수는 $1-\sqrt{5}$ 이다.
- 이상에서 옳은 것은 (니). (리)이다.

(4)

0225 절략 넓이가 a인 정사각형의 한 변의 길이는 \sqrt{a} 임을 이 용한다.

이므로 정사각형 ABCD의 한 변의 길이는 $\sqrt{8}$ 이다.

따라서 점 P가 나타내는 수는 $2-\sqrt{8}$ 이므로

$$a=2, b=8$$

 $\therefore a+b=10$

目 10

- 0226 전략 서로 다른 두 실수 사이에는 무수히 많은 유리수와 무리수가 있다.
- >풀에 (2) $\sqrt{4} < \sqrt{8} < \sqrt{9}$, 즉 $2 < \sqrt{8} < 3$ 이므로 -1과 $\sqrt{8}$ 사이에 있는 정수는 0, 1, 2의 3개이다.

 \square (2)

0227 전략 두 실수 a, b의 대소 관계는 a-b의 부호로 판단한 다.

>풀이 ① $(\sqrt{8}+3)-(\sqrt{8}+2)=1>0$

$$1...\sqrt{8}+3>\sqrt{8}+2$$

- (2) $(4-\sqrt{12})-(4-\sqrt{11})=\sqrt{11}-\sqrt{12}<0$
 - $\therefore 4 \sqrt{12} < 4 \sqrt{11}$
- $(3) 4 (\sqrt{15} + 1) = 3 \sqrt{15} = \sqrt{9} \sqrt{15} < 0$
 - $\therefore 4 < \sqrt{15} + 1$
- $(4) (\sqrt{20}-4)-2=\sqrt{20}-6=\sqrt{20}-\sqrt{36}<0$
 - $1.\sqrt{20}-4<2$
- (5) $(-3-\sqrt{10})-(-\sqrt{10}-\sqrt{7})=\sqrt{7}-3=\sqrt{7}-\sqrt{9}<0$

$$\therefore -3-\sqrt{10} < -\sqrt{10}-\sqrt{7}$$

(3)

0228 전략 $-\sqrt{2}$ 와 $\sqrt{3}$ 에 가까운 정수를 이용한다.

>풀에 $1 < \sqrt{2} < \sqrt{4}$, 즉 $1 < \sqrt{2} < 2$ 이므로 $-2 < -\sqrt{2} < -1$ $1<\sqrt{3}<\sqrt{4}$, 즉 $1<\sqrt{3}<2$ 이다.

- ① $3 \div x \leftarrow -1$. 0. 1의 3개이다.
- (3) 무리수 x는 무수히 많다.
- ④ 실수 *x*는 무수히 많다.
- $(5)\sqrt{4}<\sqrt{5}<\sqrt{9}$, 즉 $2<\sqrt{5}<3$ 이므로

 $0 < \sqrt{5} - 2 < 1$

이때 $-\sqrt{2} < 0$, $1 < \sqrt{3}$ 이므로 $-\sqrt{2} < \sqrt{5} - 2 < \sqrt{3}$

2 (2), (5)

0229 a=3을 대입하여 A. B. C의 값을 구한 후 대소를 비교한다.

>풀이 a=3을 대입하면

$$A = -2$$
, $B = 1 - \sqrt{6}$, $C = -\sqrt{6}$

$$A-B=-2-(1-\sqrt{6})=\sqrt{6}-3=\sqrt{6}-\sqrt{9}<0$$
이므로 $A< B$

 $A-C=-2-(-\sqrt{6})=\sqrt{6}-2=\sqrt{6}-\sqrt{4}>0$ 이므로

 $\therefore C < A < B$

 $\blacksquare C < A < B$

0230 전략 제곱근에 가까운 정수를 이용한다.

>풀이 ① 6<√45<7이므로 5<√45-1<6 따라서 $\sqrt{45}$ -1을 나타내는 점이 있는 구간은 B이다.

- ② 5<√35<6이므로 4<√35-1<5</p> 따라서 $\sqrt{35}$ -1을 나타내는 점이 있는 구간은 A이다.
- (3) 4<√20<5이므로 7<√20+3<8 따라서 $\sqrt{20} + 3$ 을 나타내는 점이 있는 구간은 D이다.
- ④ 3<√15<4이므로 8<√15+5<9 따라서 $\sqrt{15}+5$ 를 나타내는 점이 있는 구간은 E이다.
- ⑤ 2<√5<3이므로 8<√5+6<9 따라서 $\sqrt{5}+6$ 을 나타내는 점이 있는 구간은 E이다.

(5)

0231 전략 $\sqrt{3}$ 의 값을 대입하여 주어진 수가 $\sqrt{3}$ 과 3 사이의 수 인지 확인한다.

>풀이 (1) √3+1=1.732+1=2.732이므로 √3<√3+1<3

②
$$\frac{\sqrt{3}+2}{3} = \frac{1.732+2}{3} = 1.244$$
이므로 $\frac{\sqrt{3}+2}{3} < \sqrt{3}$

따라서 $\frac{\sqrt{3}+2}{2}$ 는 $\sqrt{3}$ 과 3 사이에 있는 수가 아니다.

- (3) $\frac{\sqrt{3}+3}{2} = \frac{1.732+3}{2} = 2.366$ 이므로 $\sqrt{3} < \frac{\sqrt{3}+3}{2} < 3$
- (4) $1 < \sqrt{3} < \sqrt{4}$, 즉 $1 < \sqrt{3} < 2$ 이므로 $\sqrt{3}$ 과 3 사이의 정수는 2뿐 이다. **(2)**

0232 전략 $-\sqrt{7} < x < \sqrt{7}$ 을 만족시키는 무리수 x를 찾는다.

 \ge 풀이 ① $(-1-\sqrt{7})-(-\sqrt{7})=-1<0$ 이므로 $-1-\sqrt{7}<-\sqrt{7}$

- ② 0은 유리수이다.
- ③ $1-\sqrt{7}<0$ 이고 $(1-\sqrt{7})-(-\sqrt{7})=1>0$ 이므로 $-\sqrt{7}<1-\sqrt{7}<0<\sqrt{7}$
- $(4)\sqrt{8} > \sqrt{7}$
- ⑤ √4<√7<√9에서 2<√7<3 따라서 -3< -√7< -2, -4<√7-6< -3이므로 √7-6< -√7

0233 전략 넓이가 a인 정사각형의 한 변의 길이는 \sqrt{a} 임을 이용한다.

 \supseteq 플이 $\square ABCD = 2 \times 2 - 4 \times \left(1 \times 1 \times \frac{1}{2}\right) = 2$ 이므로

$$\overline{AP} = \overline{AD} = \sqrt{2}$$
 ...

따라서 점 P의 좌표는 $P(4-\sqrt{2})$

... 2

 \square AEFG= $4 \times 4 - 4 \times \left(1 \times 3 \times \frac{1}{2}\right) = 10$ 이므로

$$\overline{AQ} = \overline{AE} = \sqrt{10}$$
 ... §

따라서 점 Q의 좌표는 $Q(4+\sqrt{10})$

0) ... 4

 $P(4-\sqrt{2}), Q(4+\sqrt{10})$

채점 기준	비율
$lacktriangle$ $\overline{\mathrm{AP}}$ 의 길이를 구할 수 있다.	30%
❷ 점 P의 좌표를 구할 수 있다.	20%
$oldsymbol{\delta}$ $\overline{\mathrm{AQ}}$ 의 길이를 구할 수 있다.	30%
❹ 점 Q의 좌표를 구할 수 있다.	20%

0234 전략 세 실수 a, b, c에 대하여 a < b이고 b < c이면 a < b < c임을 이용한다.

$$\geq 3 - B = (3 + \sqrt{13}) - (\sqrt{13} + \sqrt{11})$$

$$=3-\sqrt{11}$$

$$=\sqrt{9}-\sqrt{11}<0$$

이므로 A < B

... 0

 $C - A = (\sqrt{11} + 3) - (3 + \sqrt{13})$

 $=\sqrt{11}-\sqrt{13}<0$

이므로
$$C < A$$

$$\therefore C < A < B$$
 ...

 $\blacksquare C < A < B$

채점 기준	비율
$lackbox{0}$ A,B 의 대소를 비교할 수 있다.	40%
$oldsymbol{arrho}$ A , C 의 대소를 비교할 수 있다.	40%
③ A, B, C의 대소를 비교할 수 있다.	20%

0235 전략 먼저 √85의 범위를 구한 후 부등식의 성질을 이용한다.

>풀이 √81<√85<√100°이므로

 $9 < \sqrt{85} < 10$ \bigcirc

 $\sqrt{144}$ =12이므로 \bigcirc 의 각 변에 12를 더하면

$$21 < \sqrt{85} + \sqrt{144} < 22$$
 ... 2

P 22

채점 기준	비율
$lue{1}$ $\sqrt{85}$ 의 범위를 구할 수 있다.	50%
$ o$ $\sqrt{85}+\sqrt{144}$ 의 범위를 구할 수 있다.	40%
3 <i>a</i> 의 값을 구할 수 있다.	10%

0236 전략 제곱근에 가까운 정수를 이용한다.

>풀이 $\sqrt{9} < \sqrt{10} < \sqrt{16}$, 즉 $3 < \sqrt{10} < 4$ 이므로

 $4 < 1 + \sqrt{10} < 5$... ••

 $\sqrt{121} < \sqrt{130} < \sqrt{144}$, 즉 $11 < \sqrt{130} < 12$ 이므로

$$9 < \sqrt{130} - 2 < 10$$

따라서 $1+\sqrt{10}$ 과 $\sqrt{130}-2$ 사이에 있는 정수는

이므로 구하는 합은

$$5+6+7+8+9=35$$
 ... 4

35

... 🔞

채점 기준	비율
$lacktriangle$ $1+\sqrt{10}$ 의 범위를 구할 수 있다.	30%
② $\sqrt{130} - 2$ 의 범위를 구할 수 있다.	30%
❸ 두 수 사이에 있는 정수를 구할 수 있다.	30%
₫ 두 수 사이에 있는 모든 정수의 합을 구할 수 있다.	10%

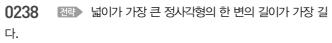
0237 전략 \sqrt{x} , $\sqrt{2x}$ 가 유리수가 되도록 하는 x를 제외시킨다.

돌에 (i) \sqrt{x} 가 유리수가 되도록 하는 두 자리 자연수 x는 4^2 , 5^2 , 6^2 , 7^2 , 8^2 , 9^2 의 6개

- (ii) $\sqrt{2x}$ 가 유리수가 되도록 하는 두 자리 자연수 x는 2×3^2 , 2×4^2 , 2×5^2 , 2×6^2 , 2×7^2 의 5개
- (i), (ii)에서 \sqrt{x} 또는 $\sqrt{2x}$ 가 유리수가 되도록 하는 x의 개수는 6+5=11

따라서 \sqrt{x} , $\sqrt{2x}$ 가 모두 무리수가 되도록 하는 두 자리 자연수 x의 개수는

 $\sqrt{2x}$ 가 유리수가 되려면 2의 지수가 짝수이어야 하므로 x=2 imes (자연수 $)^2$ 꼴이 되어야 해!



$$\geq$$
풀이 $(\sqrt{2}+3)-6=\sqrt{2}-3=\sqrt{2}-\sqrt{9}<0$ 이므로 $\sqrt{2}+3<6$

$$6-(\sqrt{17}+2)=4-\sqrt{17}=\sqrt{16}-\sqrt{17}<0$$
이므로 $6<\sqrt{17}+2$

$$\therefore \sqrt{2} + 3 < 6 < \sqrt{17} + 2$$

따라서 C의 넓이가 가장 크므로 한 변의 길이가 가장 긴 정사각 형은 C이다.

0239 전략 넓이가 k인 정사각형의 한 변의 길이는 \sqrt{k} 임을 이용하여 점 P의 좌표를 구한다.

>풀이 색칠한 정사각형의 넓이는

$$5 \times 5 - 4 \times \left(2 \times 3 \times \frac{1}{2}\right) = 13$$

따라서 정사각형의 한 변의 길이는 $\sqrt{13}$ 이므로

$$a = -\sqrt{13}$$

$$(\neg)$$
 $-\sqrt{13}$ < $-\sqrt{10}$ < $-\sqrt{4}$ 이므로 $-\sqrt{13}$ < $-\sqrt{10}$ < -2

(니) $3a+2=3\times (-\sqrt{13})+2=-3\times 3.606+2=-8.818$ 이므로

$$3a+2 < -\sqrt{13}$$

(E)
$$-\frac{9}{2}$$
= -4.5 이므로 $-\frac{9}{2}$ < $-\sqrt{13}$

(리)
$$a+0.5 = -\sqrt{13}+0.5 = -3.606+0.5 = -3.106$$
이므로
$$-\sqrt{13} < a+0.5 < -2$$

(ロ)
$$\frac{a}{3}+1=\frac{-\sqrt{13}}{3}+1=\frac{-3.606}{3}+1=-0.202$$
이므로 $\frac{a}{2}+1>-2$

(비)
$$\frac{a-2}{2} = \frac{-\sqrt{13}-2}{2} = \frac{-3.606-2}{2} = -2.803$$
이므로 $-\sqrt{13} < \frac{a-2}{2} < -2$

이상에서 a와 -2 사이에 있는 수는 (¬), (ϵ), (ϵ)이다.

달 (기), (리), (비)

Ⅰ . 제곱근과 실수

 $\square \sqrt{91}$

03 근호를 포함한 식의 계산(1)

0242
$$ext{14}$$
 0243 $ext{14}$ **0243**

0244
$$\Box$$
 $10\sqrt{33}$ **0245** \Box $-\sqrt{84}$

0248
$$\bigcirc \sqrt{10}$$
 0249 $\bigcirc \sqrt{2}$

0251
$$\sqrt{45} \div \sqrt{3} = \frac{\sqrt{45}}{\sqrt{3}} = \sqrt{\frac{45}{3}} = \sqrt{15}$$

0252
$$\sqrt{6} \div \sqrt{48} = \frac{\sqrt{6}}{\sqrt{48}} = \sqrt{\frac{6}{48}} = \sqrt{\frac{1}{8}}$$

0253
$$\sqrt{24} \div (-\sqrt{12}) = -\frac{\sqrt{24}}{\sqrt{12}} = -\sqrt{\frac{24}{12}} = -\sqrt{2}$$

0254
$$10\sqrt{6} \div 20\sqrt{3} = \frac{10\sqrt{6}}{20\sqrt{3}} = \frac{\sqrt{2}}{2}$$

0255
$$(-4\sqrt{14}) \div 12\sqrt{6} = -\frac{4\sqrt{14}}{12\sqrt{6}} = -\frac{1}{3}\sqrt{\frac{7}{3}}$$

$$= -\frac{1}{3}\sqrt{\frac{7}{3}}$$

0257
$$\sqrt{7} \div \frac{\sqrt{21}}{\sqrt{11}} = \sqrt{7} \times \frac{\sqrt{11}}{\sqrt{21}} = \sqrt{\frac{7 \times 11}{21}} = \sqrt{\frac{11}{3}}$$

0258
$$\frac{\sqrt{12}}{\sqrt{13}} \div \frac{\sqrt{15}}{\sqrt{26}} = \frac{\sqrt{12}}{\sqrt{13}} \times \frac{\sqrt{26}}{\sqrt{15}} = \sqrt{\frac{12 \times 26}{13 \times 15}} = \sqrt{\frac{8}{5}}$$

अचि 및 풀이

0259
$$\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$$

0260
$$\sqrt{\frac{11}{36}} = \sqrt{\frac{11}{6^2}} = \frac{\sqrt{11}}{6}$$

0261
$$\sqrt{0.18} = \sqrt{\frac{18}{100}} = \sqrt{\frac{9 \times 2}{10^2}} = \frac{3\sqrt{2}}{10}$$

0262
$$\sqrt{8} = \sqrt{2^2 \times 2} = 2\sqrt{2}$$

$$\mathbb{F} 2\sqrt{2}$$

0263
$$\sqrt{108} = \sqrt{6^2 \times 3} = 6\sqrt{3}$$

$$\bigcirc 6\sqrt{3}$$

0264
$$-\sqrt{40} = -\sqrt{2^2 \times 10} = -2\sqrt{10}$$

$$-2\sqrt{10}$$

0265
$$-\sqrt{96} = -\sqrt{4^2 \times 6} = -4\sqrt{6}$$

$$-4\sqrt{6}$$

0266
$$\sqrt{\frac{10}{9}} = \sqrt{\frac{10}{3^2}} = \frac{\sqrt{10}}{3}$$

$$\mathbf{E} \frac{\sqrt{10}}{3}$$

0267
$$-\sqrt{\frac{7}{25}} = -\sqrt{\frac{7}{5^2}} = -\frac{\sqrt{7}}{5}$$

$$=\frac{\sqrt{7}}{5}$$

0268
$$\sqrt{\frac{35}{144}} = \sqrt{\frac{35}{12^2}} = \frac{\sqrt{35}}{12}$$

$$\frac{\sqrt{35}}{12}$$

0269
$$\sqrt{\frac{41}{100}} = \sqrt{\frac{41}{10^2}} = \frac{\sqrt{41}}{10}$$

$$\frac{\sqrt{41}}{10}$$

0270
$$\sqrt{0.26} = \sqrt{\frac{26}{100}} = \sqrt{\frac{26}{10^2}} = \frac{\sqrt{26}}{10}$$

$$\frac{\sqrt{26}}{10}$$

0271
$$\sqrt{0.12} = \sqrt{\frac{12}{100}} = \sqrt{\frac{2^2 \times 3}{10^2}} = \frac{2\sqrt{3}}{10} = \frac{\sqrt{3}}{5}$$

 $\frac{\sqrt{3}}{5}$

0272
$$5\sqrt{3} = \sqrt{5^2 \times 3} = \sqrt{75}$$

0273
$$\frac{\sqrt{12}}{4} = \sqrt{\frac{12}{16}} = \sqrt{\frac{3}{4}}$$

$$\blacksquare 16, \frac{3}{4}$$

0274
$$\frac{2\sqrt{3}}{3} = \sqrt{\frac{2^2 \times 3}{3^2}} = \sqrt{\frac{4}{3}}$$

$$\blacksquare 3, \frac{4}{3}$$

0275
$$6\sqrt{2} = \sqrt{6^2 \times 2} = \sqrt{72}$$

$$\Box \sqrt{72}$$

0276
$$10\sqrt{3} = \sqrt{10^2 \times 3} = \sqrt{300}$$

0277
$$-3\sqrt{6} = -\sqrt{3^2 \times 6} = -\sqrt{54}$$

0278
$$-5\sqrt{7} = -\sqrt{5^2 \times 7} = -\sqrt{175}$$

$$\Box -\sqrt{175}$$

0279
$$\frac{\sqrt{3}}{4} = \sqrt{\frac{3}{4^2}} = \sqrt{\frac{3}{16}}$$

$$\blacksquare \sqrt{\frac{3}{16}}$$

0280
$$-\frac{\sqrt{2}}{2} = -\sqrt{\frac{2}{2^2}} = -\sqrt{\frac{1}{2}}$$

$$\blacksquare - \sqrt{\frac{1}{2}}$$

0281
$$-\frac{\sqrt{11}}{7} = -\sqrt{\frac{11}{7^2}} = -\sqrt{\frac{11}{49}}$$

$$= -\sqrt{\frac{11}{49}}$$

0282
$$\frac{\sqrt{6}}{10} = \sqrt{\frac{6}{10^2}} = \sqrt{\frac{6}{100}} = \sqrt{\frac{3}{50}}$$

$$\blacksquare \sqrt{\frac{3}{50}}$$

0283
$$\frac{2\sqrt{2}}{5} = \sqrt{\frac{2^2 \times 2}{5^2}} = \sqrt{\frac{8}{25}}$$

$$\blacksquare \sqrt{\frac{8}{25}}$$

0284
$$\frac{5\sqrt{3}}{6} = \sqrt{\frac{5^2 \times 3}{6^2}} = \sqrt{\frac{25}{12}}$$

$$\frac{25}{12}$$

0285
$$\frac{2}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$

$$\therefore$$
 (7) $\sqrt{2}$ (4) $\sqrt{2}$

$$\blacksquare$$
 (7)) $\sqrt{2}$ (4) $\sqrt{2}$

0286
$$\frac{\sqrt{3}}{\sqrt{11}} = \frac{\sqrt{3} \times \sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{33}}{11}$$

$$\therefore (7) \sqrt{11} \quad (4) \frac{\sqrt{33}}{11}$$

$$(7)$$
 $\sqrt{11}$ (4) $\frac{\sqrt{33}}{11}$

0287
$$\frac{\sqrt{2}}{3\sqrt{7}} = \frac{\sqrt{2} \times \sqrt{7}}{3\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{14}}{21}$$

$$\therefore (7) \sqrt{7} \quad \text{(4) } \frac{\sqrt{14}}{21}$$

(4)
$$\sqrt{7}$$
 (4) $\frac{\sqrt{14}}{21}$

0288
$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\mathbf{E} \frac{\sqrt{3}}{3}$$

0289
$$-\frac{1}{\sqrt{15}} = -\frac{\sqrt{15}}{\sqrt{15} \times \sqrt{15}} = -\frac{\sqrt{15}}{15}$$

$$\mathbf{E} - \frac{\sqrt{15}}{15}$$

0290
$$\frac{5}{\sqrt{6}} = \frac{5 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{5\sqrt{6}}{6}$$

$$=\frac{5\sqrt{6}}{6}$$

0291
$$-\frac{2}{\sqrt{7}} = -\frac{2 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = -\frac{2\sqrt{7}}{7}$$

$$=\frac{2\sqrt{7}}{7}$$

0292
$$\frac{\sqrt{3}}{\sqrt{10}} = \frac{\sqrt{3} \times \sqrt{10}}{\sqrt{10} \times \sqrt{10}} = \frac{\sqrt{30}}{10}$$

$$rac{\sqrt{30}}{10}$$

0293
$$\frac{\sqrt{2}}{\sqrt{13}} = \frac{\sqrt{2} \times \sqrt{13}}{\sqrt{13} \times \sqrt{13}} = \frac{\sqrt{26}}{13}$$

$$=\frac{\sqrt{26}}{13}$$

0294
$$\frac{7}{3\sqrt{2}} = \frac{7 \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{7\sqrt{2}}{6}$$

$$=\frac{7\sqrt{2}}{6}$$

0295
$$\frac{\sqrt{7}}{2\sqrt{6}} = \frac{\sqrt{7} \times \sqrt{6}}{2\sqrt{6} \times \sqrt{6}} = \frac{\sqrt{42}}{12}$$

$$\frac{\sqrt{42}}{12}$$

0297
$$\frac{1}{\sqrt{8}} = \frac{\sqrt{2}}{2\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{4}$$

$$\frac{\sqrt{2}}{4}$$

0298
$$-\frac{1}{\sqrt{18}} = -\frac{\sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = -\frac{\sqrt{2}}{6}$$

$$=\frac{\sqrt{2}}{6}$$

0299
$$\frac{3}{\sqrt{20}} = \frac{3 \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{3\sqrt{5}}{10}$$

0300
$$-\frac{2}{\sqrt{12}} = -\frac{2 \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = -\frac{\sqrt{3}}{3}$$

$$\Box -\frac{\sqrt{3}}{3}$$

0301
$$\frac{\sqrt{7}}{\sqrt{32}} = \frac{\sqrt{7} \times \sqrt{2}}{4\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{14}}{8}$$

$$=\frac{\sqrt{14}}{8}$$

0302
$$\frac{\sqrt{5}}{\sqrt{27}} = \frac{\sqrt{5} \times \sqrt{3}}{3\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{15}}{9}$$

$$rac{\sqrt{15}}{9}$$

0303
$$\frac{3\sqrt{3}}{\sqrt{50}} = \frac{3\sqrt{3} \times \sqrt{2}}{5\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{6}}{10}$$

$$=\frac{3\sqrt{6}}{10}$$

0304
$$\frac{2\sqrt{5}}{\sqrt{48}} = \frac{2\sqrt{5} \times \sqrt{3}}{4\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{15}}{6}$$

$$rac{\sqrt{15}}{6}$$

0305 ⑤
$$\sqrt{\frac{13}{9}} \times 2\sqrt{\frac{18}{13}} = 2\sqrt{\frac{13}{9} \times \frac{18}{13}}$$

= $2\sqrt{2}$

(5)

$$2\sqrt{3} \times 5\sqrt{7} = 10\sqrt{21}$$
이므로 $b=10$

$$\therefore a-b=20$$

0

0307
$$(-\sqrt{2.8}) \times (-\sqrt{15}) \times \sqrt{\frac{13}{42}}$$

= $\left(-\sqrt{\frac{28}{10}}\right) \times (-\sqrt{15}) \times \sqrt{\frac{13}{42}}$
= $\sqrt{\frac{28}{10} \times 15 \times \frac{13}{42}}$
= $\sqrt{13}$

0308
$$a = \sqrt{1.2} \times 4\sqrt{5} = \sqrt{\frac{12}{10}} \times 4\sqrt{5}$$

$$=4\sqrt{\frac{12}{10}\times 5}=4\sqrt{6}$$

$$b = \frac{\sqrt{14}}{2} \times 4\sqrt{\frac{3}{7}} = \frac{4}{2} \times \sqrt{14 \times \frac{3}{7}}$$

$$=2\sqrt{6}$$

$$ab = 4\sqrt{6} \times 2\sqrt{6} = 8\sqrt{36} = 8 \times 6 = 48$$

채점 기준	비율
1 a의 값을 구할 수 있다.	30%
❷ <i>b</i> 의 값을 구할 수 있다.	40%
	30%

0309 ①
$$\sqrt{10} \div \sqrt{5} = \frac{\sqrt{10}}{\sqrt{5}} = \sqrt{\frac{10}{5}} = \sqrt{2}$$

$$(5) \frac{14}{\sqrt{10}} \div \frac{7}{\sqrt{12}} = \frac{14}{\sqrt{10}} \times \frac{\sqrt{12}}{7} = 2\sqrt{\frac{12}{10}} = 2\sqrt{\frac{6}{5}}$$

0310 ①
$$\frac{\sqrt{24}}{\sqrt{8}} = \sqrt{\frac{24}{8}} = \sqrt{3}$$

$$2\frac{12\sqrt{5}}{6\sqrt{5}} = 2$$

$$3\sqrt{30} \div \sqrt{6} = \frac{\sqrt{30}}{\sqrt{6}} = \sqrt{\frac{30}{6}} = \sqrt{5}$$

$$\underbrace{4} \frac{\sqrt{20}}{\sqrt{3}} \div \frac{\sqrt{10}}{\sqrt{3}} = \frac{\sqrt{20}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{10}} = \sqrt{\frac{20}{3} \times \frac{3}{10}} = \sqrt{2}$$

$$\boxed{5}\sqrt{\frac{22}{7}} \div \sqrt{\frac{11}{21}} = \sqrt{\frac{22}{7}} \times \sqrt{\frac{21}{11}} = \sqrt{\frac{22}{7} \times \frac{21}{11}} = \sqrt{6}$$

이상에서 가장 큰 수는 (5)이다.

(5)

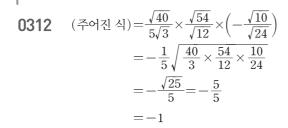
0311
$$\frac{\sqrt{a}}{\sqrt{3}} \div \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{a}}{\sqrt{3}} \times \frac{\sqrt{6}}{\sqrt{5}} = \sqrt{\frac{a}{3} \times \frac{6}{5}} = \sqrt{\frac{2a}{5}}$$

이때
$$\sqrt{\frac{2a}{5}} = \sqrt{12}$$
이므로 $\frac{2a}{5} = 12$

$$2a = 60$$
 : $a = 30$

다른풀이
$$\frac{\sqrt{a}}{\sqrt{3}} \div \frac{\sqrt{5}}{\sqrt{6}} = \sqrt{12}$$
에서

$$\frac{\sqrt{a}}{\sqrt{3}} = \sqrt{12} \times \frac{\sqrt{5}}{\sqrt{6}} = \sqrt{12 \times \frac{5}{6}} = \sqrt{10}$$
$$\sqrt{a} = \sqrt{10} \times \sqrt{3} = \sqrt{30}$$



 $\blacksquare -1$

0313 (4)
$$-3\sqrt{7} = -\sqrt{3^2 \times 7} = -\sqrt{63}$$

4

0314
$$\sqrt{48} = \sqrt{4^2 \times 3} = 4\sqrt{3}$$
이므로 $a=4$
 $4\sqrt{6} = \sqrt{4^2 \times 6} = \sqrt{96}$ 이므로 $b=96$
 $\therefore a+b=100$

100

0315 ①
$$\sqrt{40} = \sqrt{2^2 \times 10} = 2\sqrt{10}$$
 $\therefore \square = 10$

(2) $\sqrt{45} = \sqrt{3^2 \times 5} = 3\sqrt{5}$: $\square = 5$

 $(4)\sqrt{75} = \sqrt{5^2 \times 3} = 5\sqrt{3}$.: $\Box = 5$

 $(5)\sqrt{125} = \sqrt{5^2 \times 5} = 5\sqrt{5}$: $\Box = 5$

0316
$$2\sqrt{21} = \sqrt{2^2 \times 21} = \sqrt{84}, 9 = \sqrt{81},$$
 $3\sqrt{10} = \sqrt{3^2 \times 10} = \sqrt{90}$

이므로 크기가 작은 것부터 차례로 나열하면

$$9, 2\sqrt{21}, \sqrt{87}, 3\sqrt{10}$$

... 2

...

따라서 구하는 수는 $2\sqrt{21}$ 이다.

... **③ ■** 2√21

채점 기준	비율
$lacktriangle$ 주어진 수를 모두 \sqrt{a} 꼴로 고칠 수 있다.	60%
② 크기가 작은 것부터 차례로 나열할 수 있다.	30%
❸ 두 번째 오는 수를 구할 수 있다.	10%

0317
$$2\sqrt{15} = \sqrt{2^2 \times 15} = \sqrt{60}$$
이므로 $11x + 27 = 60$, $11x = 33$.: $x = 3$

0318
$$3\sqrt{6} = \sqrt{3^2 \times 6} = \sqrt{54}$$
이므로 $a = 54$... ① $\sqrt{56} = \sqrt{2^2 \times 14} = 2\sqrt{14}$ 이므로 $b = 14$... ② $\sqrt{500} = \sqrt{10^2 \times 5} = 10\sqrt{5}$ 이므로 $c = 10$... ③ ... ② $\sqrt{a - b + c} = \sqrt{50} = \sqrt{5^2 \times 2} = 5\sqrt{2}$... ④ 달 $5\sqrt{2}$

채점 기준	비율
lacktriangle a 의 값을 구할 수 있다.	25%
② b의 값을 구할 수 있다.	25%
	25%
$\Phi \sqrt{a-b+c}$ 의 값을 구할 수 있다.	25%

라쎈 특강 🗘

유리수의 계산에서 답을 기약분수로 나타내야 하는 것처럼 제곱근의 계산에서는 답을 $a\sqrt{b}$ 꼴로 나타내야 해!

이때 b는 가장 작은 자연수가 되도록 해야 한다는 걸 잊지 마!

0319 (¬)
$$\sqrt{\frac{11}{100}} = \sqrt{\frac{11}{10^2}} = \frac{\sqrt{11}}{10}$$

(L)
$$\sqrt{\frac{7}{81}} = \sqrt{\frac{7}{9^2}} = \frac{\sqrt{7}}{9}$$

(c)
$$\sqrt{0.12} = \sqrt{\frac{12}{100}} = \sqrt{\frac{2^2 \times 3}{10^2}} = \frac{2\sqrt{3}}{10} = \frac{\sqrt{3}}{5}$$

$$(\mathbf{z}) - \sqrt{\frac{9}{12}} = -\sqrt{\frac{3}{4}} = -\sqrt{\frac{3}{2^2}} = -\frac{\sqrt{3}}{2}$$

이상에서 옳은 것은 (ㅋ), (ㄹ)이다.

(2)

0320
$$\sqrt{\frac{15}{147}} = \sqrt{\frac{5}{49}} = \sqrt{\frac{5}{7^2}} = \frac{\sqrt{5}}{7}$$

따라서 a=7, b=5이므로

a+b=12

12

0321
$$\sqrt{0.8} = \sqrt{\frac{80}{100}} = \sqrt{\frac{4^2 \times 5}{10^2}} = \frac{4\sqrt{5}}{10} = \frac{2\sqrt{5}}{5}$$

 $\therefore k = \frac{2}{5}$

4

0322
$$\sqrt{1.25} = \sqrt{\frac{125}{100}} = \sqrt{\frac{5^2 \times 5}{10^2}} = \frac{5\sqrt{5}}{10} = \frac{\sqrt{5}}{2}$$

이므로
$$a=2$$
 ... \bullet $\frac{\sqrt{2}}{3\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3^2 \times 3}} = \sqrt{\frac{2}{27}}$ 이므로

$$\therefore \frac{a}{b} = a \times \frac{1}{b} = 2 \times \frac{27}{2} = 27 \qquad \cdots$$

图 27

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
② <i>b</i> 의 값을 구할 수 있다.	40%
$oldsymbol{0}$ $rac{a}{b}$ 의 값을 구할 수 있다.	20%

0323
$$\sqrt{2190} = \sqrt{21.9 \times 10^2} = 10\sqrt{21.9} = 46.80$$

 $\sqrt{219} = \sqrt{2.19 \times 10^2} = 10\sqrt{2.19} = 14.80$
 $\therefore \sqrt{2190} = \sqrt{219} = 32$

32

0324 ①
$$\sqrt{0.0005} = \sqrt{\frac{5}{10000}} = \sqrt{\frac{5}{100^2}} = \frac{\sqrt{5}}{100} = 0.02236$$
② $\sqrt{0.05} = \sqrt{\frac{5}{100}} = \sqrt{\frac{5}{10^2}} = \frac{\sqrt{5}}{10} = 0.2236$

$$(4)\sqrt{500}-1=\sqrt{10^2\times5}-1=10\sqrt{5}-1=22.36-1=21.36$$

3, **5**

0325 ①
$$\sqrt{0.0194} = \sqrt{\frac{1.94}{100}} = \sqrt{\frac{1.94}{10^2}} = \frac{\sqrt{1.94}}{10} = 0.1393$$

②
$$\sqrt{0.195} = \sqrt{\frac{19.5}{100}} = \sqrt{\frac{19.5}{10^2}} = \frac{\sqrt{19.5}}{10}$$
이므로 $\sqrt{0.195}$ 의 값은 구할 수 없다.

$$(3) \sqrt{0.402} = \sqrt{\frac{40.2}{100}} = \sqrt{\frac{40.2}{10^2}} = \frac{\sqrt{40.2}}{10} = 0.6340$$

$$(4) \sqrt{186} = \sqrt{1.86 \times 10^2} = 10\sqrt{1.86} = 13.64$$

$$(5)\sqrt{413000} = \sqrt{41.3 \times 100^2} = 100\sqrt{41.3} = 642.7$$

图(2)

0326 (7)
$$\sqrt{0.072} = \sqrt{\frac{7.2}{100}} = \sqrt{\frac{7.2}{10^2}} = \frac{\sqrt{7.2}}{10} = 0.2683$$

$$(1)\sqrt{7200} = \sqrt{72 \times 10^2} = 10\sqrt{72} = 84.85$$

$$(\mathbf{c})\sqrt{0.0072} = \sqrt{\frac{72}{10000}} = \sqrt{\frac{72}{100^2}} = \frac{\sqrt{72}}{100} = 0.08485$$

$$(=)\sqrt{72000} = \sqrt{7.2 \times 100^2} = 100\sqrt{7.2} = 268.3$$

图(1)

0327
$$\sqrt{240} = \sqrt{4^2 \times 3 \times 5} = 4 \times \sqrt{3} \times \sqrt{5} = 4ab$$

0328
$$\sqrt{0.28} = \sqrt{\frac{28}{100}} = \sqrt{\frac{2^2 \times 7}{10^2}} = \frac{2\sqrt{7}}{10} = \frac{\sqrt{7}}{5} = \frac{k}{5}$$

4

0329
$$\sqrt{98} = \sqrt{2 \times 7^2} = 7\sqrt{2} = 7x$$
 ... ••

$$\sqrt{150} = \sqrt{2 \times 3 \times 5^2} = 5 \times \sqrt{2} \times \sqrt{3} = 5xy$$

... 2

따라서 $\sqrt{98} - \sqrt{150} = 7x - 5xy$ 이므로

$$a=7, b=-5$$

$$\therefore a+b=2$$
 ... 3

2 2

채점 기준	비율
$lue{1}$ $\sqrt{98}$ 을 x,y 를 이용하여 나타낼 수 있다.	40%
$ o$ $\sqrt{150}$ 을 x, y 를 이용하여 나타낼 수 있다.	40%
③ $a+b$ 의 값을 구할 수 있다.	20%

0330
$$\sqrt{600} = \sqrt{6 \times 10^2} = 10\sqrt{6} = 10a$$

$$\sqrt{0.006} = \sqrt{\frac{60}{10000}} = \sqrt{\frac{60}{100^2}} = \frac{\sqrt{60}}{100} = \frac{b}{100}$$

$$\therefore \sqrt{600} + \sqrt{0.006} = 10a + \frac{b}{100}$$

0331 ①
$$\sqrt{98} = \sqrt{2 \times 7^2} = \sqrt{2} \times (\sqrt{7})^2 = ab^2$$

(2)
$$\sqrt{126} = \sqrt{2 \times 3^2 \times 7} = 3 \times \sqrt{2} \times \sqrt{7} = 3ab$$

(3)
$$\sqrt{252} = \sqrt{2^2 \times 3^2 \times 7} = (\sqrt{2})^2 \times 3 \times \sqrt{7} = 3a^2b$$

$$(4)\sqrt{0.14} = \sqrt{\frac{14}{100}} = \sqrt{\frac{2\times7}{10^2}} = \frac{\sqrt{2}\times\sqrt{7}}{10} = \frac{ab}{10}$$

(5)
$$\sqrt{0.0056} = \sqrt{\frac{56}{10000}} = \sqrt{\frac{2^3 \times 7}{100^2}} = \frac{(\sqrt{2})^3 \times \sqrt{7}}{100} = \frac{a^3b}{100}$$

3

0332 §
$$\frac{\sqrt{11}}{\sqrt{12}} = \frac{\sqrt{11}}{2\sqrt{3}} = \frac{\sqrt{11} \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{33}}{6}$$

(5)

0333
$$\frac{\sqrt{a}}{\sqrt{52}} = \frac{\sqrt{a}}{2\sqrt{13}} = \frac{\sqrt{a} \times \sqrt{13}}{2\sqrt{13} \times \sqrt{13}} = \frac{\sqrt{13a}}{26}$$

이때
$$\frac{\sqrt{13a}}{26}$$
= $\frac{\sqrt{143}}{26}$ 이므로

$$13a = 143$$
 : $a = 11$

图 11

...

0334
$$\frac{\sqrt{5}}{\sqrt{7}} = \frac{\sqrt{5} \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{35}}{7}$$

이므로
$$a=\frac{1}{7}$$

$$6 \times \sqrt{21}$$
 $6 \times \sqrt{21}$ $\sqrt{21}$

$$\frac{6}{\sqrt{84}} = \frac{6}{2\sqrt{21}} = \frac{6 \times \sqrt{21}}{2\sqrt{21} \times \sqrt{21}} = \frac{6\sqrt{21}}{42} = \frac{\sqrt{21}}{7}$$
이므로 $b = 21$

$$\therefore ab = \frac{1}{7} \times 21 = 3$$

... 2 ... ❸

3

채점 기준	비율
1 <i>a</i> 의 값을 구할 수 있다.	40%
② b의 값을 구할 수 있다.	40%
3 <i>ab</i> 의 값을 구할 수 있다.	20%

$$\begin{array}{ccc} \textbf{0335} & \frac{\sqrt{10}}{\sqrt{11}} = \frac{\sqrt{10} \times \sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{110}}{11}, \\ \frac{1}{\sqrt{11}} = \frac{\sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{11}}{11} \end{array}$$

이므로 주어진 수의 대소를 비교하면

$$\sqrt{11} > \frac{\sqrt{10}}{\sqrt{11}} > \frac{10}{11} > \frac{1}{\sqrt{11}} > \frac{\sqrt{10}}{11}$$

따라서 구하는 수는
$$\frac{\sqrt{10}}{\sqrt{11}}$$
이다.

 $\sqrt{10}$

0336
$$\frac{10}{\sqrt{72}} \div \sqrt{\frac{12}{5}} \times \frac{2\sqrt{2}}{3\sqrt{5}} = \frac{10}{6\sqrt{2}} \times \frac{\sqrt{5}}{2\sqrt{3}} \times \frac{2\sqrt{2}}{3\sqrt{5}}$$
$$= \frac{5}{9\sqrt{3}} = \frac{5 \times \sqrt{3}}{9\sqrt{3} \times \sqrt{3}}$$
$$= \frac{5\sqrt{3}}{27}$$

0337
$$\sqrt{80} \times \sqrt{75} \div \sqrt{300} = 4\sqrt{5} \times 5\sqrt{3} \div 10\sqrt{3}$$

= $4\sqrt{5} \times 5\sqrt{3} \times \frac{1}{10\sqrt{3}}$
= $2\sqrt{5} = \sqrt{20}$

0338 ①
$$\sqrt{18} \times \sqrt{3} \div \sqrt{6} = 3\sqrt{2} \times \sqrt{3} \times \frac{1}{\sqrt{6}} = 3$$

(2)
$$2\sqrt{10} \div 5\sqrt{30} \times 10\sqrt{3} = 2\sqrt{10} \times \frac{1}{5\sqrt{30}} \times 10\sqrt{3} = 4$$

$$3 \sqrt{\frac{4}{7}} \times \sqrt{\frac{2}{15}} \div \sqrt{\frac{32}{21}} = \sqrt{\frac{4}{7}} \times \sqrt{\frac{2}{15}} \times \sqrt{\frac{21}{32}}$$

$$= \sqrt{\frac{4}{7}} \times \frac{2}{15} \times \frac{21}{32} = \sqrt{\frac{1}{20}}$$

$$= \frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{2\sqrt{5} \times \sqrt{5}}$$

$$= \frac{\sqrt{5}}{10}$$

$$\underbrace{\frac{3}{2\sqrt{3}} \times \frac{\sqrt{6}}{\sqrt{45}} \div \frac{\sqrt{14}}{\sqrt{20}}}_{\sqrt{20}} = \underbrace{\frac{3}{2\sqrt{3}} \times \frac{\sqrt{6}}{3\sqrt{5}} \times \frac{2\sqrt{5}}{\sqrt{14}}}_{2\sqrt{14}}$$

$$= \underbrace{\frac{1}{\sqrt{7}}}_{\sqrt{7} \times \sqrt{7}} = \underbrace{\frac{\sqrt{7}}{7}}_{7}$$

$$\underbrace{\frac{\sqrt{27}}{\sqrt{2}} \div \sqrt{\frac{5}{4}} \times \frac{2\sqrt{5}}{\sqrt{6}}}_{\sqrt{6}} = \underbrace{\frac{3\sqrt{3}}{\sqrt{2}} \times \frac{2}{\sqrt{5}} \times \frac{2\sqrt{5}}{\sqrt{6}}}_{\sqrt{6}} = 6$$

0339
$$4\sqrt{15} \div \sqrt{48} = 4\sqrt{15} \times \frac{1}{4\sqrt{3}} = \sqrt{5}$$

$$\stackrel{\sim}{=} \sqrt{k} \div \frac{2\sqrt{3}}{\sqrt{10}} = \sqrt{5} \circ | 므로$$

$$\sqrt{k} = \sqrt{5} \times \frac{2\sqrt{3}}{\sqrt{10}} = \frac{2\sqrt{3}}{\sqrt{2}} = \frac{2\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \sqrt{6}$$

$$\therefore k = 6$$

0340
$$A = \frac{\sqrt{15}}{2\sqrt{2}} \times \frac{1}{\sqrt{10}} \times 4\sqrt{3} = 3$$
 ... •••

$$B = \frac{\sqrt{6}}{6} \times \frac{2\sqrt{3}}{\sqrt{5}} \times \frac{\sqrt{30}}{6} \times (-\sqrt{3}) = -1 \qquad \cdots$$

$$A - B = 3 - (-1) = 4$$
 ... §

달 4

채점 기준	비율
$lackbox{0}$ A 의 값을 구할 수 있다.	40%
② B 의 값을 구할 수 있다.	50%
③ $A-B$ 의 값을 구할 수 있다.	10%

0341 직사각형의 넓이는

 $\sqrt{45} \times \sqrt{80} = 3\sqrt{5} \times 4\sqrt{5} = 60$

따라서 넓이가 60인 정사각형의 한 변의 길이는

$$\sqrt{60} = 2\sqrt{15}$$

$$\frac{1}{2} \times 2\sqrt{6} \times x = 6\sqrt{2}, \quad \sqrt{6}x = 6\sqrt{2}$$

$$\therefore x = \frac{6\sqrt{2}}{\sqrt{6}} = \frac{6}{\sqrt{3}} = \frac{6\sqrt{3}}{\sqrt{3} \times \sqrt{3}} = 2\sqrt{3}$$

0343 직육면체의 높이를 x cm라 하면

$$4\sqrt{6} \times 3\sqrt{3} \times x = 72\sqrt{10} \qquad \cdots$$

$$\therefore x = 72\sqrt{10} \div 4\sqrt{6} \div 3\sqrt{3}$$

$$= 72\sqrt{10} \times \frac{1}{4\sqrt{6}} \times \frac{1}{3\sqrt{3}}$$

$$= 2\sqrt{5} \qquad \cdots ②$$

 $\square 2\sqrt{5}$ cm

채점 기준	비율
❶ 직육면체의 부피를 높이에 대한 식으로 나타낼 수 있다.	40%
❷ 직육면체의 높이를 구할 수 있다.	60%

0344 $\overline{AC} = x$ 라 하면 마름모 ABCD의 넓이는

$$\frac{1}{2} \times 2\sqrt{10} \times x = \sqrt{10}x$$

삼각형 EFG의 넓이는

$$\frac{1}{2} \times \sqrt{48} \times \sqrt{18} = \frac{1}{2} \times 4\sqrt{3} \times 3\sqrt{2} = 6\sqrt{6}$$

 $= \sqrt{10}x = 6\sqrt{6}$ 이므로

$$x = \frac{6\sqrt{6}}{\sqrt{10}} = \frac{6\sqrt{3}}{\sqrt{5}} = \frac{6\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{6\sqrt{15}}{5}$$

0345 먼저 제곱근의 곱셈을 한 후, 근호 안의 제곱인 인수를 근호 밖으로 꺼낸다.

$$\begin{array}{ll} \geq \overline{\underline{\underline{\underline{}}}} & 5\sqrt{2k} \times \sqrt{6} = 5\sqrt{12k} \\ & = 5\sqrt{2^2 \times 3 \times k} = 10\sqrt{3k} \end{array}$$

즉
$$10\sqrt{3k} = 10\sqrt{30}$$
이므로 $3k = 30$

$$\therefore k=10$$

0346 전략 나눗셈은 역수의 곱셈으로 고친 후 계산한다.

$$= 6 \times \frac{6}{\sqrt{5}} = 6 \times \frac{\sqrt{5}}{6} = \sqrt{5}$$

②
$$4\sqrt{10} \div \sqrt{8} = 4\sqrt{10} \times \frac{1}{2\sqrt{2}} = 2\sqrt{5}$$

$$3\sqrt{\frac{13}{2}} \div \frac{\sqrt{26}}{10} = \frac{\sqrt{13}}{\sqrt{2}} \times \frac{10}{\sqrt{26}} = \frac{10}{2} = 5$$

$$4 \frac{\sqrt{32}}{10} \div \frac{\sqrt{2}}{5} = \frac{4\sqrt{2}}{10} \times \frac{5}{\sqrt{2}} = 2$$

(5)
$$\frac{\sqrt{35}}{\sqrt{3}} \div \frac{2\sqrt{7}}{\sqrt{12}} = \frac{\sqrt{35}}{\sqrt{3}} \times \frac{2\sqrt{3}}{2\sqrt{7}} = \sqrt{5}$$

3

0347 전략 근호 안의 제곱인 인수는 근호 밖으로 꺼내고, 나눗 셈은 역수의 곱셈으로 고쳐서 계산한다.

$$= \sqrt{91} \cdot \sqrt{91} \cdot \sqrt{13} = \sqrt{91} \times \frac{1}{\sqrt{13}} = \sqrt{7}$$

(2) $\sqrt{2} \times \sqrt{3} = \sqrt{6}$

$$(3) \left(-\frac{\sqrt{20}}{2} \right) \times (-\sqrt{5}) = \left(-\frac{2\sqrt{5}}{2} \right) \times (-\sqrt{5}) = 5$$

$$\textcircled{4} \frac{\sqrt{33}}{\sqrt{14}} \div \frac{\sqrt{22}}{\sqrt{21}} = \frac{\sqrt{33}}{\sqrt{14}} \times \frac{\sqrt{21}}{\sqrt{22}} = \frac{3}{2}$$

(5)
$$2\sqrt{24} \div 2\sqrt{6} = 4\sqrt{6} \times \frac{1}{2\sqrt{6}} = 2$$

따라서 가장 작은 수는 ④이다.

(4)

图 7

0348 전략》 넓이가 a인 정사각형의 한 변의 길이는 \sqrt{a} 임을 이 용한다.

 $196 \times \frac{1}{2} = 98$ <u>둘</u>에 색칠한 정사각형의 넓이는

따라서 색칠한 정사각형의 한 변의 길이는

$$\sqrt{98} = \sqrt{2 \times 7^2} = 7\sqrt{2}$$

 $\therefore a=7$

0349 전략 $x>0, y>0일 때, x\sqrt{y}=\sqrt{x^2y}$ 임을 이용한다.

>풀이 $5\sqrt{3} = \sqrt{5^2 \times 3} = \sqrt{75}$ 이므로

$$-\sqrt{117} = -\sqrt{3^2 \times 13} = -3\sqrt{13}$$
이므로

$$b = -3$$
, $c = 13$

$$\therefore a-b-c=75-(-3)-13=65$$

0350 전략 근호 안의 제곱인 인수를 근호 밖으로 꺼내어 대소 를 비교한다.

$$\sum_{\frac{m}{2}} \frac{\sqrt{8}}{10} = \frac{2\sqrt{2}}{10} = \frac{\sqrt{2}}{5}, \sqrt{\frac{144}{225}} = \frac{12}{15} = \frac{4}{5},$$

$$\sqrt{0.56} = \sqrt{\frac{56}{100}} = \frac{2\sqrt{14}}{10} = \frac{\sqrt{14}}{5}$$

 $\sqrt{2} < \sqrt{14} < 4$ 이므로

$$\frac{\sqrt{2}}{5} < \frac{\sqrt{14}}{5} < \frac{4}{5}, \stackrel{\blacktriangleleft}{=} \frac{\sqrt{8}}{10} < \sqrt{0.56} < \sqrt{\frac{144}{225}}$$

$$\stackrel{\blacksquare}{=} \frac{\sqrt{8}}{10} < \sqrt{0.56} < \sqrt{\frac{144}{225}}$$

전략》 근호 안의 수를 10 또는 $\frac{1}{10}$ 의 거듭제곱과의 곱의 꼴 0351

$$\sum_{\frac{1}{20}} \sqrt{0.2} = \sqrt{\frac{20}{100}} = \sqrt{\frac{20}{10}} = \sqrt{\frac{20}{10}}$$
이므로 $a = \frac{1}{10}$

$$\sqrt{20000} = \sqrt{2 \times 100^2} = 100\sqrt{2}$$
이므로 $b=100$

$$\therefore ab=10$$

10

0352 전략 근호 안의 수를 10 또는 $\frac{1}{10}$ 의 거듭제곱과의 곱의 꼴로 나타낸다.

$$\begin{array}{c} \boxed{20} \ \ \boxed{1} \ \sqrt{0.455} = \sqrt{\frac{45.5}{10^2}} = \frac{\sqrt{45.5}}{10} = 0.6745 \end{array}$$

$$(2)\sqrt{455} = \sqrt{4.55 \times 10^2} = 10\sqrt{4.55} = 21.33$$

$$\sqrt{0.0455} = \sqrt{\frac{4.55}{10^2}} = \frac{\sqrt{4.55}}{10} = 0.2133$$

$$4\sqrt{4550} = \sqrt{45.5 \times 10^2} = 10\sqrt{45.5} = 67.45$$

(5)
$$\sqrt{0.000455} = \sqrt{\frac{4.55}{100^2}} = \frac{\sqrt{4.55}}{100} = 0.02133$$

图(5)

2

0353 전략 먼저 750을 소인수분해한다.

>풀이 $\sqrt{750} = \sqrt{2 \times 3 \times 5^3} = (\sqrt{5})^3 \times \sqrt{6} = x^3 y$

이므로
$$a=3, b=1$$

$$\therefore a+b=4$$

0354 전략 근호 안의 제곱인 인수를 근호 밖으로 꺼내거나 분 모를 유리화한다.

>풀이 ① $\sqrt{28} = \sqrt{2^2 \times 7} = 2\sqrt{7}$

$$(2) \frac{7}{\sqrt{7}} = \frac{7 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \sqrt{7}$$

$$3\frac{28}{\sqrt{28}} = \frac{28}{2\sqrt{7}} = \frac{28 \times \sqrt{7}}{2\sqrt{7} \times \sqrt{7}} = 2\sqrt{7}$$

$$4 \frac{\sqrt{84}}{\sqrt{3}} = \sqrt{28} = 2\sqrt{7}$$

(5)
$$\frac{14\sqrt{2}}{\sqrt{14}} = \frac{14}{\sqrt{7}} = \frac{14 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = 2\sqrt{7}$$

이상에서 값이 다른 것은 ②이다.

图(2)

전략 근호 안의 제곱인 인수를 근호 밖으로 꺼낸 후 분모

>풀이
$$\frac{5}{2\sqrt{10}} = \frac{5 \times \sqrt{10}}{2\sqrt{10} \times \sqrt{10}} = \frac{5\sqrt{10}}{20} = \frac{\sqrt{10}}{4}$$
이므로

$$\frac{b}{\sqrt{27}} = \frac{b}{3\sqrt{3}} = \frac{b \times \sqrt{3}}{3\sqrt{3} \times \sqrt{3}} = \frac{b\sqrt{3}}{9}$$
이므로

$$\frac{b}{9}$$
=2 $\therefore b$ =18

$$\therefore 4a+b=19$$

19

0356 전략 근호 안의 제곱인 인수를 근호 밖으로 꺼내어 a, b의 값을 구하고 분모를 유리화하여 c의 값을 구한다.

$$\sqrt{\frac{243}{128}} = \sqrt{\frac{9^2 \times 3}{8^2 \times 2}} = \frac{9\sqrt{3}}{8\sqrt{2}} = \frac{9\sqrt{3} \times \sqrt{2}}{8\sqrt{2} \times \sqrt{2}} = \frac{9\sqrt{6}}{16}$$
이므로 $a=8, b=9, c=\frac{9}{16}$

$$\therefore 2abc = 2 \times 8 \times 9 \times \frac{9}{16} = 81$$

0357 전략 분모를 유리화한 후 $\sqrt{10}$ 의 값을 대입한다.

$$\begin{array}{ccc} \frac{\sqrt{18}}{2\sqrt{5}} & \frac{\sqrt{18}}{2\sqrt{5}} = \frac{3\sqrt{2} \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} \\ & = \frac{3\sqrt{10}}{10} = \frac{3}{10} \times 3.162 \\ & = 0.9486 \end{array}$$

(3)

 $\therefore n=3$

(2)

>풀이 (주어진 식) =
$$\frac{2\sqrt{a}}{\sqrt{3b}} \times \frac{\sqrt{6b}}{\sqrt{5a}} \times \frac{3\sqrt{3a}}{2\sqrt{2b}} \times \frac{\sqrt{2b}}{\sqrt{3a}}$$

$$= \frac{3\sqrt{2}}{\sqrt{5}} = \frac{3\sqrt{2} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$$

$$= \frac{3\sqrt{10}}{5}$$

0360 전략 (원기둥의 부피)=(밑면의 넓이)×(높이)임을 이용한다.

 $_{\overline{z}0}$ 밑면인 원의 반지름의 길이를 $x \, \mathrm{cm}$ 라 하면

$$x^{2}\pi \times \sqrt{11} = \sqrt{891}\pi$$

 $\sqrt{11}x^{2} = 9\sqrt{11}, \quad x^{2} = 9$

즉 x는 9의 양의 제곱근이므로

x=3

3 cm

0361 전략 근호 안의 제곱인 인수는 근호 밖으로 꺼낸다.

>풀이 $\sqrt{450} = \sqrt{2 \times 3^2 \times 5^2} = 15\sqrt{2}$ 이므로

$$a=15 \qquad \cdots \bullet$$

$$\sqrt{0.0675} = \sqrt{\frac{675}{10000}} = \sqrt{\frac{3 \times 3^2 \times 5^2}{100^2}} = \frac{15\sqrt{3}}{100} = \frac{3\sqrt{3}}{20}$$

이므로
$$b=\frac{3}{20}$$
 … ②

$$\therefore \frac{a}{b} = a \times \frac{1}{b} = 15 \times \frac{20}{3} = 100$$

1100

채점 기준	비율
lack a의 값을 구할 수 있다.	40%
olimits b의 값을 구할 수 있다.	40%
$\textcircled{3}$ $\frac{a}{b}$ 의 값을 구할 수 있다.	20%

0362 작가 주어진 식에 a, b의 값을 대입한 후 분모를 유리화한다.

이므로
$$p=35, q=36$$

$$\therefore p-q=-1 \qquad \cdots$$

 $\blacksquare -1$

... 2

채점 기준	비율
① 분모를 유리화할 수 있다 .	70%
② p, q의 값을 구할 수 있다.	20%
	10%

0363 a>0, b>0일 때, a< b이면 $-\sqrt{a}>-\sqrt{b}$ 임을 이용한다.

이때
$$-5\sqrt{3} = -\sqrt{75}$$
, $-2\sqrt{6} = -\sqrt{24}$ 이고 $\sqrt{75} > \sqrt{24}$ 이므로 $-\sqrt{75} < -\sqrt{24}$, 즉 $-5\sqrt{3} < -2\sqrt{6}$ $\therefore A < B$ \cdots ③

 $\blacksquare A < B$

채점 기준	비율
lacksquare A 의 값을 구할 수 있다.	30%
$ ot\!{@}B$ 의 값을 구할 수 있다.	40%
③ A, B 의 대소를 비교할 수 있다.	30%

0364 전략》 (삼각형의 넓이)=(직사각형의 넓이)임을 이용하여 x의 값을 구한다.

 \geq 풀이 (삼각형의 넓이) $=\frac{1}{2} imes\sqrt{63} imes\sqrt{32}$

$$= \frac{1}{2} \times 3\sqrt{7} \times 4\sqrt{2}$$

$$= 6\sqrt{14} \qquad \cdots \bullet$$

 $(직사각형의 넓이)=2\sqrt{7}x$

따라서 $6\sqrt{14}=2\sqrt{7}x$ 이므로

$$x = \frac{6\sqrt{14}}{2\sqrt{7}} = 3\sqrt{2} \qquad \cdots$$

 $\Box 3\sqrt{2}$

... 2

채점 기준	비율
삼각형의 넓이를 구할 수 있다.	40%
② 직사각형의 넓이를 구할 수 있다.	20%
❸ <i>x</i> 의 값을 구할 수 있다.	40%

근호를 포함한 식의 계산(2

0365 전략》 주어진 식의 분모를 유리화하여 식을 간단히 한 후 a, b의 값을 대입한다.

이때
$$ab=\sqrt{2}\times\frac{1}{\sqrt{2}}=1$$
이므로

$$\frac{b\sqrt{ab}}{a} + \frac{a\sqrt{ab}}{b} = \frac{b}{a} + \frac{a}{b}$$

$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \sqrt{2} \times \sqrt{2}$$

$$= \frac{1}{2} + 2 = \frac{5}{2}$$

$$(4)$$

다른풀이 $\frac{b\sqrt{b}}{\sqrt{a}} + \frac{a\sqrt{a}}{\sqrt{b}} = \frac{b(\sqrt{b})^2 + a(\sqrt{a})^2}{\sqrt{a}\sqrt{b}}$ $= \frac{a^2 + b^2}{\sqrt{ab}}$

이때 ab=1이므로

$$\frac{a^2 + b^2}{\sqrt{ab}} = a^2 + b^2 = (\sqrt{2})^2 + \left(\frac{1}{\sqrt{2}}\right)^2$$
$$= 2 + \frac{1}{2} = \frac{5}{2}$$

0366 전략 주어진 계산을 등식으로 나타낸다.

$$A \div \frac{\sqrt{2}}{6} \times \sqrt{90} = 18$$

$$A \times \frac{6}{\sqrt{2}} \times 3\sqrt{10} = 18, \qquad A \times 18\sqrt{5} = 18$$

$$\therefore A = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{5}}{5}$$

0.367 전략 주어진 직선의 x절편, y절편을 구한다.

$$y=\sqrt{2}x-\sqrt{6}$$
에 $x=0$ 을 대입하면 $y=-\sqrt{6}$ \therefore $\overline{OB}=\sqrt{6}$

y=0을 대입하면

$$0 = \sqrt{2}x - \sqrt{6} \qquad \therefore \ x = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}$$

$$\therefore \overline{OA} = \sqrt{3}$$

따라서 △AOB의 넓이는

$$\frac{1}{2} \times \sqrt{3} \times \sqrt{6} = \frac{\sqrt{18}}{2} = \frac{3\sqrt{2}}{2}$$

 $=\frac{3\sqrt{2}}{2}$

- 일차함수 y=ax+b의 그래프에서
- ① x절편: 그래프가 x축과 만나는 점의 x좌표, 즉 y=0일 때의 x의 값 $\bigcirc -\frac{b}{a}$
- ② y절편: 그래프가 y축과 만나는 점의 y좌표, 즉 x=0일 때의 y의 값 ○ b

Ⅰ . 제곱근과 실수

근호를 포함한 식의 계산(2)

- 0368 $\blacksquare 6\sqrt{3}$
- 0369 $\square 2\sqrt{2}$
- 0370 $4\sqrt{5}$

0371
$$3\sqrt{6} - 2\sqrt{10} - 5\sqrt{6} + \sqrt{10} = (3-5)\sqrt{6} + (-2+1)\sqrt{10}$$

= $-2\sqrt{6} - \sqrt{10}$

0372 $\sqrt{8} + \sqrt{32} = 2\sqrt{2} + 4\sqrt{2} = 6\sqrt{2}$

 $\blacksquare 6\sqrt{2}$

0373 $\sqrt{125} - \sqrt{5} = 5\sqrt{5} - \sqrt{5} = 4\sqrt{5}$

 $\blacksquare 4\sqrt{5}$

- **0374** $6\sqrt{3} \sqrt{12} \sqrt{27} = 6\sqrt{3} 2\sqrt{3} 3\sqrt{3} = \sqrt{3}$ \square $\sqrt{3}$
- $\sqrt{48} + \sqrt{2} \sqrt{128} \sqrt{3} = 4\sqrt{3} + \sqrt{2} 8\sqrt{2} \sqrt{3}$ $=3\sqrt{3}-7\sqrt{2}$ $\blacksquare 3\sqrt{3} - 7\sqrt{2}$

0376
$$\frac{1}{\sqrt{2}} + \sqrt{2} = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} + \sqrt{2} = \frac{\sqrt{2}}{2} + \sqrt{2} = \frac{3\sqrt{2}}{2}$$

0377
$$\frac{\sqrt{2}}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} - \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$$
$$= \frac{\sqrt{6}}{3} - \frac{\sqrt{6}}{2} = -\frac{\sqrt{6}}{6}$$

 $=\frac{\sqrt{6}}{6}$

0378 $3\sqrt{6} + \sqrt{3} \times \sqrt{2} = 3\sqrt{6} + \sqrt{6} = 4\sqrt{6}$

 $\blacksquare 4\sqrt{6}$

0379
$$\sqrt{10} - 2\sqrt{5} \div \sqrt{2} = \sqrt{10} - \frac{2\sqrt{5}}{\sqrt{2}}$$

$$= \sqrt{10} - \frac{2\sqrt{5} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$$

$$= \sqrt{10} - \sqrt{10} = 0$$

0380
$$\sqrt{2}(\sqrt{6}+\sqrt{20}) = \sqrt{12}+\sqrt{40}$$

= $2\sqrt{3}+2\sqrt{10}$

 $2\sqrt{3} + 2\sqrt{10}$

0381
$$(\sqrt{42} - \sqrt{18}) \div \sqrt{6} = \frac{\sqrt{42}}{\sqrt{6}} - \frac{\sqrt{18}}{\sqrt{6}} = \sqrt{7} - \sqrt{3}$$

目 $\sqrt{7} - \sqrt{3}$

0382
$$(\sqrt{3}+2)^2 = (\sqrt{3})^2 + 2 \times \sqrt{3} \times 2 + 2^2 = 7 + 4\sqrt{3}$$

目 $7+4\sqrt{3}$

0383
$$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})=(\sqrt{5})^2-(\sqrt{2})^2=5-2=3$$

3

0384 2 (7)
$$\sqrt{3}$$
 (4) $\sqrt{15} + 3\sqrt{2}$

0385 2 (7)
$$\sqrt{5}$$
 (4) $3\sqrt{5} - \sqrt{35}$

0386
$$\frac{\sqrt{2} + \sqrt{3}}{\sqrt{7}} = \frac{(\sqrt{2} + \sqrt{3}) \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{14} + \sqrt{21}}{7}$$

$$\boxed{2} \frac{\sqrt{14} + \sqrt{21}}{7}$$

0387
$$\frac{3\sqrt{2} - \sqrt{7}}{\sqrt{5}} = \frac{(3\sqrt{2} - \sqrt{7}) \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{3\sqrt{10} - \sqrt{35}}{5}$$

$$\frac{3\sqrt{10} - \sqrt{35}}{5}$$

0388
$$\frac{\sqrt{18} - \sqrt{11}}{\sqrt{6}} = \frac{(3\sqrt{2} - \sqrt{11}) \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$$
$$= \frac{6\sqrt{3} - \sqrt{66}}{6}$$

 $=\frac{6\sqrt{3}-\sqrt{66}}{6}$

0389
$$\frac{2+\sqrt{3}}{2\sqrt{3}} = \frac{(2+\sqrt{3})\times\sqrt{3}}{2\sqrt{3}\times\sqrt{3}} = \frac{2\sqrt{3}+3}{6}$$

 $\frac{2\sqrt{3}+3}{6}$

0390
$$\frac{2\sqrt{2} + 3\sqrt{6}}{\sqrt{45}} = \frac{2\sqrt{2} + 3\sqrt{6}}{3\sqrt{5}}$$
$$= \frac{(2\sqrt{2} + 3\sqrt{6}) \times \sqrt{5}}{3\sqrt{5} \times \sqrt{5}}$$
$$= \frac{2\sqrt{10} + 3\sqrt{30}}{15}$$

 $\frac{2\sqrt{10}+3\sqrt{30}}{15}$

0391
$$\frac{\sqrt{20} - \sqrt{27}}{\sqrt{12}} = \frac{2\sqrt{5} - 3\sqrt{3}}{2\sqrt{3}}$$
$$= \frac{(2\sqrt{5} - 3\sqrt{3}) \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}}$$
$$= \frac{2\sqrt{15} - 9}{6}$$

0393
$$\frac{3+\sqrt{7}}{3-\sqrt{7}} = \frac{(3+\sqrt{7})\times(3+\sqrt{7})}{(3-\sqrt{7})\times(3+\sqrt{7})}$$
$$= \frac{(3+\sqrt{7})^2}{3^2-(\sqrt{7})^2}$$
$$= \frac{16+6\sqrt{7}}{2}$$
$$= 8+3\sqrt{7}$$

 \therefore (7) $3+\sqrt{7}$ (4) $16+6\sqrt{7}$ (4) $8+3\sqrt{7}$

(4) $3+\sqrt{7}$ **(4)** $16+6\sqrt{7}$ **(4)** $8+3\sqrt{7}$

0394
$$\frac{1}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3} + \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}$$
$$= \frac{\sqrt{3} - \sqrt{2}}{3 - 2}$$
$$= \sqrt{3} - \sqrt{2}$$

 $\Box \sqrt{3} - \sqrt{2}$

0395
$$\frac{2}{4-\sqrt{14}} = \frac{2 \times (4+\sqrt{14})}{(4-\sqrt{14}) \times (4+\sqrt{14})}$$
$$= \frac{8+2\sqrt{14}}{16-14}$$
$$= 4+\sqrt{14}$$

 $4 + \sqrt{14}$

0396
$$\frac{\sqrt{2}}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{2} \times (\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3}) \times (\sqrt{5} - \sqrt{3})}$$
$$= \frac{\sqrt{10} - \sqrt{6}}{5 - 3}$$
$$= \frac{\sqrt{10} - \sqrt{6}}{2}$$

 $\frac{\sqrt{10} - \sqrt{6}}{2}$

0397
$$\frac{\sqrt{5}}{\sqrt{10}-3} = \frac{\sqrt{5} \times (\sqrt{10}+3)}{(\sqrt{10}-3) \times (\sqrt{10}+3)}$$
$$= \frac{\sqrt{50}+3\sqrt{5}}{10-9}$$
$$= 5\sqrt{2}+3\sqrt{5}$$

 $\Box 5\sqrt{2} + 3\sqrt{5}$

04

0398
$$\frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)\times(\sqrt{2}-1)}$$
$$= \frac{2-2\sqrt{2}+1}{2-1}$$
$$= 3-2\sqrt{2}$$

 $= 3 - 2\sqrt{2}$

0399
$$\frac{\sqrt{12} + \sqrt{5}}{\sqrt{12} - \sqrt{5}} = \frac{(\sqrt{12} + \sqrt{5})^2}{(\sqrt{12} - \sqrt{5}) \times (\sqrt{12} + \sqrt{5})}$$
$$= \frac{12 + 2\sqrt{60} + 5}{12 - 5}$$
$$= \frac{17 + 4\sqrt{15}}{7}$$

 $\frac{17+4\sqrt{15}}{7}$

0400
$$6\sqrt{5} + 4\sqrt{3} - 3\sqrt{5} + \sqrt{3} = (4+1)\sqrt{3} + (6-3)\sqrt{5}$$

= $5\sqrt{3} + 3\sqrt{5}$

따라서 a=5, b=3이므로 a+b=8

B 8

0401 ⓐ
$$\sqrt{6} - 6\sqrt{6} = -5\sqrt{6}$$

⑤ $3\sqrt{10} + \sqrt{5} - 2\sqrt{5} = 3\sqrt{10} - \sqrt{5}$

(2)

제곱근의 덧셈과 뺄셈은 근호 안의 수가 같을 때에만 할 수 있어. 따라서 $\sqrt{13}+\sqrt{7}$, $3\sqrt{7}+7\sqrt{3}$ 은 근호 안의 수가 다르므로 더 이상 간단히 할 수 없어.

0402
$$A = 4\sqrt{2} - \sqrt{2} + 2\sqrt{2} = (4 - 1 + 2)\sqrt{2} = 5\sqrt{2}$$

 $B = 3\sqrt{5} + 5\sqrt{5} - 7\sqrt{5} = (3 + 5 - 7)\sqrt{5} = \sqrt{5}$
 $\therefore AB = 5\sqrt{2} \times \sqrt{5} = 5\sqrt{10}$

0403 (주어진 식) =
$$\left(\frac{1}{2} - \frac{3}{4}\right)\sqrt{5} + \left(-\frac{1}{3} + \frac{5}{6}\right)\sqrt{7}$$
$$= -\frac{\sqrt{5}}{4} + \frac{\sqrt{7}}{2}$$
$$= -\frac{a}{4} + \frac{b}{2}$$

(2)

0404
$$x+y = \frac{\sqrt{14} + \sqrt{7}}{2} + \frac{\sqrt{14} - \sqrt{7}}{2}$$

= $\sqrt{14}$... •

채점 기준	비율
① $x+y$ 의 값을 구할 수 있다.	40%
② $x-y$ 의 값을 구할 수 있다.	40%
(x+y)(x-y)의 값을 구할 수 있다.	20%

0405
$$\sqrt{32} + \sqrt{128} - 3\sqrt{2} = 4\sqrt{2} + 8\sqrt{2} - 3\sqrt{2}$$

= $(4+8-3)\sqrt{2}$
= $9\sqrt{2}$
 $\therefore k=9$

0406
$$\sqrt{216} - 2\sqrt{24} + 3\sqrt{54} = 6\sqrt{6} - 4\sqrt{6} + 9\sqrt{6}$$

= $(6-4+9)\sqrt{6}$
= $11\sqrt{6}$

0407
$$\sqrt{63} - \sqrt{a} + \sqrt{175} = 3\sqrt{7} - \sqrt{a} + 5\sqrt{7}$$

= $8\sqrt{7} - \sqrt{a}$... ①
즉 $8\sqrt{7} - \sqrt{a} = 4\sqrt{7}$ 이므로
 $\sqrt{a} = 8\sqrt{7} - 4\sqrt{7} = 4\sqrt{7} = \sqrt{112}$
∴ $a = 112$... ②

图 112

채점 기준	비율
❶ 주어진 식의 좌변을 간단히 할 수 있다.	50%
② a 의 값을 구할 수 있다.	50%

0408
$$\sqrt{125} - \sqrt{150} - 2\sqrt{80} + \sqrt{96}$$

= $5\sqrt{5} - 5\sqrt{6} - 8\sqrt{5} + 4\sqrt{6}$
= $-3\sqrt{5} - \sqrt{6}$

따라서 a=-3, b=-1이므로

$$\frac{a}{b} = \frac{-3}{-1} = 3$$

3 (5)

0409 (주어진 식)=
$$3\sqrt{3} - \frac{6\sqrt{3}}{4} + \frac{2\sqrt{3}}{3} - \frac{4\sqrt{3}}{2}$$
$$= \left(3 - \frac{3}{2} + \frac{2}{3} - 2\right)\sqrt{3}$$
$$= \frac{\sqrt{3}}{6}$$
 말 $\frac{\sqrt{3}}{6}$

0410 (주어진 식)=
$$3\sqrt{10}-\frac{14\sqrt{10}}{10}+\frac{2\sqrt{10}}{5}-2\sqrt{10}$$
$$=\left(3-\frac{7}{5}+\frac{2}{5}-2\right)\!\!\sqrt{10}$$
$$=0$$
 달 ③

0411
$$\sqrt{44} - \frac{11}{\sqrt{11}} = 2\sqrt{11} - \frac{11\sqrt{11}}{11}$$

= $2\sqrt{11} - \sqrt{11}$
= $\sqrt{11}$

$$\therefore a=1$$

$$\sqrt{28} - \sqrt{63} + \frac{21}{\sqrt{7}} = 2\sqrt{7} - 3\sqrt{7} + \frac{21\sqrt{7}}{7}$$

$$= 2\sqrt{7} - 2\sqrt{7} + 2\sqrt{7}$$

$$=2\sqrt{7}-3\sqrt{7}+3\sqrt{7}$$

$$=2\sqrt{7}$$

$$\therefore b=2$$

$$\therefore b - a = 1 \qquad \cdots \otimes$$

3 1

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
❷ <i>b</i> 의 값을 구할 수 있다.	50%
③ $b-a$ 의 값을 구할 수 있다.	10%

0412
$$\frac{b}{a} - \frac{a}{b} = \frac{\sqrt{7}}{\sqrt{6}} - \frac{\sqrt{6}}{\sqrt{7}}$$
$$= \frac{\sqrt{42}}{6} - \frac{\sqrt{42}}{7} = \frac{\sqrt{42}}{42}$$

(3)

THE
$$\frac{b}{a} - \frac{a}{b} = \frac{b^2 - a^2}{ab} = \frac{(\sqrt{7})^2 - (\sqrt{6})^2}{\sqrt{6} \times \sqrt{7}}$$

$$= \frac{7 - 6}{\sqrt{42}} = \frac{\sqrt{42}}{42}$$

0413
$$b = \sqrt{3} + \frac{1}{\sqrt{3}} = \sqrt{3} + \frac{\sqrt{3}}{3}$$

$$= \frac{4\sqrt{3}}{3} = \frac{4}{3}a$$

$$\therefore k = \frac{4}{3}$$

0414
$$\sqrt{2}(\sqrt{8}+3)+(\sqrt{6}-\sqrt{12})\sqrt{3}$$

= $\sqrt{2}(2\sqrt{2}+3)+(\sqrt{6}-2\sqrt{3})\sqrt{3}$
= $4+3\sqrt{2}+3\sqrt{2}-6$
= $-2+6\sqrt{2}$

따라서 a=-2, b=6이므로 a+b=4

1

0415 (주어진 식)=
$$6\sqrt{2}+\sqrt{6}(3\sqrt{2}-2\sqrt{3})$$

= $6\sqrt{2}+6\sqrt{3}-6\sqrt{2}$
= $6\sqrt{3}$

(5)

0416
$$\sqrt{5}x - \sqrt{10}y = \sqrt{5}(\sqrt{10} - \sqrt{5}) - \sqrt{10}(\sqrt{10} + \sqrt{5})$$

= $5\sqrt{2} - 5 - 10 - 5\sqrt{2}$
= -15

-15

0417
$$\sqrt{3}(\sqrt{6}+\sqrt{8})-(3-\sqrt{3})\sqrt{2}$$

 $=\sqrt{3}(\sqrt{6}+2\sqrt{2})-(3-\sqrt{3})\sqrt{2}$
 $=3\sqrt{2}+2\sqrt{6}-3\sqrt{2}+\sqrt{6}$
 $=3\sqrt{6}=3\times\sqrt{2}\times\sqrt{3}$
 $=3ab$

0418
$$\frac{\sqrt{108} + 6}{\sqrt{12}} = \frac{6\sqrt{3} + 6}{2\sqrt{3}} = \frac{18 + 6\sqrt{3}}{6} = 3 + \sqrt{3}$$

따라서 a=3, b=1이므로

$$a+b=4$$

0419 (주어진 식) =
$$\frac{\sqrt{20}+2}{\sqrt{2}} - \sqrt{2} = \frac{2\sqrt{5}+2}{\sqrt{2}} - \sqrt{2}$$
$$= \frac{2\sqrt{10}+2\sqrt{2}}{2} - \sqrt{2}$$
$$= \sqrt{10}+\sqrt{2}-\sqrt{2}$$
$$= \sqrt{10}$$

 $\mathbb{F}\sqrt{10}$

$$0420 \quad \frac{\sqrt{80} - \sqrt{2}}{\sqrt{5}} + \frac{\sqrt{72} + \sqrt{5}}{\sqrt{2}}$$

$$= \frac{4\sqrt{5} - \sqrt{2}}{\sqrt{5}} + \frac{6\sqrt{2} + \sqrt{5}}{\sqrt{2}}$$

$$= \frac{20 - \sqrt{10}}{5} + \frac{12 + \sqrt{10}}{2}$$

$$= 4 - \frac{\sqrt{10}}{5} + 6 + \frac{\sqrt{10}}{2}$$

$$= 10 + \frac{3\sqrt{10}}{10}$$

따라서 a=10, $b=\frac{3}{10}$ 이므로 ab=3

2 (2)

0421 ①
$$(\sqrt{108} - \sqrt{12}) \div \sqrt{3} = (6\sqrt{3} - 2\sqrt{3}) \div \sqrt{3}$$

= $4\sqrt{3} \div \sqrt{3} = 4$

②
$$\sqrt{6} + \frac{4}{\sqrt{2}}(\sqrt{3} - \sqrt{2}) = \sqrt{6} + 2\sqrt{2}(\sqrt{3} - \sqrt{2})$$

= $\sqrt{6} + 2\sqrt{6} - 4$
= $3\sqrt{6} - 4$

04

$$3\sqrt{27} - \frac{6}{\sqrt{3}} + \frac{4}{\sqrt{32}} - \sqrt{18} = 3\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{4}{4\sqrt{2}} - 3\sqrt{2}$$

$$= 3\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{2}}{2} - 3\sqrt{2}$$

$$= -\frac{5\sqrt{2}}{2} + \sqrt{3}$$

$$\underbrace{4}_{2\sqrt{20}} 2\sqrt{20} + \underbrace{\frac{14}{\sqrt{7}}}_{-\sqrt{5}} \left(2 + \frac{7}{\sqrt{35}}\right) = 4\sqrt{5} + \frac{14}{\sqrt{7}} - 2\sqrt{5} - \frac{7}{\sqrt{7}}$$

$$= 4\sqrt{5} + 2\sqrt{7} - 2\sqrt{5} - \sqrt{7}$$

$$= 2\sqrt{5} + \sqrt{7}$$

3 (5)

(3)

0423
$$\sqrt{6}A - \sqrt{3}B = \sqrt{6}\left(\sqrt{6} + \frac{1}{\sqrt{3}}\right) - \sqrt{3}\left(2\sqrt{3} - \frac{\sqrt{6}}{3}\right)$$

= $6 + \sqrt{2} - 6 + \sqrt{2}$
= $2\sqrt{2}$

4

0424 (주어진 식)=
$$6-2\sqrt{6}-\frac{4\sqrt{3}}{\sqrt{2}}-8$$
$$=6-2\sqrt{6}-2\sqrt{6}-8$$
$$=-2-4\sqrt{6}$$
 달 $-2-4\sqrt{6}$

따라서 a=2, b=10 또는 a=10. b=2이므로

$$a + b = 12$$

... 2 **1**2

채점 기준	비율
❶ 주어진 식의 좌변을 간단히 할 수 있다.	70%
② $a+b$ 의 값을 구할 수 있다.	30%

0426
$$(2\sqrt{2}+3)^2 = 8+12\sqrt{2}+9$$

= $17+12\sqrt{2}$

따라서 a=17, b=12이므로 a-b=5

(1)

0427 ①
$$(\sqrt{3}+1)^2 = 3+2\sqrt{3}+1$$

= $4+2\sqrt{3}$

$$(2)(\sqrt{5}-2)^2=5-4\sqrt{5}+4=9-4\sqrt{5}$$

$$(3) (\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2}) = (\sqrt{6})^2 - (\sqrt{2})^2$$

$$= 6 - 2 = 4$$

 $(5) (2\sqrt{2} - \sqrt{5})(2\sqrt{2} + \sqrt{3}) = 8 + 2\sqrt{6} - 2\sqrt{10} - \sqrt{15}$ 이상에서 유리수인 것은 ③이다.

3

0428 (주어진 식)=
$$6+6\sqrt{6}+9-\{(2\sqrt{6})^2-3^2\}$$

= $15+6\sqrt{6}-(24-9)$
= $6\sqrt{6}$

 $\blacksquare 6\sqrt{6}$

0429 (주어진 식)
=
$$\{7^2-(4\sqrt{3})^2\}\{3^2-(2\sqrt{2})^2\}$$

= $(49-48)(9-8)$
=1

4

0430
$$(3\sqrt{2}-2)(3\sqrt{2}+a)=18+3a\sqrt{2}-6\sqrt{2}-2a$$

= $(18-2a)+(3a-6)\sqrt{2}$ ··· •

이때 18-2a=8, 3a-6=b이므로

$$a=5, b=3\times 5-6=9$$

$$b-a=4$$

4

채점 기준	비율
❶ 주어진 식의 좌변을 정리할 수 있다.	50%
② a, b 의 값을 구할 수 있다.	40%
	10%

0431
$$(3+\sqrt{2})(a-2\sqrt{2}) = 3a-6\sqrt{2}+a\sqrt{2}-4$$

= $(3a-4)+(a-6)\sqrt{2}$

유리수가 되려면 a-6=0이어야 하므로

a=6

0432
$$\sqrt{45} - \frac{5}{\sqrt{5}} + \sqrt{20} - a\sqrt{5} = 3\sqrt{5} - \sqrt{5} + 2\sqrt{5} - a\sqrt{5}$$

$$= (4 - a)\sqrt{5}$$

유리수가 되려면 4-a=0이어야 하므로

a=4

日 4

0433 (1)
$$A = 2a - a\sqrt{3} + 4\sqrt{3} - 3a\sqrt{3} - 3$$

= $(2a - 3) + (4 - 4a)\sqrt{3}$... ••

이때 A가 유리수이므로 4-4a=0

$$\therefore a=1$$
 ...

(2) a=1이므로

$$A=2\times 1-3=-1$$
 ...

 \blacksquare (1) 1 (2) -1

채점 기준	비율
$oldsymbol{1}$ A 를 정리할 수 있다.	40%
② a의 값을 구할 수 있다.	40%
③ A 의 값을 구할 수 있다.	20%

0434 (주어진 식)=
$$a+2a\sqrt{5}-2\sqrt{5}-20+3b-b\sqrt{5}$$

= $(a+3b-20)+(2a-b-2)\sqrt{5}$

유리수가 되려면 2a-b-2=0이어야 하므로

$$2a-b=2$$

(4)

$$\begin{array}{ll} \textbf{0435} & \frac{5}{\sqrt{10} + \sqrt{5}} + \frac{5}{\sqrt{10} - \sqrt{5}} \\ & = \frac{5(\sqrt{10} - \sqrt{5})}{(\sqrt{10} + \sqrt{5})(\sqrt{10} - \sqrt{5})} + \frac{5(\sqrt{10} + \sqrt{5})}{(\sqrt{10} - \sqrt{5})(\sqrt{10} + \sqrt{5})} \\ & = \frac{5(\sqrt{10} - \sqrt{5})}{10 - 5} + \frac{5(\sqrt{10} + \sqrt{5})}{10 - 5} \\ & = \sqrt{10} - \sqrt{5} + \sqrt{10} + \sqrt{5} \\ & = 2\sqrt{10} \end{array}$$

(5)

0436
$$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} = \frac{(\sqrt{6} - \sqrt{5})^{2}}{(\sqrt{6} + \sqrt{5})(\sqrt{6} - \sqrt{5})}$$
$$= \frac{6 - 2\sqrt{30} + 5}{6 - 5}$$
$$= 11 - 2\sqrt{30}$$

따라서 a=11, b=30이므로

$$b - a = 19$$

19

0437
$$\frac{1}{x} = \frac{1}{9+4\sqrt{5}} = \frac{9-4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})}$$
$$= \frac{9-4\sqrt{5}}{81-80}$$
$$= 9-4\sqrt{5} \qquad \cdots$$

이므로

$$x + \frac{1}{x} = (9 + 4\sqrt{5}) + (9 - 4\sqrt{5}) = 18$$

■ 18

채점 기준	비율
0 $\frac{1}{x}$ 의 분모를 유리화할 수 있다.	70%
② $x + \frac{1}{x}$ 의 값을 구할 수 있다.	30%

$$0438 \quad \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}} - \frac{\sqrt{3}-2}{\sqrt{3}+2}$$

$$= \frac{(\sqrt{6}+\sqrt{2})^2}{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})} - \frac{(\sqrt{3}-2)^2}{(\sqrt{3}+2)(\sqrt{3}-2)}$$

$$= \frac{6+2\sqrt{12}+2}{6-2} - \frac{3-4\sqrt{3}+4}{3-4}$$

$$= 2+\sqrt{3}+7-4\sqrt{3}$$

$$= 9-3\sqrt{3}$$

(5)

0439
$$\sqrt{1} < \sqrt{2} < \sqrt{4}$$
, 즉 $1 < \sqrt{2} < 2$ 이므로 $2 < \sqrt{2} + 1 < 3$

따라서 a=2이므로

$$b = (\sqrt{2} + 1) - 2 = \sqrt{2} - 1$$

$$\therefore a - b = 2 - (\sqrt{2} - 1) = 3 - \sqrt{2}$$

(2)

0440 $\sqrt{4} < \sqrt{8} < \sqrt{9}$, 즉 $2 < \sqrt{8} < 3$ 에서 $\sqrt{8}$ 의 정수 부분이 2 이므로

$$a=\sqrt{8}-2=2\sqrt{2}-2$$
 … ① $\sqrt{25}<\sqrt{32}<\sqrt{36}$, 즉 $5<\sqrt{32}<6$ 에서 $\sqrt{32}$ 의 정수 부분이 5이므

$$b = \sqrt{32} - 5 = 4\sqrt{2} - 5 \qquad \cdots$$

$$\therefore 2a - b = 2(2\sqrt{2} - 2) - (4\sqrt{2} - 5)$$

$$= 4\sqrt{2} - 4 - 4\sqrt{2} + 5$$

$$= 1 \qquad \cdots$$

图 1

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
❷ <i>b</i> 의 값을 구할 수 있다.	40%
	20%

0441
$$\frac{1}{x} = \frac{1}{\sqrt{10} - 3} = \frac{\sqrt{10} + 3}{(\sqrt{10} - 3)(\sqrt{10} + 3)}$$
$$= \frac{\sqrt{10} + 3}{10 - 9} = \sqrt{10} + 3$$

이때
$$\sqrt{9} < \sqrt{10} < \sqrt{16}$$
, 즉 $3 < \sqrt{10} < 4$ 이므로 $6 < \sqrt{10} + 3 < 7$

따라서 $\sqrt{10} + 3$ 의 정수 부분은 6이므로 소수 부분은 $(\sqrt{10}+3)-6=\sqrt{10}-3$

0442 $\sqrt{4} < \sqrt{5} < \sqrt{9}$. 즉 $2 < \sqrt{5} < 3$ 이므로 $1 < \sqrt{5} - 1 < 2$

따라서 $\sqrt{5}$ -1의 정수 부분이 1이므로

$$a = (\sqrt{5} - 1) - 1 = \sqrt{5} - 2$$

①
$$\sqrt{5}a = \sqrt{5}(\sqrt{5}-2) = 5-2\sqrt{5}$$

②
$$a - \frac{1}{a} = \sqrt{5} - 2 - \frac{1}{\sqrt{5} - 2}$$

 $= \sqrt{5} - 2 - \frac{\sqrt{5} + 2}{(\sqrt{5} - 2)(\sqrt{5} + 2)}$
 $= \sqrt{5} - 2 - (\sqrt{5} + 2)$
 $= -4$

(3)
$$a + \frac{1}{a} = \sqrt{5} - 2 + \frac{1}{\sqrt{5} - 2}$$

 $= \sqrt{5} - 2 + \frac{\sqrt{5} + 2}{(\sqrt{5} - 2)(\sqrt{5} + 2)}$
 $= \sqrt{5} - 2 + \sqrt{5} + 2$
 $= 2\sqrt{5}$

$$(a+2)^2 = (\sqrt{5}-2+2)^2 = (\sqrt{5})^2 = 5$$

(5)
$$(a+1)(a-1) = (\sqrt{5}-2+1)(\sqrt{5}-2-1)$$

= $(\sqrt{5}-1)(\sqrt{5}-3)$
= $5-3\sqrt{5}-\sqrt{5}+3$
= $8-4\sqrt{5}$

目(2), (4)

0443
$$(x+y)^2 - (x-y)^2$$

= $(x^2 + 2xy + y^2) - (x^2 - 2xy + y^2)$
= $4xy$
= $4 \times 3\sqrt{2} \times 2\sqrt{3}$
= $24\sqrt{6}$

(1)

0444
$$\frac{1}{x+y} - \frac{1}{x-y} = \frac{(x-y) - (x+y)}{(x+y)(x-y)}$$

$$= \frac{-2y}{x^2 - y^2}$$

$$= \frac{-2 \times 3\sqrt{5}}{(2\sqrt{11})^2 - (3\sqrt{5})^2}$$

$$= \frac{-6\sqrt{5}}{44 - 45} = 6\sqrt{5}$$

0445
$$x = \frac{1}{3+\sqrt{7}} = \frac{3-\sqrt{7}}{(3+\sqrt{7})(3-\sqrt{7})}$$

= $\frac{3-\sqrt{7}}{2}$

$$\begin{split} y &= \frac{3}{\sqrt{7} + 1} = \frac{3(\sqrt{7} - 1)}{(\sqrt{7} + 1)(\sqrt{7} - 1)} \\ &= \frac{3(\sqrt{7} - 1)}{6} = \frac{\sqrt{7} - 1}{2} \end{split}$$

$$\therefore (x+2)(y+2) - xy = xy + 2x + 2y + 4 - xy$$

$$= 2x + 2y + 4$$

$$= 2 \times \frac{3 - \sqrt{7}}{2} + 2 \times \frac{\sqrt{7} - 1}{2} + 4$$

$$= 3 - \sqrt{7} + \sqrt{7} - 1 + 4$$

$$= 6$$

4

0446
$$a+b=(\sqrt{30}+\sqrt{6})+(\sqrt{30}-\sqrt{6})=2\sqrt{30}$$

 $ab=(\sqrt{30}+\sqrt{6})(\sqrt{30}-\sqrt{6})=30-6=24$
 $\therefore \frac{b}{a}+\frac{a}{b}=\frac{a^2+b^2}{ab}=\frac{(a+b)^2-2ab}{ab}$
 $=\frac{(2\sqrt{30})^2-2\times24}{24}$
 $=3$

(3)

0447
$$x^2+y^2=(x+y)^2-2xy$$

= $(3\sqrt{10})^2-10$
= $90-10=80$

图 80

0448
$$x+y=(4-\sqrt{2})+(4+\sqrt{2})=8$$

 $xy=(4-\sqrt{2})(4+\sqrt{2})=16-2=14$
 $\therefore x(x+2y)+y(2x+y)-5xy$
 $=x^2+2xy+2xy+y^2-5xy$
 $=x^2+y^2-xy=(x+y)^2-3xy$
 $=8^2-3\times14$
 $=22$

다음물이
$$x-y=4-\sqrt{2}-(4+\sqrt{2})=-2\sqrt{2}$$

 $xy=(4-\sqrt{2})(4+\sqrt{2})=14$
 $\therefore x(x+2y)+y(2x+y)-5xy$
 $=x^2+y^2-xy=(x-y)^2+xy$
 $=(-2\sqrt{2})^2+14$
 $=22$

0449
$$x = \frac{3}{4 + \sqrt{10}} = \frac{3(4 - \sqrt{10})}{(4 + \sqrt{10})(4 - \sqrt{10})} = \frac{4 - \sqrt{10}}{2}$$

$$y = \frac{3}{4 - \sqrt{10}} = \frac{3(4 + \sqrt{10})}{(4 - \sqrt{10})(4 + \sqrt{10})} = \frac{4 + \sqrt{10}}{2}$$

①
$$x+y=\frac{4-\sqrt{10}}{2}+\frac{4+\sqrt{10}}{2}=4$$

②
$$x-y=\frac{4-\sqrt{10}}{2}-\frac{4+\sqrt{10}}{2}=-\sqrt{10}$$

(3)
$$xy = \frac{4 - \sqrt{10}}{2} \times \frac{4 + \sqrt{10}}{2} = \frac{16 - 10}{4} = \frac{3}{2}$$

(4)
$$x^2+y^2=(x+y)^2-2xy=4^2-2\times\frac{3}{2}=13$$

(5)
$$\frac{y}{x} + \frac{x}{y} = \frac{x^2 + y^2}{xy} = 13 \times \frac{2}{3} = \frac{26}{3}$$

(4)

0450
$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2$$

= $(2 + \sqrt{6})^2 - 2 = 8 + 4\sqrt{6}$

(2)

0451 (1)
$$x^2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 2 = 6^2 + 2 = 38$$
 ...

$$(2)\left(x+\frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 = 38 + 2 = 40 \qquad \cdots \ \$$

따라서 $x+\frac{1}{x}$ 은 40의 양의 제곱근이므로

$$x + \frac{1}{x} = \sqrt{40} = 2\sqrt{10}$$
 ...

 \blacksquare (1) 38 (2) $2\sqrt{10}$

B 8

채점 기준	비율
1 $x^2 + \frac{1}{x^2}$ 의 값을 구할 수 있다.	40%
	30%
③ $x + \frac{1}{x}$ 의 값을 구할 수 있다.	30%

0452
$$x - \frac{1}{x} = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \sqrt{2} + 1$$

$$\therefore x^{2} + \frac{1}{x^{2}} = \left(x - \frac{1}{x}\right)^{2} + 2$$

$$= (\sqrt{2} + 1)^{2} + 2 = 5 + 2\sqrt{2}$$

$$= 5 + 2\sqrt{2}$$

0453 $x=\sqrt{21}-4$ 이므로 $x+4=\sqrt{21}$

양변을 제곱하면

$$x^2+8x+16=21$$
, $x^2+8x=5$
 $\therefore x^2+8x-2=3$

다른풀이
$$x^2+8x-2=(\sqrt{21}-4)^2+8(\sqrt{21}-4)-2$$

$$=21-8\sqrt{21}+16+8\sqrt{21}-32-2$$

$$=3$$

0454 $x=3+2\sqrt{2}$ 이므로 $x-3=2\sqrt{2}$

양변을 제곱하면

$$x^2 - 6x + 9 = 8$$

0455
$$x = \frac{1}{5 - 2\sqrt{6}} = \frac{5 + 2\sqrt{6}}{(5 - 2\sqrt{6})(5 + 2\sqrt{6})}$$

= $5 + 2\sqrt{6}$... ••

 $x-5=2\sqrt{6}$ 이므로 양변을 제곱하면

$$x^2 - 10x + 25 = 24$$
, $x^2 - 10x = -1$

$$\therefore x^2 - 10x + 6 = 5$$

··· 2 目 5

채점 기준	비율
lacktriangle x 의 분모를 유리화할 수 있다.	30%
② $x^2 - 10x + 6$ 의 값을 구할 수 있다.	70%

0456
$$\Box ABCD = \frac{1}{2} \times \{\sqrt{18} + (\sqrt{32} + 2\sqrt{2})\} \times 2\sqrt{6}$$

$$= \frac{1}{2} \times (3\sqrt{2} + 4\sqrt{2} + 2\sqrt{2}) \times 2\sqrt{6}$$

$$= \frac{1}{2} \times 9\sqrt{2} \times 2\sqrt{6}$$

$$= 18\sqrt{3} \text{ (cm}^2)$$

0457 거울의 세로의 길이를 x cm라 하면

 $6\sqrt{5} \times x = 360$

$$\therefore x = \frac{360}{6\sqrt{5}} = \frac{60}{\sqrt{5}} = 12\sqrt{5}$$

따라서 거울의 둘레의 길이는

$$(6\sqrt{5} + 12\sqrt{5}) \times 2 = 36\sqrt{5}$$
 (cm)

3 (5)

0458 직육면체의 높이를 x cm라 하면

$$\sqrt{27} \times \sqrt{3} \times x = 18\sqrt{3}$$
, $9x = 18\sqrt{3}$

$$\therefore x=2\sqrt{3}$$

직육면체의 밑넓이는

$$\sqrt{27} \times \sqrt{3} = 9 \text{ cm}^2$$

직육면체의 옆넓이는

$$2 \times (\sqrt{27} + \sqrt{3}) \times 2\sqrt{3} = 48 \text{ (cm}^2)$$

따라서 직육면체의 겉넓이는

$$2 \times 9 + 48 = 66 \text{ (cm}^2)$$

월 66 cm²

채점 기준	비율
❶ 직육면체의 높이를 구할 수 있다.	50%
● 직육면체의 겉넓이를 구할 수 있다.	50%

0459 두 정사각형은 항상 닮음이고 넓이의 비가 2 : 3이므로 닮음비는 $\sqrt{2}$: $\sqrt{3}$ 이다.

두 정사각형의 한 변의 길이를 각각 $\sqrt{2}x$ cm, $\sqrt{3}x$ cm라 하면 두 정사각형의 둘레의 길이의 합이 40 cm이므로

$$4 \times \sqrt{2} x + 4 \times \sqrt{3} x = 40, \quad (\sqrt{3} + \sqrt{2}) x = 10$$

$$\therefore x = \frac{10}{\sqrt{3} + \sqrt{2}} = \frac{10(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}$$

$$= 10\sqrt{3} - 10\sqrt{2}$$

따라서 작은 정사각형의 한 변의 길이는

$$\sqrt{2}(10\sqrt{3}-10\sqrt{2})=10\sqrt{6}-20$$
 (cm)

 \bigcirc (10 $\sqrt{6}$ – 20) cm

닮은 두 평면도형의 닮음비가 m:n이면 넓이의 비는 $m^2:n^2$ 이다.

0460
$$\overline{PA} = \overline{PQ} = \sqrt{2}$$
, $\overline{RB} = \overline{RS} = \sqrt{2}$ 이므로 $a = 1 - \sqrt{2}$, $b = 4 + \sqrt{2}$
 $\therefore a + b = (1 - \sqrt{2}) + (4 + \sqrt{2}) = 5$

(3)

따라서 $a=4-\sqrt{5}$, $b=4+\sqrt{5}$ 이므로 $ab = (4 - \sqrt{5})(4 + \sqrt{5}) = 16 - 5 = 11$

图 11

0462
$$\square ABCD = 4 \times 4 - 4 \times \left(3 \times 1 \times \frac{1}{2}\right) = 10$$

이므로
$$\overline{CP} = \overline{CB} = \sqrt{10}$$

$$\therefore p = -\sqrt{10}$$
 ...

 $\Box \text{EFGH} = 2 \times 2 - 4 \times \left(1 \times 1 \times \frac{1}{2}\right) = 2$

이므로
$$\overline{GQ} = \overline{GH} = \sqrt{2}$$

$$\therefore q = 1 + \sqrt{2} \qquad \cdots$$

$$\therefore \frac{p}{q} = \frac{-\sqrt{10}}{1 + \sqrt{2}} = \frac{-\sqrt{10}(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$$

$$= \sqrt{10} - 2\sqrt{5} \qquad \cdots$$

 $\Box \sqrt{10} - 2\sqrt{5}$

채점 기준	비율
● p의 값을 구할 수 있다.	30%
	30%
③ $\frac{p}{q}$ 의 값을 구할 수 있다.	40%

0463 ①
$$\sqrt{12} > \sqrt{9}$$
, 즉 $\sqrt{12} > 3$ 이므로 $-\sqrt{12} < -3$

②
$$(2+\sqrt{5})-(\sqrt{9}+\sqrt{5})=2-3=-1<0$$

 $\therefore 2+\sqrt{5}<\sqrt{9}+\sqrt{5}$

③
$$(\sqrt{10}-2)-(\sqrt{10}-3)=1>0$$

∴ $\sqrt{10}-2>\sqrt{10}-3$

$$\underbrace{4} (4\sqrt{5} + \sqrt{7}) - (\sqrt{60} + \sqrt{7}) = 4\sqrt{5} - \sqrt{60} = \sqrt{80} - \sqrt{60} > 0$$

$$\therefore 4\sqrt{5} + \sqrt{7} > \sqrt{60} + \sqrt{7}$$

(5)
$$(2\sqrt{6} + \sqrt{2}) - (\sqrt{54} - \sqrt{8}) = 2\sqrt{6} + \sqrt{2} - 3\sqrt{6} + 2\sqrt{2}$$

= $3\sqrt{2} - \sqrt{6}$
= $\sqrt{18} - \sqrt{6} > 0$

$$\therefore 2\sqrt{6} + \sqrt{2} > \sqrt{54} - \sqrt{8}$$

3 (5)

0464
$$A-B = (\sqrt{10} + \sqrt{6}) - \sqrt{24} = \sqrt{10} + \sqrt{6} - 2\sqrt{6}$$

= $\sqrt{10} - \sqrt{6} > 0$

이므로 A>B

$$A-C = (\sqrt{10} + \sqrt{6}) - (5\sqrt{10} - \sqrt{54})$$

$$= \sqrt{10} + \sqrt{6} - 5\sqrt{10} + 3\sqrt{6}$$

$$= 4\sqrt{6} - 4\sqrt{10} = 4(\sqrt{6} - \sqrt{10}) < 0$$

이므로 A < C

 $\therefore B < A < C$

3

0465 (1)
$$A = (\sqrt{6} - \sqrt{3})^2 = 6 - 2\sqrt{18} + 3 = 9 - 6\sqrt{2}$$

 $B = (\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5}) = 7 - 5 = 2$
 $C = \frac{2}{\sqrt{2}} = \frac{2(2 + \sqrt{2})}{\sqrt{2}} = 2 + \sqrt{2}$

$$C = \frac{2}{2 - \sqrt{2}} = \frac{2(2 + \sqrt{2})}{(2 - \sqrt{2})(2 + \sqrt{2})} = 2 + \sqrt{2} \qquad \cdots$$

$$(2) A - B = (9 - 6\sqrt{2}) - 2 = 7 - 6\sqrt{2} = \sqrt{49} - \sqrt{72} < 0$$

$$(3) B - C = 2 - (2 + \sqrt{2}) = -\sqrt{2} < 0$$

이므로 B < C... 🔞

$$(4) A < B < C \qquad \cdots \qquad \qquad \cdots$$

답 풀이 참조

채점 기준	비율
lacktriangle A, B, C 를 간단히 할 수 있다.	50%
② A, B 의 대소를 비교할 수 있다.	20%
❸ B, C의 대소를 비교할 수 있다.	20%
$m{4}$ A,B,C 의 대소를 비교할 수 있다.	10%

0466 전략 근호 안의 수가 같은 것끼리 계산한다.

$$> \exists 0$$
 $8\sqrt{2} + 12\sqrt{5} - 4\sqrt{2} - 4\sqrt{5} = 4\sqrt{2} + 8\sqrt{5}$

$$=4x+8y$$

(2)

0467 전략 주어진 조건을 이용하여 식을 세운 후 x의 값을 구 하다.

(조플이
$$3+\sqrt{28}-2+x=2-\sqrt{63}-2+\sqrt{7}+1$$
이므로 $x+1+2\sqrt{7}=1-2\sqrt{7}$ $\therefore x=(1-2\sqrt{7})-(1+2\sqrt{7})=-4\sqrt{7}$

 $-4\sqrt{7}$

0468 본모에 무리수가 있으면 분모를 유리화한 후 계산한다.

>풀이 (1)
$$5\sqrt{2} + 6\sqrt{2} - 3\sqrt{2} = 8\sqrt{2}$$

②
$$\sqrt{48} - \sqrt{12} + \sqrt{3} = 4\sqrt{3} - 2\sqrt{3} + \sqrt{3}$$

= $3\sqrt{3}$

$$\underbrace{4} \frac{5}{\sqrt{40}} - \frac{2}{\sqrt{10}} = \frac{5}{2\sqrt{10}} - \frac{2}{\sqrt{10}} \\
= \frac{5\sqrt{10}}{20} - \frac{2\sqrt{10}}{10} = \frac{\sqrt{10}}{20}$$

$$(5) \frac{30}{\sqrt{6}} - \sqrt{96} - \frac{2\sqrt{3}}{\sqrt{2}} = \frac{30\sqrt{6}}{6} - 4\sqrt{6} - \frac{2\sqrt{6}}{2} = 0$$

(3)

3 6

0469 본배법칙을 이용하여 괄호를 푼 후 계산한다.

돌해
$$5\sqrt{2}(\sqrt{5}+2\sqrt{10})-4\sqrt{5}(\sqrt{2}+4)$$

= $5\sqrt{10}+20\sqrt{5}-4\sqrt{10}-16\sqrt{5}$
= $4\sqrt{5}+\sqrt{10}$
따라서 $a=4$, $b=10$ 이므로 $b-a=6$

0470 전략 b, c, d, e, f의 값을 차례로 구한다.

$$a = \frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
이므로
$$b = 2a = 2\sqrt{2}$$

$$c = ab = \sqrt{2} \times 2\sqrt{2} = 4$$

$$d = b\sqrt{c} = 2\sqrt{2} \times \sqrt{4} = 2\sqrt{2} \times 2 = 4\sqrt{2}$$

$$e = (d-c) \div a = (4\sqrt{2}-4) \div \sqrt{2}$$

$$= \frac{4\sqrt{2}-4}{\sqrt{2}} = \frac{8-4\sqrt{2}}{2}$$

$$= 4-2\sqrt{2}$$

$$f = 2e + d = 2(4-2\sqrt{2}) + 4\sqrt{2}$$

$$= 8-4\sqrt{2}+4\sqrt{2}=8$$

 $\mathbf{0471}$ 전 먼저 구하는 식을 간단히 한 후 A, B의 값을 대입한다.

$$\begin{array}{c} \frac{1}{\sqrt{6}B} \sqrt{6}B + \frac{1}{\sqrt{6}}(4A - 12B) = \sqrt{6}B + \frac{4}{\sqrt{6}}A - \frac{12}{\sqrt{6}}B \\ = \sqrt{6}B + \frac{4\sqrt{6}}{6}A - \frac{12\sqrt{6}}{6}B \\ = \frac{2\sqrt{6}}{3}A - \sqrt{6}B \\ = \frac{2\sqrt{6}}{3}\left(3 + \frac{3}{\sqrt{2}}\right) - \sqrt{6}\left(\frac{1}{\sqrt{2}} + 2\right) \\ = 2\sqrt{6} + 2\sqrt{3} - \sqrt{3} - 2\sqrt{6} \\ = \sqrt{3} \end{array}$$

0472 전략 제곱근을 문자로 생각하고 곱셈 공식을 이용한다.

$$\geq 30$$
 (1) $(\sqrt{6}+1)^2=6+2\sqrt{6}+1=7+2\sqrt{6}$

$$(2)(\sqrt{2}-1)^2=2-2\sqrt{2}+1=3-2\sqrt{2}$$

$$(3)(2+\sqrt{3})(2-\sqrt{3})=4-3=1$$

$$(4)(\sqrt{5}+1)(\sqrt{5}-2)=5-2\sqrt{5}+\sqrt{5}-2$$

$$=3-\sqrt{5}$$

(5)
$$(\sqrt{10} + \sqrt{2})(\sqrt{10} - \sqrt{8}) = 10 - 4\sqrt{5} + 2\sqrt{5} - 4$$

= $6 - 2\sqrt{5}$

1 (1)

0473 전략》 m, n이 유리수이고 \sqrt{x} 가 무리수일 때, $m+n\sqrt{x}$ 가 유리수이면 n=0임을 이용한다.

돌 (주어진 식)=
$$25-10\sqrt{6}+6+a\sqrt{6}+2a$$
$$=(31+2a)+(a-10)\sqrt{6}$$

유리수가 되려면
$$a-10=0$$
이어야 하므로

a=10

日(1)

0474 전략 곱셈 공식 $(a+b)(a-b)=a^2-b^2$ 을 이용하여 분모를 유리화한다.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \end{array} = \frac{\sqrt{15} + \sqrt{14}}{(\sqrt{15} - \sqrt{14})(\sqrt{15} + \sqrt{14})} \\ \\ \end{array} \\ = \frac{\sqrt{15} + \sqrt{14}}{15 - 14} \\ \\ = \sqrt{15} + \sqrt{14} \end{array} \\ \end{array}$$

$$2 \frac{2}{\sqrt{11} + 3} = \frac{2(\sqrt{11} - 3)}{(\sqrt{11} + 3)(\sqrt{11} - 3)}$$
$$= \frac{2(\sqrt{11} - 3)}{11 - 9}$$

$$=\sqrt{11}-3$$
 (3)
$$\frac{\sqrt{2}}{\sqrt{6}-2} = \frac{\sqrt{2}(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}$$

$$=\sqrt{3}+\sqrt{2}$$

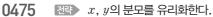
$$\underbrace{4} \frac{\sqrt{2}}{\sqrt{5} + \sqrt{7}} = \frac{\sqrt{2}(\sqrt{5} - \sqrt{7})}{(\sqrt{5} + \sqrt{7})(\sqrt{5} - \sqrt{7})} \\
= \frac{\sqrt{10} - \sqrt{14}}{5 - 7} \\
= \frac{\sqrt{14} - \sqrt{10}}{2}$$

$$5) \frac{\sqrt{8} + \sqrt{7}}{\sqrt{8} - \sqrt{7}} = \frac{(\sqrt{8} + \sqrt{7})^2}{(\sqrt{8} - \sqrt{7})(\sqrt{8} + \sqrt{7})}$$

$$= \frac{8 + 4\sqrt{14} + 7}{8 - 7}$$

$$= 15 + 4\sqrt{14}$$

04



$$\begin{array}{c} \sum \overline{\text{mod}} \quad x = \frac{2}{\sqrt{3} + 1} = \frac{2(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} \\ = \frac{2(\sqrt{3} - 1)}{3 - 1} = \sqrt{3} - 1 \end{array}$$

$$y = \frac{2}{\sqrt{3} - 1} = \frac{2(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$$
$$= \frac{2(\sqrt{3} + 1)}{3 - 1} = \sqrt{3} + 1$$

이므로

$$x+y=(\sqrt{3}-1)+(\sqrt{3}+1)=2\sqrt{3},$$

$$xy=(\sqrt{3}-1)(\sqrt{3}+1)=3-1=2$$

$$\therefore x^2+y^2=(x+y)^2-2xy$$

$$=(2\sqrt{3})^2-2\times 2$$

$$=8$$

0476 전략 $\left(x+\frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2$ 임을 이용하여 $x+\frac{1}{x}$ 의 값 을 구한다.

$$\sum_{\frac{m}{2}}^{\frac{m}{2}} \left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2$$

$$= 18 + 2 = 20$$

따라서 $x + \frac{1}{r}$ 은 20의 양의 제곱근이므로

$$x + \frac{1}{x} = \sqrt{20} = 2\sqrt{5}$$

 $2\sqrt{5}$

 \sqrt{a} 의 소수 부분은 $\sqrt{a}-(\sqrt{a}$ 의 정수 부분)임을 이 용한다.

>풀이 $\sqrt{9} < \sqrt{15} < \sqrt{16}$, 즉 $3 < \sqrt{15} < 4$ 이므로

$$1 < \sqrt{15} - 2 < 2$$

따라서 $\sqrt{15}$ -2의 정수 부분은 1이므로

$$x = (\sqrt{15} - 2) - 1 = \sqrt{15} - 3$$

 $x+3=\sqrt{15}$ 이므로 양변을 제곱하면

$$x^2 + 6x + 9 = 15, \quad x^2 + 6x = 6$$

$$x^2 + 6x - 3 = 3$$

(1)

0478 제략 넓이가 a인 정사각형의 한 변의 길이는 \sqrt{a} 임을 이 용한다.

 $\overline{AB} = \sqrt{10} \text{ cm}, \overline{BC} = \sqrt{40} = 2\sqrt{10} \text{ (cm)},$

 $\overline{\text{CD}} = \sqrt{160} = 4\sqrt{10} \text{ (cm)}$ 이므로

$$\overline{AD} = \sqrt{10} + 2\sqrt{10} + 4\sqrt{10} = 7\sqrt{10}$$
 (cm)

 $\blacksquare 7\sqrt{10} \text{ cm}$

0479 전략 두 실수 A, B에 대하여 A-B의 부호를 조사한다.

$$\hspace{-0.5cm} \begin{array}{c} \underline{\text{TSOI}} \hspace{0.2cm} \text{ (a) } (2+\sqrt{20}\,) - (1+\sqrt{45}\,) = 2 + 2\sqrt{5} - 1 - 3\sqrt{5} \\ \end{array}$$

$$=1-\sqrt{5}<0$$

$$\therefore 2+\sqrt{20} < 1+\sqrt{45}$$

(L)
$$(\sqrt{12}+2\sqrt{6})-(4+\sqrt{24})=2\sqrt{3}+2\sqrt{6}-4-2\sqrt{6}$$

= $2\sqrt{3}-4=\sqrt{12}-\sqrt{16}<0$

$$1 \cdot \sqrt{12} + 2\sqrt{6} < 4 + \sqrt{24}$$

(c)
$$(\sqrt{96} - \sqrt{32}) - (\sqrt{54} - \sqrt{8}) = 4\sqrt{6} - 4\sqrt{2} - 3\sqrt{6} + 2\sqrt{2} = \sqrt{6} - 2\sqrt{2} = \sqrt{6} - \sqrt{8} < 0$$

$$1.0 \cdot \sqrt{96} - \sqrt{32} < \sqrt{54} - \sqrt{8}$$

(a)
$$(3\sqrt{10} - \sqrt{2}) - (\sqrt{40} + \sqrt{2}) = 3\sqrt{10} - \sqrt{2} - 2\sqrt{10} - \sqrt{2}$$

 $= \sqrt{10} - 2\sqrt{2}$
 $= \sqrt{10} - \sqrt{8} > 0$

$$3\sqrt{10} - \sqrt{2} > \sqrt{40} + \sqrt{2}$$

이상에서 옳은 것은 (ت), (리)이다.

3 (5)

0480 전략 m, n이 유리수이고 \sqrt{x} 가 무리수일 때, $m+n\sqrt{x}$ 가 유리수이면 n=0임을 이용한다.

$$4-a=0$$
이어야 하므로 $a=4$ … ①
$$(2-4\sqrt{3})(b+\sqrt{48})=2b+8\sqrt{3}-4b\sqrt{3}-48$$

$$= (2b-48)+(8-4b)\sqrt{3}$$

$$8-4b=0$$
이어야 하므로 $b=2$

 $a^2+b^2=(-3)^2+1^2=10$

$$\therefore a-b=2$$

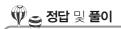
... 🔞 **2** 2

채점 기	준	비율
1 a의 값을 구할 수 있다.		40%
② <i>b</i> 의 값을 구할 수 있다.		40%
③ $a-b$ 의 값을 구할 수 있다.		20%

0481 곱셈 공식 $(a+b)(a-b)=a^2-b^2$ 을 이용하여 분 모를 유리화한 후 계산한다.

$$\begin{array}{l} \frac{8}{\sqrt{10}+\sqrt{6}} - \frac{4}{\sqrt{10}-\sqrt{6}} \\ = \frac{8(\sqrt{10}-\sqrt{6})}{(\sqrt{10}+\sqrt{6})(\sqrt{10}-\sqrt{6})} - \frac{4(\sqrt{10}+\sqrt{6})}{(\sqrt{10}-\sqrt{6})(\sqrt{10}+\sqrt{6})} \\ = \frac{8(\sqrt{10}-\sqrt{6})}{10-6} - \frac{4(\sqrt{10}+\sqrt{6})}{10-6} \\ = 2\sqrt{10}-2\sqrt{6}-(\sqrt{10}+\sqrt{6}) \\ = -3\sqrt{6}+\sqrt{10} & \cdots & \bullet \\ \\ \text{따라서 } a=-3, \ b=1$$
이므로 \cdots

채점 기준	비율
● 분모를 유리화하여 좌변을 간단히 할 수 있다.	70%
② a, b 의 값을 구할 수 있다.	20%
③ $a^2 + b^2$ 의 값을 구할 수 있다.	10%



0482 전략》 8에 가까운 제곱인 자연수를 찾아 $2\sqrt{2}+1$ 의 범위를 나타낸다.

>풀이 $2\sqrt{2} = \sqrt{8}$ 이고 $\sqrt{4} < \sqrt{8} < \sqrt{9}$, 즉 $2 < 2\sqrt{2} < 3$ 이므로

$$3 < 2\sqrt{2} + 1 < 4$$
 : $a = 3$

따라서
$$b=(2\sqrt{2}+1)-3=2\sqrt{2}-2$$
이므로 ··· ②

$$\begin{aligned} \frac{a}{b} &= \frac{3}{2\sqrt{2} - 2} = \frac{3(2\sqrt{2} + 2)}{(2\sqrt{2} - 2)(2\sqrt{2} + 2)} \\ &= \frac{3(2\sqrt{2} + 2)}{4} \end{aligned}$$

$$=\frac{3\sqrt{2}+3}{2}$$
 ...

 $\frac{3\sqrt{2}+3}{2}$

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
❷ <i>b</i> 의 값을 구할 수 있다.	20%
③ $\frac{a}{b}$ 의 값을 구할 수 있다.	40%

0483 \square ABCD의 한 변의 길이를 구한 후 p, q의 값을 구한다.

>풀이 □ABCD의 넓이가 18이므로 한 변의 길이는

$$\sqrt{18} = 3\sqrt{2}$$

 $\overline{CP} = \overline{CB} = \overline{CD} = \overline{CQ} = 3\sqrt{2}$ 이므로

$$p=6-3\sqrt{2}, q=6+3\sqrt{2}$$

$$p+q=(6-3\sqrt{2})+(6+3\sqrt{2})=12$$

$$p-q=(6-3\sqrt{2})-(6+3\sqrt{2})=-6\sqrt{2}$$
이므로

$$(p+q)(p-q)=12\times(-6\sqrt{2})$$

$$=-72\sqrt{2}$$
 ··· ②

채점 기준	비율
1 p, q 의 값을 구할 수 있다.	60%
② (p+q)(p-q)의 값을 구할 수 있다.	40%

 $\mathbf{0484}$ 전략》 \sqrt{a} 의 소수 부분은 $\sqrt{a}-(\sqrt{a}$ 의 정수 부분)임을 이용한다.

 \geq 풀이 $\sqrt{4}$ < $\sqrt{5}$ < $\sqrt{9}$, 즉 2< $\sqrt{5}$ <3에서 $\sqrt{5}$ 의 정수 부분은 2이 므로

$$k=\sqrt{5}-2$$

 $\sqrt{169} < \sqrt{180} < \sqrt{196}$, 즉 $13 < \sqrt{180} < 14$ 에서 $\sqrt{180}$ 의 정수 부분은 13이므로 $\sqrt{180}$ 의 소수 부분은

$$\sqrt{180} - 13 = 6\sqrt{5} - 13$$

이때 \bigcirc 에서 $\sqrt{5} = k + 2$ 이므로

$$6\sqrt{5}-13=6(k+2)-13=6k-1$$

2

$$\begin{array}{c} \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}} = \frac{(\sqrt{a}-\sqrt{b}\,)^2}{(\sqrt{a}+\sqrt{b}\,)(\sqrt{a}-\sqrt{b}\,)} \\ = \frac{a+b-2\sqrt{ab}}{a-b} \\ = \frac{4\sqrt{2}-2\sqrt{2}}{a-b} = \frac{2\sqrt{2}}{a-b} & \cdots \end{array}$$

이때 $(a-b)^2 = (a+b)^2 - 4ab$ 이므로

$$(a-b)^2 = (4\sqrt{2})^2 - 4 \times 2 = 24$$

따라서 a-b는 24의 양의 제곱근이므로

$$a-b=\sqrt{24}=2\sqrt{6}$$

(L)을 (¹)에 대입하면

$$\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{2\sqrt{2}}{2\sqrt{6}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

0486 전략》 a의 분모를 유리화한 후 $a-m=\sqrt{n}$ 꼴로 변형하여 양변을 제곱한다.

$$\begin{array}{l} \geq \frac{1}{2\sqrt{5}-4} = \frac{2\sqrt{5}+4}{(2\sqrt{5}-4)(2\sqrt{5}+4)} \\ = \frac{2\sqrt{5}+4}{4} = \frac{\sqrt{5}}{2} + 1 \end{array}$$

 $a-1=\frac{\sqrt{5}}{2}$ 이므로 양변을 제곱하면

$$a^{2}-2a+1=\frac{5}{4}$$
, $a^{2}-2a=\frac{1}{4}$
 $\therefore 4a^{2}-6a-3=4(a^{2}-2a)+2a-3$

$$=4 \times \frac{1}{4} + 2\left(\frac{\sqrt{5}}{2} + 1\right) - 3$$
$$=1 + \sqrt{5} + 2 - 3$$
$$=\sqrt{5}$$

(4)

Ⅱ . 인수분해

⁰⁵ 인수분해

0491
$$\blacksquare x, x(1-y)$$

0492
$$\blacksquare 2a, 2a(a-2b)$$

0493
$$ext{ } ext{ } ext{$$

0494
$$\blacksquare a(ax-2y)$$

0495
$$\Box ab(-5a+b)$$

0498 (주어진 식)=
$$(a-b)^2+2(a-b)$$

= $(a-b)(a-b+2)$
달 $(a-b)(a-b+2)$

0499 (주어진 식)=
$$(3x-y)\{(a+b)-(2a-b)\}$$
$$=(3x-y)(-a+2b)$$
 $\boxminus (3x-y)(-a+2b)$

0500
$$\blacksquare (x+3)^2$$

0501
$$\blacksquare$$
 $(a-5)^2$

0502
$$\blacksquare (2x+1)^2$$

0503
$$\square \left(a + \frac{1}{2}\right)^2$$

0504
$$\blacksquare$$
 $(3x-2)^2$

0505
$$\blacksquare (x+4y)^2$$

0506
$$\blacksquare (3a-b)^2$$

0507
$$2x^2+8x+8=2(x^2+4x+4)$$

= $2(x+2)^2$

0508
$$-3x^2-6x-3=-3(x^2+2x+1)$$

= $-3(x+1)^2$

$$= -3(x+1)^2$$

0509
$$\Box = \left(\frac{16}{2}\right)^2 = 64$$

0510
$$\Box = \left(\frac{-12}{2}\right)^2 = 36$$

0511
$$\Box = \left(\frac{-8}{2}\right)^2 = 16$$

0512
$$\square = \left(\frac{22}{2}\right)^2 = 121$$

0513
$$A = \pm 2\sqrt{49} = \pm 14$$

0514
$$A = \pm 2\sqrt{100} = \pm 20$$

0515
$$A = \pm 2\sqrt{25} = \pm 10$$

0516
$$\blacksquare (x+3)(x-3)$$

0517
$$\Box$$
 $(a+4)(a-4)$

0518
$$\bigcirc$$
 (6+x)(6-x)

0519
$$\boxminus (2x+y)(2x-y)$$

0520
$$\blacksquare$$
 $(3a+4b)(3a-4b)$

0523
$$\blacksquare$$
 (1) -4, -2 (2) $(x-4)(x-2)$

0524
$$\Box$$
 (x+7)(x+1)

0526
$$\boxminus (a+12)(a-2)$$

0527
$$\boxminus (a+3b)(a-b)$$

0528
$$\boxminus (x+y)(x-4y)$$

0530
$$\textcircled{1}(x-1)(6x+5)$$
 $\textcircled{1} 6 \textcircled{1} -1 \textcircled{1} 5 \textcircled{2} -6$

0533
$$\blacksquare$$
 (6 a -5)(a -1)

0535
$$\blacksquare$$
 $(2a+1)(2a-7)$

0536
$$\blacksquare$$
 $(7x+2y)(x-y)$

0537
$$\Box$$
 $-(2x+5)(x-1)$

0538
$$-30a^2+14a+4=-2(15a^2-7a-2)$$

= $-2(5a+1)(3a-2)$
 $= -2(5a+1)(3a-2)$

0540
$$x-1=A$$
로 놓으면
$$(주어진 식)=A^2+14A+49$$

$$= (A+7)^2$$

$$= (x-1+7)^2$$

$$= (x+6)^2$$
 및 $(x+6)^2$

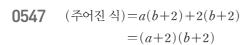
0541
$$a+3=A$$
로 놓으면
(주어진 식)= A^2-4A+4
 $=(A-2)^2$
 $=(a+3-2)^2$
 $=(a+1)^2$ ▮ $(a+1)^2$

0543
$$3x+y=A$$
로 놓으면
 (주어진 식)= $5A^2+3A-2$
 $=(A+1)(5A-2)$
 $=(3x+y+1)\{5(3x+y)-2\}$
 $=(3x+y+1)(15x+5y-2)$
 $=(3x+y+1)(15x+5y-2)$

0544
$$\Box A + B, x + 2$$

0545
$$x+3=A$$
로 놓으면
$$(주어진 식)=A^2-(4y)^2 = (A+4y)(A-4y) = (x+4y+3)(x-4y+3)$$
 답 $(x+4y+3)(x-4y+3)$

05



 $\Box (a+2)(b+2)$

0548 (주어진 식)=
$$(3a)^2-(b^2+4b+4)$$

= $(3a)^2-(b+2)^2$
= $(3a+b+2)(3a-b-2)$
달 $(3a+b+2)(3a-b-2)$

0549
$$21 \times 13 + 21 \times 17 = 21(13 + 17)$$

= $21 \times 30 = 630$

B 630

0551
$$48^2 + 192 + 4 = 48^2 + 2 \times 48 \times 2 + 2^2$$

= $(48+2)^2 = 50^2$
= 2500

0552
$$43^2 - 13^2 = (43 + 13)(43 - 13)$$

= $56 \times 30 = 1680$

1680

2500

0553
$$4a^2b - 8ab^2 = 4ab(a-2b)$$

0554 ①
$$3a+3b=3(a+b)$$

$$3) 2a^2b - 4ab^2 = 2ab(a-2b)$$

$$(4) x-x^2+x^2y=x(1-x+xy)$$

(5)
$$ab+a^2b^2-2a^3b=ab(1+ab-2a^2)$$

2 (2)

0555 (주어진 식)=
$$(x+2-3)(x-3)$$
 $=(x-1)(x-3)$ … \bullet

따라서 두 일차식은 x-1, x-3이므로

$$(x-1)+(x-3)=2x-4$$

... 2 $\bigcirc 2x-4$

채점 기준	비율
● 주어진 식을 인수분해할 수 있다.	70%
● 두 일차식의 합을 구할 수 있다.	30%

0556 (주어진 식)=
$$a(x-2)-b(x-2)-2c(x-2)$$
$$=(a-b-2c)(x-2)$$
 目 $(a-b-2c)(x-2)$

0557 4
$$(4) - 4x^2 + 16xy - 16y^2 = -4(x^2 - 4xy + 4y^2)$$

= $-4(x - 2y)^2$

(4)

0558
$$4x^2 + 20x + 25 = (2x+5)^2$$
이므로 $a=2, b=5$

 $\blacksquare a = 2, b = 5$

0559 (L)
$$x^2 - \frac{1}{2}x + \frac{1}{16} = \left(x - \frac{1}{4}\right)^2$$

(a) $3x^2+18xy+27y^2=3(x^2+6xy+9y^2)=3(x+3y)^2$ 이상에서 완전제곱식으로 인수분해할 수 있는 것은 (L), (z)이다.

4

0560
$$ax^2 - 28x + b = (2x+c)^2$$
에서 $ax^2 - 28x + b = 4x^2 + 4cx + c^2$ 따라서 $a=4$, $-28=4c$, $b=c^2$ 이므로 $a=4$, $c=-7$, $b=(-7)^2=49$ $\therefore b-a+c=49-4+(-7)=38$

38

0561
$$a = \left(\frac{10}{2}\right)^2 = 25$$

 $b = 2\sqrt{100} = 20 \ (\because b > 0)$
 $\therefore a + b = 45$

0562
$$25x^2 + ax + 9 = (5x)^2 + ax + 3^2$$
이므로 $a = 2 \times 5 \times 3 = 30$

0563 ①
$$A = \left(\frac{-2}{2}\right)^2 = 1$$

② $A = 2\sqrt{9} = 6$

$$3 A = \left(\frac{1}{2} \times \frac{1}{4}\right)^2 = \frac{1}{64}$$

④ $16x^2 + Ax + 1 = (4x)^2 + Ax + 1^2$ 이므로 $A=2\times4\times1=8$

⑤
$$\frac{1}{25}x^2 + Ax + \frac{1}{16} = \left(\frac{1}{5}x\right)^2 + Ax + \left(\frac{1}{4}\right)^2$$
이므로
$$A = 2 \times \frac{1}{5} \times \frac{1}{4} = \frac{1}{10}$$

이상에서 A의 값이 가장 큰 것은 (4)이다.

日(4)

0564
$$ax^2 - 44x + 121 = (\sqrt{a}x)^2 - 44x + 11^2$$
이므로 $44 = 2 \times \sqrt{a} \times 11$, $\sqrt{a} = 2$
∴ $a = 4$

2 (2)

0565
$$(x+9)(x-5)+k=x^2+4x-45+k$$
 … \bullet 위의 식이 완전제곱식이 되려면

$$-45+k=\left(\frac{4}{2}\right)^2=4$$

49

채점 기준	비율
 주어진 식을 전개할 수 있다. 	30%
② k의 값을 구할 수 있다.	70%

0566 ⑤
$$2x^2 - 32y^2 = 2(x^2 - 16y^2)$$

= $2(x+4y)(x-4y)$

(5)

0567
$$49x^2 - 36 = (7x)^2 - 6^2 = (7x+6)(7x-6)$$

따라서 $A=7, B=6$ 이므로 $A-B=1$

冒1

0568
$$-150x^2 + 54y^2 = -6(25x^2 - 9y^2)$$

= $-6(5x + 3y)(5x - 3y)$... ••

따라서 a=-6, b=5, c=3이므로

$$a+2b+3c=-6+10+9=13$$

... 2

... ❸

채점 기준	비율
● 주어진 식을 인수분해할 수 있다.	50%
② a, b, c 의 값을 구할 수 있다.	30%
③ $a+2b+3c$ 의 값을 구할 수 있다.	20%

0569 (주어진 식)=
$$7(a-b)x^2-28(a-b)y^2$$

= $7(a-b)(x^2-4y^2)$
= $7(a-b)(x+2y)(x-2y)$

(5)

0570
$$x^2 + 7x + 12 = (x+4)(x+3)$$
이므로 $a=4, b=3 \ (\because a>b)$ $\therefore a-b=1$

0571 ③
$$x^2 - 9x - 36 = (x+3)(x-12)$$

0572 $(x+4)(x-10)+13=x^2-6x-40+13$

$$=x^2-6x-27 = (x+3)(x-9)$$

$$(x+3)(x-9)$$

(3)

$$a = -3 + b$$
이므로 $a = -3 - 8 = -11$

$$\therefore a+b=-19$$

0574
$$x^2 + Ax - 6 = x^2 + (a+b)x + ab$$
에서 $a+b=A, ab=-6$ 곱이 -6 인 두 정수는

-6, 1 또는 -3, 2 또는 -2, 3 또는 -1, 6

이므로 A의 값이 될 수 있는 것은 -5. -1. 1. 5이다.

2 (2)

0575
$$3x^2+x-10=(x+2)(3x-5)$$
이므로 $a=2, b=-5$ $\therefore a-b=7$

0576
$$6x^2 - 5x + a = (3x+2)(2x+b)$$
에서 $6x^2 - 5x + a = 6x^2 + (3b+4)x + 2b$ 따라서 $-5 = 3b + 4$, $a = 2b$ 이므로 $b = -3$, $a = 2 \times (-3) = -6$ $\therefore a^2 + b^2 = (-6)^2 + (-3)^2 = 45$

45

0577 ①
$$2x^2 + 5x - 12 = (x+4)(2x-3)$$

(2) $3x^2+13x+4=(x+4)(3x+1)$

 $35x^2+21x+4=(x+4)(5x+1)$

$$(4)$$
 $-3x^2+16x+12=-(3x^2-16x-12)$

$$=-(3x+2)(x-6)$$

$$(5) -4x^2 - 9x + 28 = -(4x^2 + 9x - 28)$$

$$=-(x+4)(4x-7)$$

이상에서 x+4를 인수로 갖지 않는 것은 (4)이다.

20

0578
$$2a^3b - 5a^2b^2 + 2ab^3 = ab(2a^2 - 5ab + 2b^2)$$

= $ab(2a - b)(a - 2b)$

4

0584

0579 ③
$$x^2 + 5x - 6 = (x+6)(x-1)$$

(3)

0580
$$x^2 + 24x + 144 = (x+12)^2$$
이므로

 $x^2-169=(x+13)(x-13)$ 이므로

$$b=13 \ (\because b>0)$$
 ... 2

 $8x^2-14x+5=(2x-1)(4x-5)$ 이므로

$$c = -1, d = -5$$
 ... §

$$\therefore a+b+c+d=19 \qquad \cdots \bullet$$

19

채점 기준	비율
lacksquare a 의 값을 구할 수 있다.	30%
❷ <i>b</i> 의 값을 구할 수 있다.	30%
lacksquare c , d 의 값을 구할 수 있다.	30%
$oldsymbol{a}$ $a+b+c+d$ 의 값을 구할 수 있다.	10%

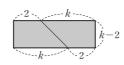
0581 (7)
$$x^2 - 6x + 9 = (x - 3)^2$$

- $(L) 2x^2 6 = 2(x^2 3)$
- $(\Box) x^2 + 4x 21 = (x+7)(x-3)$
- $(a) 3x^2 + 4x 15 = (x+3)(3x-5)$
- 이상에서 x-3을 인수로 갖는 것은 (기, (Γ)이다.

2

0582 [그림 1]의 도형의 넓이는 k^2-4

[그림 2]의 도형은 가로의 길이가 k+2. 세로의 길이가 k-2인 직사각형이므로 그 넓이는



$$(k+2)(k-2)$$

이때 두 도형의 넓이가 같으므로

$$k^2-4=(k+2)(k-2)$$

따라서 주어진 그림으로 설명할 수 있는 인수분해 공식은

$$x^2-y^2=(x+y)(x-y)$$

3

0583
$$8x^2-32=8(x^2-4)=8(x+2)(x-2)$$
,

$$2x^2+x-10=(2x+5)(x-2)$$

따라서 두 다항식의 공통인 인수는 x-2이다.

따라서 두 다항식의 공통인 인수는
$$a-1$$
이다.

 $-3a^2b+3ab=-3ab(a-1)$,

0585
$$x^2+8x-33=(x+11)(x-3)$$
, $5x^2-13x-6=(5x+2)(x-3)$

따라서 두 다항식의 공통인 인수는 x-3이므로

$$a=-3$$
 ··· •

$$2x^2-5x-7=(x+1)(2x-7)$$
,

 $a^2+2a-3=(a+3)(a-1)$

$$4x^2-4x-35=(2x+5)(2x-7)$$

따라서 두 다항식의 공통인 인수는 2x-7이므로

$$b=-7$$
 ··· 2

$$\therefore a+b=-10$$

... 🔞 -10

(1)

0586
$$5x^2 + ax - 12 = (x - 2)(5x + m)(m$$
은 상수)으로 놓으면

$$5x^2+ax-12=5x^2+(m-10)x-2m$$

따라서 $m-10=a$, $-2m=-12$ 이므로

$$m=6, a=-4$$

(1)

0587
$$3x^2 + 7x + k = (3x - 2)(x + m)(m$$
은 상수)으로 놓으면

$$3x^2+7x+k=3x^2+(3m-2)x-2m$$

따라서 $3m-2=7$, $-2m=k$ 이므로

$$m=3, k=-6$$

 \Box -6

0588
$$4x^2 + kxy - 6y^2 = (x+2y)(4x+my)(m$$
은 상수)로 놓으면

$$4x^2 + kxy - 6y^2 = 4x^2 + (m+8)xy + 2my^2$$

따라서
$$m+8=k$$
. $2m=-6$ 이므로

$$m = -3, k = 5$$

$$\therefore 4x^2 + 5xy - 6y^2 = (x+2y)(4x-3y)$$

(4)

0589 명호는 상수항을 제대로 보았으므로

$$(x+4)(x-2)=x^2+2x-8$$

에서 처음 이차식의 상수항은 -8이다.

영진이는 x의 계수를 제대로 보았으므로

$$(x-1)(x-6)=x^2-7x+6$$

에서 처음 이차식의 x의 계수는 -7이다.

따라서 처음 이차식은 x^2-7x-8 이므로 바르게 인수분해하면 $x^2-7x-8=(x+1)(x-8)$

(2)

...

... 2

0590 (1) 경희는 상수항을 제대로 보았으므로

$$(2x-1)(x-10)=2x^2-21x+10$$

에서 처음 이차식의 상수항은 10이다.

유진이는 x의 계수를 제대로 보았으므로

$$(2x+7)(x+1)=2x^2+9x+7$$

에서 처음 이차식의 x의 계수는 9이다.

따라서 처음 이차식은

$$2x^2 + 9x + 10$$
 ...

$$(2) 2x^2 + 9x + 10 = (2x+5)(x+2)$$

(1) $2x^2+9x+10$ (2) (2x+5)(x+2)

채점 기준	비율
처음 이차식의 상수항을 구할 수 있다.	20%
② 처음 이차식의 x 의 계수를 구할 수 있다.	20%
③ 처음 이차식을 구할 수 있다.	20%
4 이치식을 인수분해할 수 있다.	40%

0591 소라는 x의 계수와 상수항을 제대로 보았으므로

$$(3x+1)(4x-1)=12x^2+x-1$$

에서 처음 이차식의 x의 계수는 1, 상수항은 -1이다. 민영이는 x^2 의 계수와 x의 계수를 제대로 보았으므로

$$(x+1)(6x-5)=6x^2+x-5$$

에서 처음 이차식의 x^2 의 계수는 6, x의 계수는 1이다.

따라서 처음 이차식은 $6x^2 + x - 1$ 이므로 바르게 인수분해하면

$$6x^2+x-1=(2x+1)(3x-1)$$

 $\bigcirc (2x+1)(3x-1)$

(주어진 식)=
$$A^2-4A+4$$

= $(A-2)^2$
= $(2x+3-2)^2$
= $(2x+1)^2$

 $\therefore a=1$

3

0593
$$a+3=A$$
로 놓으면

(주어진 식)=
$$3A^2+4A-4$$

= $(A+2)(3A-2)$
= $(a+3+2)\{3(a+3)-2\}$
= $(a+5)(3a+7)$

0594 x+7=A로 놓으면

(주어진 식)=
$$A^2-11A+30=(A-5)(A-6)$$

= $(x+7-5)(x+7-6)$
= $(x+2)(x+1)$

따라서 두 일차식은 x+2, x+1이므로 두 일차식의 합은 (x+2)+(x+1)=2x+3

2x+3

0595 3x-y=A로 놓으면

(주어진 식)=
$$A(A+5)-6=A^2+5A-6$$

= $(A+6)(A-1)$
= $(3x-y+6)(3x-y-1)$

0596
$$a+b=A$$
, $b+c=B$ 로 놓으면

(주어진 식)=
$$A^2-B^2=(A+B)(A-B)$$

= $\{(a+b)+(b+c)\}\{(a+b)-(b+c)\}$
= $(a+2b+c)(a-c)$

1 (2), (5)

0597 4x+y=A, x+4y=B로 놓으면

$$=A^2-9B^2=(A+3B)(A-3B)$$

$$= \{(4x+y)+3(x+4y)\}\{(4x+y)-3(x+4y)\}$$

=(7x+13y)(x-11y)

따라서 a=13, b=-11이므로

$$a-b=24$$

0598 (1) (주어진 식)= $A^2-10AB+24B^2$

$$=(A-4B)(A-6B)$$

따라서 처음으로 잘못된 부분은 ⓒ이다. ... 1

(2) (주어진 식)=
$$(A-4B)(A-6B)$$

= $\{(x+1)-4(2x-1)\}\{(x+1)-6(2x-1)\}$

=(7x-5)(11x-7)

$$=(-7x+5)(-11x+7)$$

$$\blacksquare (1) \bigcirc (2) (7x-5)(11x-7)$$

95

채점 기준	비율
처음으로 잘못된 부분을 찾을 수 있다.	30%
② 이차식을 인수분해할 수 있다.	70%

0599
$$x^2-y^2-2x+2y=(x+y)(x-y)-2(x-y)$$

= $(x-y)(x+y-2)$

P(2)

0600
$$x^3 - x^2 - 4x + 4 = x^2(x-1) - 4(x-1)$$

= $(x-1)(x^2 - 4)$
= $(x-1)(x+2)(x-2)$

(3)

0601
$$2x^3 - 3x^2 - 18x + 27 = x^2(2x - 3) - 9(2x - 3)$$

= $(x^2 - 9)(2x - 3)$
= $(x + 3)(x - 3)(2x - 3)$

따라서 a=-3, b=-3이므로

$$a-b=0$$

0602
$$3xy+x+3y+1=x(3y+1)+(3y+1)$$

= $(x+1)(3y+1)$

$$4xy^{2}+4y^{2}-x-1=4y^{2}(x+1)-(x+1)$$

$$=(x+1)(4y^{2}-1)$$

$$=(x+1)(2y+1)(2y-1)$$

따라서 두 다항식의 공통인 인수는 x+1이다.

0603
$$4x^2 - y^2 + 4x + 1 = (4x^2 + 4x + 1) - y^2$$

= $(2x+1)^2 - y^2$
= $(2x+y+1)(2x-y+1)$

(4)

0604
$$9x^2 - z^2 - 6xy + y^2 = (9x^2 - 6xy + y^2) - z^2$$

= $(3x - y)^2 - z^2$
= $(3x - y + z)(3x - y - z)$

3, **4**

0605
$$x^2 - 6x + 9 - y^2 = (x - 3)^2 - y^2$$

= $(x + y - 3)(x - y - 3)$... \bullet

$$(x-y)^2 - (x-y) - 6$$
에서 $x-y = A$ 로 놓으면
$$(x-y)^2 - (x-y) - 6 = A^2 - A - 6$$

$$= (A-3)(A+2)$$

따라서 두 다항식의 공통인 인수는 x-y-3이므로

=(x-y-3)(x-y+2)

 $\blacksquare -4$

... 2

채점 기준	비율
• $x^2 - 6x + 9 - y^2$ 을 인수분해할 수 있다.	40%
② $(x-y)^2 - (x-y) - 6$ 을 인수분해할 수 있다.	40%
③ $a+b$ 의 값을 구할 수 있다.	20%

0606
$$15.5^2 \times 2.1 - 14.5^2 \times 2.1$$

= $2.1(15.5^2 - 14.5^2)$
= $2.1(15.5 + 14.5)(15.5 - 14.5)$
= $2.1 \times 30 \times 1$
= 63

3 (5)

0607
$$4 \times 29^2 + 8 \times 29 + 4 = 4(29^2 + 2 \times 29 + 1)$$

= $4 \times (29 + 1)^2 = 4 \times 30^2$
= $3600 = 60^2$

∴ a=60

(3)

0608
$$A = 37^2 - 54 \times 37 + 27^2$$

= $37^2 - 2 \times 27 \times 37 + 27^2$
= $(37 - 27)^2 = 10^2 = 100$... ••

$$B=5.4^2-3.4^2=(5.4+3.4)(5.4-3.4)$$

$$=8.8 \times 2 = 17.6$$

... 2

$$\therefore AB = 1760$$

··· **③** 目 1760

채점 기준	비율
lack O A 의 값을 구할 수 있다.	40%
❷ <i>B</i> 의 값을 구할 수 있다.	40%
③ AB 의 값을 구할 수 있다.	20%

0609 (주어진 식)=
$$\frac{23^2+2\times23\times17+17^2}{(27+23)(27-23)}$$
$$=\frac{(23+17)^2}{50\times4}$$
$$=\frac{40^2}{200}=8$$

B 8

0610
$$x^2 + 2xy + y^2 = (x+y)^2$$

= $(2.75+1.25)^2 = 4^2$
= 16

冒(5)

0611
$$x^2 - y^2 = (x+y)(x-y)$$

= $(2+\sqrt{3})(2-\sqrt{3})=4-3$
= 1

a 1

0612
$$\frac{2x^2 + 5xy - 3y^2}{2x - y} = \frac{(x + 3y)(2x - y)}{2x - y} = x + 3y$$
$$= \frac{5}{2} + 3 \times \frac{7}{6}$$
$$= \frac{5}{2} + \frac{7}{2} = 6$$

$$\begin{array}{lll} \textbf{0613} & x = \frac{1}{3-2\sqrt{2}} = \frac{3+2\sqrt{2}}{(3-2\sqrt{2})(3+2\sqrt{2})} = 3+2\sqrt{2}, \\ y = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1 & \cdots & \bullet \\ & \therefore x^2 + xy - 6y^2 & \cdots & \bullet \\ & = (x+3y)(x-2y) & \cdots & \bullet \\ & = \{(3+2\sqrt{2})+3(\sqrt{2}-1)\}\{(3+2\sqrt{2})-2(\sqrt{2}-1)\}\\ & = 5\sqrt{2}\times 5\\ & = 25\sqrt{2} & \cdots & \bullet \end{array}$$

 $125\sqrt{2}$

채점 기준	비율
$lackbr{0}$ x,y 의 분모를 유리화할 수 있다.	40%
② 주어진 식을 인수분해할 수 있다.	30%
● 주어진 식의 값을 구할 수 있다.	30%

0614 $49x^2-28x+4=(7x-2)^2$ 따라서 엽서의 한 변의 길이는 7x-2이므로 둘레의 길이는 4(7x-2)=28x-8 월 28x-8

0615 사다리꼴의 높이를 x라 하면

$$\{(2a-1)+(3a+5)\} \times x \times \frac{1}{2} = 25a^2 - 16$$

$$\frac{1}{2}(5a+4)x = (5a+4)(5a-4)$$

$$\therefore x = 2(5a-4) = 10a - 8$$

$$\blacksquare 10a - 8$$

0616 주어진 모든 직사각형의 넓이의 합은 $x^2+4x+4=(x+2)^2$

따라서 구하는 정사각형의 한 변의 길이는 x+2이다.

 \square (2)

0617 직사각형의 가로의 길이는 2x+5+a, 세로의 길이는 2x+5-a이므로

$$(2x+5+a)(2x+5-a)=4x^2+20x+9$$

이때 $4x^2+20x+9=(2x+9)(2x+1)$ 이고 $a>0$ 이므로 $5+a=9, 5-a=1$
 $\therefore a=4$

0618 전략 공통인수의 뜻을 이용한다.

>풀이 ③ 3 a^3b 와 6 ab^3 의 공통인수는 3ab이다.

3

0619 전략 양변을 전개하여 계수를 비교한다.

(그룹이
$$x^2 + ax + 64 = x^2 + 2bx + b^2$$
에서 $a = 2b$, $64 = b^2$ 따라서 $b = 64$ 의 양의 제곱근이므로 $b = 8$ $\therefore a = 2 \times 8 = 16$ $\therefore a - b = 8$

 $oxed{0620}$ 전략》 $Ax^2 + Bx + C$ 가 완전제곱식이 될 조건을 이용한다. >풀에 $16x^2 - 40x + k = (4x)^2 - 2 imes 4x imes 5 + (\sqrt{k})^2$ 이므로

$$\sqrt{k}=5$$
 \therefore $k=25$

0621 전략 인수분해 공식과 전개를 이용하여 A의 값을 구한다.

$$\stackrel{\text{def}}{=} (1) (x+y)(x-y) = x^2 - y^2 \qquad \therefore A=1$$

②
$$(3x+4y)(3x-4y)=9x^2-16y^2$$
 :: $A=16$

$$(3) 4x^2 - 81y^2 = (2x + 9y)(2x - 9y) \qquad \therefore A = 2$$

$$\textcircled{4} \ \frac{1}{9}x^2 - \frac{1}{4}y^2 = \left(\frac{1}{3}x + \frac{1}{2}y\right) \left(\frac{1}{3}x - \frac{1}{2}y\right) \quad \therefore \ A = -\frac{1}{2}$$

$$(5) -2x^2 + 8y^2 = -2(x^2 - 4y^2) = -2(x+2y)(x-2y)$$
∴ $A = -2$

3 (5)

0622 인수분해 공식을 이용하여 각 다항식을 인수분해한다.

동물이 ① $x^2-x-2=(x+1)(x-2)$

$$(2) x^2 + 3x - 4 = (x+4)(x-1)$$

$$(3) x^2 + 6x + 5 = (x+5)(x+1)$$

$$(4)$$
 $2x^2-2=2(x^2-1)=2(x+1)(x-1)$

(5)
$$2x^2+4x+2=2(x+1)^2$$

0623 전략 주어진 식을 전개한 후 인수분해한다.

$$\begin{array}{l} \geq \stackrel{>}{\equiv} 0 \\ (5x-2)(2x+3)+7 = 10x^2+11x-6+7 \\ = 10x^2+11x+1 \\ = (x+1)(10x+1) \end{array}$$

(5)

0624 전략 인수분해 공식과 전개를 이용하여 □ 안에 알맞은 수를 구한다.

⑤
$$3x^2+12x+12=3(x^2+4x+4)=3(x+2)^2$$

∴ $\square=2$

0625 전략 x-5가 이치식 Ax^2+Bx+C 의 인수이면 $Ax^2 + Bx + C = (x-5)(Ax + \triangle)$ 임을 이용한다.

>풀이 $x^2 + ax + 30 = (x - 5)(x + m)(m$ 은 상수)으로 놓으면

$$x^2+ax+30=x^2+(m-5)x-5m$$

따라서 m-5=a. -5m=30이므로

$$m = -6$$
, $a = -11$

 $3x^2-10x+b=(x-5)(3x+n)(n$ 은 상수)으로 놓으면

$$3x^2-10x+b=3x^2+(n-15)x-5n$$

따라서 n-15=-10, -5n=b이므로

$$n=5, b=-25$$

$$\therefore a+b=-36$$

= -36

0626 절략 경수와 지은이가 인수분해한 식을 각각 전개한다.

물이 경수는 상수항을 제대로 보았으므로

$$(x+8)(x-7)=x^2+x-56$$

에서 처음 이차식의 상수항은 -56이다.

지은이는 x의 계수를 제대로 보았으므로

$$(x+1)(x+9)=x^2+10x+9$$

에서 처음 이차식의 x의 계수는 10이다.

따라서 처음 이차식은 $x^2 + 10x - 56$ 이므로 바르게 인수분해하

$$x^2+10x-56=(x+14)(x-4)$$

(x+14)(x-4)

0627 전략 공통부분을 한 문자로 놓고 인수분해한다.

 \geq 풀에 A에서 a-b=X로 놓으면

$$A=7X^{2}+6X-1=(7X-1)(X+1)$$

$$=\{7(a-b)-1\}(a-b+1)$$

$$=(7a-7b-1)(a-b+1)$$

B에서 a+b=Y, 2b-1=Z로 놓으면

$$\begin{split} B &= Y^2 - Z^2 = (Y + Z)(Y - Z) \\ &= \{(a + b) + (2b - 1)\}\{(a + b) - (2b - 1)\} \\ &= (a + 3b - 1)(a - b + 1) \end{split}$$

따라서 두 다항식의 공통인 인수는 a-b+1이다. **(3)**

0628 전략 공통부분이생기도록 두 항씩 묶어 인수분해한다.

돌한 (주어진 식)=
$$x^2(x-9)-4(x-9)$$

= $(x^2-4)(x-9)$
= $(x+2)(x-2)(x-9)$

따라서 세 일차식이 x+2, x-2, x-9이므로 세 일차식의 합은 **P**(2)

$$(x+2)+(x-2)+(x-9)=3x-9$$

0629 전략 $A^2 - B^2$ 꼴로 변형하여 인수분해한다.

$$\begin{array}{ll} \sum \frac{1}{2} & x^2 + y^2 - 4 - 2xy = (x^2 - 2xy + y^2) - 4 \\ & = (x - y)^2 - 2^2 \\ & = (x - y + 2)(x - y - 2) \end{array}$$

따라서 a=1, b=-1, c=-2이므로

$$a+b-c=1+(-1)-(-2)=2$$

2

0630 전략 99= A로 놓고 인수분해 공식을 이용한다.

>풀에 99=A로 놓으면

$$99^{2}-8\times99-9=A^{2}-8A-9=(A+1)(A-9)$$

$$=(99+1)(99-9)$$

$$=100\times90=9000$$

따라서 주어진 식을 계산하는 데 이용할 수 있는 인수분해 공식 은 (5)이다. **(5)**

0631 전략 $x^2-y^2=(x+y)(x-y)$ 를 이용하여 인수분해한 다.

 \ge 풀이 $81a^2-49b^2=(9a)^2-(7b)^2=(9a+7b)(9a-7b)$ 이므로 56 = 4(9a + 7b)

$$\therefore 9a + 7b = 14$$

0632 전략 정사각형의 넓이는 완전제곱식임을 이용한다.

 $\sqrt{2}$ 주어진 막대로 만들 수 있는 도형의 변의 길이는 x에 대 한 일차식이므로 정사각형의 넓이는 완전제곱식이어야 한다.

- $(1) x^2 + 20x + 100 = (x+10)^2$
- $(2) x^2 + 10x + 25 = (x+5)^2$
- $3x^2+12x+36=(x+6)^2$
- (4) $6x^2+9x+3=3(2x^2+3x+1)=3(2x+1)(x+1)$
- (5) $4x^2+8x+4=4(x^2+2x+1)=4(x+1)^2$
- 이상에서 정사각형의 넓이가 될 수 없는 것은 ④이다.

P (4)

0633 전략 주어진 도형의 넓이를 인수분해한다.

 $> \equiv 0$ $(2x+5)^2-2^2=(2x+5+2)(2x+5-2)$

$$=(2x+7)(2x+3)$$

따라서 직사각형의 세로의 길이는 2x+7이다.

 $\square 2x+7$

0634 전략 완전제곱식이 될 조건을 이용한다.

 \sum 물이 $x^2+24x+a$ 가 완전제곱식이 되려면

$$a = \left(\frac{24}{2}\right)^2 = 144 \qquad \cdots \quad \bullet$$

 $16x^2+bx+9=(4x)^2+bx+3^2$ 이 완전제곱식이 되려면

$$b = 2 \times 4 \times 3 = 24 \ (\because b > 0) \qquad \cdots$$

$$\therefore a-b=120$$
 ... §

채점 기준	비율
lacktriangle a 의 값을 구할 수 있다.	40%
olimits b의 값을 구할 수 있다.	40%
③ $a-b$ 의 값을 구할 수 있다.	20%

0635 전략》 먼저 $8x^2 - 6x + 1$ 을 인수분해하여 b의 값을 구한다.

 $\ge 플$ 이 $8x^2 - 6x + 1 = (2x - 1)(4x - 1)$ 이므로

$$b=-1$$
 ... \bullet

따라서 2x-1이 두 다항식의 공통인 인수이므로

$$6x^2+11x+a=(2x-1)(3x+m)(m$$
은 상수)으로 놓으면

$$6x^2+11x+a=6x^2+(2m-3)x-m$$

따라서 2m-3=11, -m=a이므로

$$m=7, a=-7 \qquad \cdots$$

$$ab = (-7) \times (-1) = 7$$

3 7

채점 기준	비율
1 <i>b</i> 의 값을 구할 수 있다.	30%
② a의 값을 구할 수 있다.	60%
3 ab의 값을 구할 수 있다.	10%

$$\sum \exists 0$$
 $x^3y - xy^3 = xy(x^2 - y^2) = xy(x+y)(x-y)$...

$$x = \frac{1}{\sqrt{5} - 2} = \frac{\sqrt{5} + 2}{(\sqrt{5} - 2)(\sqrt{5} + 2)} = \sqrt{5} + 2,$$

$$y = \frac{1}{\sqrt{5}+2} = \frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)} = \sqrt{5}-2$$
이므로 … ②

$$x+y=2\sqrt{5}, x-y=4, xy=1$$

$$\therefore xy(x+y)(x-y)=1\times 2\sqrt{5}\times 4=8\sqrt{5}$$

... **③**

채점 기준	비율
● 주어진 식을 인수분해할 수 있다.	40%
② x, y 의 분모를 유리화할 수 있다.	30%
③ 주어진 식의 값을 구할 수 있다.	30%

0637 작 직사각형 (개의 넓이와 가로의 길이를 이용하여 상수 a의 값을 구한다.

 \geq 풀에 직사각형 (개의 세로의 길이를 x+b(b는 상수)로 놓으면 $x^2+14x+a=(x+16)(x+b)$ 이므로

$$x^2+14x+a=x^2+(b+16)x+16b$$

따라서 b+16=14, 16b=a이므로

$$b = -2, a = -32$$
 ... ••

따라서 직사각형 (개의 둘레의 길이는

$$2\{(x+16)+(x-2)\}=4x+28=4(x+7)$$
 ...

이때 두 사각형 (7), (4)의 둘레의 길이가 같으므로 정사각형 (4)의 한 변의 길이는 x+7이다.

 $\blacksquare x+7$

채점 기준	비율
1 a의 값을 구할 수 있다.	50%
② 직사각형 ㈜의 둘레의 길이를 구할 수 있다.	30%
❸ 정사각형 (4)의 한 변의 길이를 구할 수 있다.	20%

0638 전략 근호 안의 식을 인수분해한다.

>풀이
$$\frac{1}{25}x^2 \pm \frac{2}{5}x + 1 = \left(\frac{1}{5}x \pm 1\right)^2 (복호동순)$$

이때
$$-5 < x < 5$$
에서 $-1 < \frac{1}{5}x < 1$ 이므로

$$\frac{1}{5}x+1>0$$
, $\frac{1}{5}x-1<0$

$$\therefore (주어진 식) = \sqrt{\left(\frac{1}{5}x+1\right)^2} + \sqrt{\left(\frac{1}{5}x-1\right)^2}$$
$$= \left(\frac{1}{5}x+1\right) - \left(\frac{1}{5}x-1\right)$$
$$= 2$$

2 2

$$\sqrt{(ax+b)^2} = \begin{cases} ax+b & (ax+b \ge 0) \\ -ax-b & (ax+b < 0) \end{cases}$$

0639 전략》 두 항씩 묶어 인수분해 공식을 이용하여 계산한다.

>풀이 (주어진 식)

$$=(18^2-17^2)+(16^2-15^2)+(14^2-13^2)+(12^2-11^2)$$

$$=(18+17)(18-17)+(16+15)(16-15)$$

$$+(14+13)(14-13)+(12+11)(12-11)$$

$$=35+31+27+23$$

0640 전략 원 *A*의 색칠한 부분의 넓이를 식으로 나타낸 후 인수분해한다.

>풀에 원 A의 색칠한 부분의 넓이는

$$(5x+10)^2\pi - (4x+8)^2\pi$$

5x+10=X, 4x+8=Y로 놓으면

$$X^2\pi - Y^2\pi$$

 $=(X+Y)(X-Y)\pi$

$$=\{(5x+10)+(4x+8)\}\{(5x+10)-(4x+8)\}\pi$$

 $=(9x+18)(x+2)\pi$

 $=9(x+2)^2\pi=\{3(x+2)\}^2\pi$

따라서 원 B의 넓이가 $\{3(x+2)\}^2\pi$ 이므로 반지름의 길이는

$$3(x+2)=3x+6$$

Ⅲ. 이차방정식

ob 이차방정식의 풀이

0641
$$2x+1=2x-3$$
에서 $4=0$

图×

日×

0644
$$x^2 = -x^2 + 2x - 1$$
에서 $2x^2 - 2x + 1 = 0$

 $3x^2 - x = 3x^2 + 3x$

□ ○

$$\therefore -4x=0$$

日×

□ ○

图×

0646
$$4x^3 + x^2 - 2x = 4x^3$$
에서 $x^2 - 2x = 0$

0647
$$x + \frac{1}{x} = x^2 + x$$
에서 .

0645 $3x^2 - x = 3x(x+1)$ 에서

0647
$$x + \frac{1}{x} = x^2 + x$$
 $x + \frac{1}{x} = 0$

주어진 식이 x에 대한 이차방정식인지를 알려면 등식인지를 먼저 살피고, 등식의 우변의 모든 항을 좌변으로 이항하여 정리했을 때 (x에 대한 이차식)=0 꼴로 나타낼 수 있는지를 확인해야 해.

이때 $\frac{1}{x}, \frac{1}{r^2}$ 과 같이 분모에 x에 대한 식이 있는 경우는 이차방정식 이 될 수 없다는 것도 명심해.

0648
$$(-4)^2 = 16$$

0649
$$(-3)^2 - 3 \times (-3) = 18 \neq 0$$

图×

0650
$$(-1)^2 - 3 \times (-1) + 2 = 6 \neq 0$$

图×

0651
$$3 \times 2^2 - 12 \times 2 + 12 = 0$$

0652
$$x=0$$
일 때, $3\neq 0$

x=1일 때, $1-4\times1+3=0$

x=2일 때. $2^2 - 4 \times 2 + 3 = -1 \neq 0$ $\blacksquare x=1$

0653
$$x=0$$
일 때, $0\times(-2)=0$

x=1일 때, $1\times (-1)=-1\neq 0$

x=2일 때, $2\times 0=0$

B x=0 또는 x=2

0654
$$x=0$$
 또는 $x+7=0$ 이므로 $x=-7$ 또는 $x=0$

달 x=−7 또는 x=0

0655 2x+1=0 또는 5x-1=0이므로

$$x = -\frac{1}{2} + \frac{1}{5}$$

B $x = -\frac{1}{2}$ 또는 $x = \frac{1}{5}$

0656 $x^2 + 9x = 0$ 에서 x(x+9)=0

 $\therefore x = -9 \stackrel{\leftarrow}{=} x = 0$

|| x = -9| 또는 x = 0

0657 $x^2 - 49 = 0$ 에서 (x+7)(x-7)=0

 $\mathbf{E} x = -7$ 또는 x = 7

0658 $x^2 - 6x - 7 = 0$ 에서 (x+1)(x-7)=0

 $\therefore x = -1 \pm x = 7$

0659 $2x^2 - x - 3 = 0$ 에서 (x+1)(2x-3)=0

 $\therefore x = -1 \, \text{ET} \, x = \frac{3}{2}$

말 x = -1 또는 $x = \frac{3}{2}$

0660 $3x^2 + 5x = 2$ 에서 $3x^2 + 5x - 2 = 0$

(x+2)(3x-1)=0 $\therefore x=-2 \, \text{ET} \, x=\frac{1}{3}$

읍 x = -2 또는 $x = \frac{1}{2}$

0661

0662 日×

0663 (x+1)(x-1)=2x

(완전제곱식)=0 꼴로 나타낼 수 없으므로 중근을 갖지 않는다.

留×

0664 멸 x = -10(중근)

0666 $36x^2-12x+1=0$ 이므로 $(6x-1)^2=0$

 $\therefore x = \frac{1}{6} (\frac{2}{6})$

 $\mathbf{E} x = \frac{1}{6} (중군)$

₩ 등 정답 및 풀이

0667
$$9x^2 - 24x + 16 = 0$$
이므로 $(3x - 4)^2 = 0$

$$\therefore x = \frac{4}{3} (\frac{27}{6})$$

답
$$x = \frac{4}{3} (\frac{27}{6})$$

0668
$$x^2 = 6$$
이므로 $x = \pm \sqrt{6}$

$$\exists x = \pm \sqrt{6}$$

0669
$$x^2 = \frac{64}{9}$$
이므로 $x = \pm \frac{8}{3}$

$$x = \pm \frac{8}{2}$$

0670
$$(x+5)^2 = 15$$
이므로 $x+5 = \pm \sqrt{15}$
 $\therefore x = -5 \pm \sqrt{15}$

0671
$$(4x-3)^2 = 12$$
 에서 $4x-3 = \pm 2\sqrt{3}$

$$4x = 3 \pm 2\sqrt{3}$$
 $\therefore x = \frac{3 \pm 2\sqrt{3}}{4}$ $\blacksquare x = \frac{3 \pm 2\sqrt{3}}{4}$

$$x = \frac{3 \pm 2\sqrt{3}}{4}$$

0672
$$2(3x-2)^2=10$$
에서 $(3x-2)^2=5$

$$3x-2=\pm\sqrt{5}, \quad 3x=2\pm\sqrt{5}$$

$$= \frac{2 \pm \sqrt{5}}{3}$$

0673
$$x^2 - 8x + 4 = 0$$
에서 $x^2 - 8x + 16 = -4 + 16$

$$(x-4)^2=12$$

 $\therefore x = \frac{2 \pm \sqrt{5}}{2}$

$$(x-4)^2=12$$

0674
$$2x^2-4x+\frac{1}{2}=0$$
에서

$$x^2-2x+\frac{1}{4}=0$$
, $x^2-2x+1=-\frac{1}{4}+1$

$$(x-1)^2 = \frac{3}{4}$$

$$(x-1)^2 = \frac{3}{4}$$

0675 3 (7) 1 (4) 1 (4)
$$\frac{5}{2}$$
 (4) $\frac{\sqrt{10}}{2}$ (4) $1 \pm \frac{\sqrt{10}}{2}$

0676
$$x^2 - 10x + 2 = 0$$
에서

$$x^2-10x+25=-2+25$$

$$(x-5)^2=23$$
, $x-5=\pm\sqrt{23}$

$$\therefore x=5\pm\sqrt{23}$$

0677
$$4x^2 + 16x - 5 = 0$$
에서 $x^2 + 4x - \frac{5}{4} = 0$

$$x^2+4x+4=\frac{5}{4}+4$$
, $(x+2)^2=\frac{21}{4}$

$$x+2=\pm\frac{\sqrt{21}}{2}$$
 : $x=-2\pm\frac{\sqrt{21}}{2}$

$$\exists x = -2 \pm \frac{\sqrt{21}}{2}$$

0678
$$\frac{4}{3}x^2 + 8x = 4$$
의 양변에 $\frac{3}{4}$ 을 곱하면

$$x^2 + 6x = 3$$
, $x^2 + 6x + 9 = 3 + 9$

$$(x+3)^2 = 12, \qquad x+3 = \pm 2\sqrt{3}$$

$$\therefore x = -3 \pm 2\sqrt{3}$$

$$= -3 \pm 2\sqrt{3}$$

0680
$$x = \frac{3 \pm \sqrt{(-3)^2 - 4 \times 1 \times (-3)}}{2 \times 1} = \frac{3 \pm \sqrt{21}}{2}$$

$$= \frac{3 \pm \sqrt{21}}{2}$$

0681
$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times 1}}{2 \times 2} = \frac{-5 \pm \sqrt{17}}{4}$$

$$=x=\frac{-5\pm\sqrt{17}}{4}$$

0682
$$x = \frac{9 \pm \sqrt{(-9)^2 - 4 \times 3 \times (-2)}}{2 \times 3} = \frac{9 \pm \sqrt{105}}{6}$$

$$=\frac{9\pm\sqrt{105}}{6}$$

0683
$$x = \frac{7 \pm \sqrt{(-7)^2 - 4 \times 4 \times 1}}{2 \times 4} = \frac{7 \pm \sqrt{33}}{8}$$

$$= \frac{7 \pm \sqrt{33}}{8}$$

$$x = \frac{11 \pm \sqrt{(-11)^2 - 4 \times 1 \times 4}}{2 \times 1} = \frac{11 \pm \sqrt{105}}{2}$$

$$= \frac{11 \pm \sqrt{105}}{2}$$

$$3x^2 + 7x - 2 = 0$$
이므로

0685
$$3x^2 + 7x - 2 = 0$$
이므로
$$x = \frac{-7 \pm \sqrt{7^2 - 4 \times 3 \times (-2)}}{2 \times 3} = \frac{-7 \pm \sqrt{73}}{6}$$

$$= \frac{-7 \pm \sqrt{73}}{6}$$

0686 2 (7)
$$-3$$
 (4) 1 (F) $\frac{-3\pm\sqrt{3}}{6}$

0687
$$x = -2 \pm \sqrt{2^2 - 1 \times (-4)} = -2 \pm 2\sqrt{2}$$

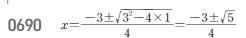
$$= -2 \pm 2\sqrt{2}$$

0688
$$x=4\pm\sqrt{(-4)^2-1\times(-3)}=4\pm\sqrt{19}$$

$$||x|| = 4 \pm \sqrt{19}$$

0689
$$x = \frac{3 \pm \sqrt{(-3)^2 - 2 \times 3}}{2} = \frac{3 \pm \sqrt{3}}{2}$$

$$x = \frac{3 \pm \sqrt{3}}{2}$$



 $= \frac{-3 \pm \sqrt{5}}{4}$

0691
$$3x^2-4x-2=0$$
이므로
$$x = \frac{2 \pm \sqrt{(-2)^2 - 3 \times (-2)}}{3} = \frac{2 \pm \sqrt{10}}{3}$$

 $= \frac{2 \pm \sqrt{10}}{3}$

0692
$$3x^2+8x+2=0$$
이므로
$$x = \frac{-4 \pm \sqrt{4^2-3 \times 2}}{3} = \frac{-4 \pm \sqrt{10}}{3}$$

 $= x = \frac{-4 \pm \sqrt{10}}{3}$

0694 (1)
$$4$$
 (4) $2x^2 - 5x - 4$ **(7)** $\frac{5 \pm \sqrt{57}}{4}$

0695 양변에 10을 곱하면
$$4x^2+10x+6=0$$
 $2x^2+5x+3=0$, $(2x+3)(x+1)=0$ $\therefore x=-\frac{3}{2}$ 또는 $x=-1$

달
$$x = -\frac{3}{2}$$
 또는 $x = -1$

0696 양변에 100을 곱하면 $25x^2+30x+9=0$ $(5x+3)^2=0$ $\therefore x=-\frac{3}{5}(중군)$

달 $x = -\frac{3}{5}(\frac{5}{5}$ 근)

0697 양변에 100을 곱하면 $5x^2-2x-1=0$

$$\therefore x = \frac{1 \pm \sqrt{6}}{5}$$

 $x = \frac{1 \pm \sqrt{6}}{5}$

0698 양변에 10을 곱하면 $2x^2-3x-5=0$

$$(x+1)(2x-5)=0$$
 $\therefore x=-1 \pm \frac{5}{2}$

달 x = -1 또는 $x = \frac{5}{2}$

0699 양변에 4를 곱하면 x(x-3)=2

$$x^2 - 3x - 2 = 0$$
 $\therefore x = \frac{3 \pm \sqrt{17}}{2}$

 $= \frac{3 \pm \sqrt{17}}{2}$

0700 양변에 10을 곱하면 $2x^2+x-4=0$

$$\therefore x = \frac{-1 \pm \sqrt{33}}{4}$$

 $= \frac{-1 \pm \sqrt{33}}{4}$

0701 (1) $A^2 + 3A - 10 = 0$

(2) (A+5)(A-2)=0이므로

$$A = -5$$
 또는 $A = 2$

(3) x+3=-5 또는 x+3=2이므로

$$x = -8$$
 또는 $x = -1$

를 풀이 참조

(2)

(4)

(5)

0702 (기 등식이 아니므로 이차방정식이 아니다.

- $(L) x^2 x 4 = 0$
- $(\Box) 2x^2 2x 3 = 0$
- (리) $2x^2 x = 2x^2 2x$ 이므로 x = 0
- 이상에서 이차방정식인 것은 (ㄴ), (ㄸ)이다.

0703 (1) $2x^2 + 3x = 0$

- ② $x^2-4=0$
- (5) $x^2 + x = 2x^2$ 이므로 $x^2 x = 0$
- 이상에서 이차방정식이 아닌 것은 ④이다.

0704 $(ax-1)^2 - x = 2x^2$ 에서 $a^2x^2 - 2ax + 1 - x = 2x^2$ $(a^2-2)x^2 - (2a+1)x + 1 = 0$

이차방정식이 되려면 $a^2-2\neq 0$

$$\therefore a^2 \neq 2$$

0705 $(x+3)(2x-5) = -x^2 - 13$ 에서

$$2x^2+x-15=-x^2-13$$

$$\therefore 3x^2 + x - 2 = 0 \qquad \cdots \bullet$$

따라서 a=3, b=-2이므로

$$a-b=3-(-2)=5$$

··· **②**

채점 기준	비율
● 주어진 이차방정식을 정리할 수 있다.	60%
2a-b의 값을 구할 수 있다.	40%

0706 (1) $2 \times 4 = 8 \neq 0$

- ② $(-3)^2 3 = 6 \neq 0$
- $312 \times \left(\frac{1}{4}\right)^2 11 \times \frac{1}{4} + 2 = \frac{3}{4} \frac{11}{4} + 2 = 0$
- (4) 9×(9+7) \neq -9+9
- (5) $(3-2) \times (1+1) = 2 \neq 1$

3

0707 (1) $(-2)^2 - (-2) - 12 = -6 \neq 0$

- $(2)(-2)^2-2\times(-2)-8=0$
- (3) 2× $(-2)^2+5$ × $(-2)-3=-5\neq0$
- $(4)(-2-2)\times(-2+3)=-4\neq 2$
- $(5) (-2+2)^2 = 0 \neq 4$

0708 x=-1일 때, $0\times 3=-6+6$

x=0일 때. $1\times 4\neq 6$

x=1일 때, $2 \times 5 \neq 6+6$

x=2일 때. $3\times 6=12+6$

따라서 주어진 이차방정식의 해는 x=-1 또는 x=2이다.

4

(4)

图(1)

.....

0710 x=1을 x(x+2a+1)=-x+3a에 대입하면 $1\times(2a+2)=-1+3a$ $\therefore a=3$

0711 x=-2를 $x^2+ax+b=0$ 에 대입하면 $(-2)^2+a\times(-2)+b=0$ $\therefore 2a-b=4$

 $x=3 = x^2 + ax + b = 0$ 에 대입하면

$$3^2+3a+b=0$$
 : $3a+b=-9$

○, ○을 연립하여 풀면 a=-1, b=-6
 ∴ a+b=-7

0712 x=-1을 $x^2+4ax+7=0$ 에 대입하면 $(-1)^2+4a\times (-1)+7=0, \qquad -4a+8=0$ $\therefore a=2$ \cdots \bullet

 $x = -3 = 3x^2 + bx - 6 = 0$ 에 대입하면

$$3 \times (-3)^2 + b \times (-3) - 6 = 0, \quad -3b + 21 = 0$$

∴ *b*=7 ··· •

 $\therefore ab = 2 \times 7 = 14 \qquad \cdots \otimes$

₽14

채점 기준	비율
1 <i>a</i> 의 값을 구할 수 있다.	40%
$oldsymbol{2}$ b 의 값을 구할 수 있다.	40%
③ <i>ab</i> 의 값을 구할 수 있다.	20%

0713 $x = \frac{3}{2}$ 을 $6x^2 - 5x + a = 0$ 에 대입하면

$$6 \times \left(\frac{3}{2}\right)^2 - 5 \times \frac{3}{2} + a = 0, \quad \frac{27}{2} - \frac{15}{2} + a = 0$$

 $\therefore a = -6$

 $x = \frac{3}{2}$ 을 $10x^2 + bx - 3 = 0$ 에 대입하면

$$10 \times \left(\frac{3}{2}\right)^2 + \frac{3}{2}b - 3 = 0, \quad \frac{3}{2}b + \frac{39}{2} = 0$$

∴ b = -13

$$a-b=-6-(-13)=7$$

2

0714 $x=2-\sqrt{5}$ 를 $x^2-4x+k+2=0$ 에 대입하면 $(2-\sqrt{5})^2-4(2-\sqrt{5})+k+2=0, \quad k+3=0$ $\therefore k=-3$

....

(3)

1

다른풀이 $x=2-\sqrt{5}$ 에서 $x-2=-\sqrt{5}$

양변을 제곱하면 $x^2-4x+4=5$ $\therefore x^2-4x=1$

 \ominus 을 $x^2 - 4x + k + 2 = 0$ 에 대입하면

k+3=0 $\therefore k=-3$

 \bigcirc 의 양변에 $\frac{3}{2}$ 을 곱하면 $3m^2+6m=-\frac{3}{2}$ 월 $-\frac{3}{2}$

0716 x=k를 $x^2-10x+7=0$ 에 대입하면 $k^2-10k+7=0$

양변을 k로 나누면 $k-10+\frac{7}{k}=0$ $\therefore k+\frac{7}{k}=10$

0717 $x=\alpha$ 를 $x^2-4x-2=0$ 에 대입하면 $\alpha^2-4\alpha-2=0$

② $\alpha^2 - 4\alpha - 2 = 0$ 의 양변에 -1을 곱하면 $2 + 4\alpha - \alpha^2 = 0$ $\therefore 5 + 4\alpha - \alpha^2 = 3$

③ $\alpha^2 - 4\alpha - 2 = 0$ 의 양변에 3을 곱하면 $3\alpha^2 - 12\alpha - 6 = 0$ $\therefore 3\alpha^2 - 12\alpha + 10 = 16$

④ $\alpha^2 - 4\alpha - 2 = 0$ 의 양변을 2로 나누면 $\frac{1}{2}\alpha^2 - 2\alpha - 1 = 0 \qquad \therefore \ \frac{1}{2}\alpha^2 - 2\alpha = 1$

 $(5) \alpha^2 - 4\alpha - 2 = 0$ 의 양변을 α 로 나누면

$$\alpha - 4 - \frac{2}{\alpha} = 0$$
 $\therefore \alpha - \frac{2}{\alpha} = 4$

0718 x=a를 $2x^2+8x-3=0$ 에 대입하면

$$2a^2 + 8a - 3 = 0$$
 $\therefore 2a^2 + 8a = 3$ \cdots **0**

x=b를 $x^2+2x-5=0$ 에 대입하면

 $b^2 + 2b - 5 = 0 \qquad \therefore b^2 + 2b = 5 \qquad \cdots$

 $\therefore 2a^2 - b^2 + 8a - 2b + 3$

 $= (2a^2 + 8a) - (b^2 + 2b) + 3$

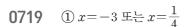
=3-5+3=1 ··· •

 채점 기준
 비율

 ① 2a²+8a의 값을 구할 수 있다.
 30%

 ② b²+2b의 값을 구할 수 있다.
 30%

 ③ 2a²-b²+8a-2b+3의 값을 구할 수 있다.
 40%



②
$$x = -\frac{1}{4}$$
 또는 $x = 3$ ③ $x = \frac{1}{4}$ 또는 $x = 3$

③
$$x = \frac{1}{4}$$
 또는 $x = 3$

④
$$x = \frac{1}{4}$$
 또는 $x = 3$

(4)
$$x = \frac{1}{4}$$
 $\pm \frac{1}{4}$ $\pm \frac{1}{4}$ $\pm \frac{1}{4}$ (5) $x = -3$ $\pm \frac{1}{4}$

0720
$$(x+5)(x-4)=0$$
에서 $x=-5$ 또는 $x=4$ 따라서 $\alpha=4$, $\beta=-5$ 이므로 $\alpha^2-\beta^2=4^2-(-5)^2=-9$

0721 ①
$$x=0$$
 또는 $x=2$ 이므로 $2-0=2$

③
$$x = -1$$
 또는 $x = 2$ 이므로 $2 - (-1) = 3$

$$5x=1$$
 또는 $x=2$ 이므로 $2-1=1$

(2)

(2)

0722
$$6x^2 + 7x + 2 = 0$$
에서 $(3x+2)(2x+1) = 0$
 $\therefore x = -\frac{2}{3}$ 또는 $x = -\frac{1}{2}$
 $p = -\frac{1}{2}, q = -\frac{2}{3}$ 이므로
 $p - q = -\frac{1}{2} - \left(-\frac{2}{3}\right) = \frac{1}{6}$

0723 (1)
$$12x^2 - 5x - 2 = (4x + 1)(3x - 2)$$
 ...

$$(2) \, (4x+1)(3x-2) \! = \! 0 \text{에서} \qquad x \! = \! -\frac{1}{4} \, \, \text{또는} \, x \! = \! \frac{2}{3} \quad \cdots \ \ \text{②}$$

채점 기준	비율
● 인수분해할 수 있다.	60%
● 방정식의 해를 구할 수 있다.	40%

0724
$$3x^2 - 2x - 8 = 0$$
이므로 $(3x+4)(x-2) = 0$
 $\therefore x = -\frac{4}{3}$ 또는 $x = 2$

(3)

 $\blacksquare x = 1$

0725
$$x^2-9x-90=0$$
에서 $(x+6)(x-15)=0$
∴ $x=-6$ 또는 $x=15$
따라서 $A=-6+15=9$, $B=15-(-6)=21$ 이므로
 $A-B=-12$

0726
$$x+1>3x-3$$
에서 $-2x>-4$ $\therefore x<2$ $2x^2-9x+7=0$ 에서 $(x-1)(2x-7)=0$

 $\therefore x=1 \ (\because x<2)$

0727
$$x^2-4x-12=0$$
이므로 $(x+2)(x-6)=0$
 $\therefore x=-2$ 또는 $x=6$
이때 $a < b$ 이므로 $a=-2$, $b=6$... ① $x^2+6x+8=0$ 에서 $(x+4)(x+2)=0$ $\therefore x=-4$ 또는 $x=-2$... ② $x=-4$ 또는 $x=-2$

채점 기준	비율
lacktriangle a, b 의 값을 구할 수 있다.	50%
② $x^2 + bx - a + b = 0$ 의 두 근을 구할 수 있다.	50%

0728
$$x=-4$$
를 $x^2+ax-4=0$ 에 대입하면 $(-4)^2+a\times(-4)-4=0$, $12-4a=0$ $∴ a=3$ $x^2+3x-4=0$ 에서 $(x+4)(x-1)=0$ 따라서 다른 한 근은 $x=1$

3 (5)

0729
$$x=2$$
를 $x^2-5x+a=0$ 에 대입하면 $2^2-5\times2+a=0$, $-6+a=0$... $a=6$... **1** $a=6$... **2** $a=6$... **3** ... **3** $a=6$... **4** $a=6$... **3** ... **3** $a=6$... **4** $a=6$... **3** ... **3** $a=6$... **3** $a=6$... **4** $a=6$... **3** $a=6$... **4** $a=6$... **3** $a=6$... **4** $a=6$... **3** $a=6$... **3** $a=6$... **4** $a=6$... **3** $a=6$... **4** $a=6$... **3** $a=6$... **4** $a=6$...

채점 기준	비율
1 a 의 값을 구할 수 있다.	40%
② <i>b</i> 의 값을 구할 수 있다.	50%
	10%

0730
$$x=3 \stackrel{\circ}{=} (a+1)x^2-7x-3a=0$$
에 대입하면 $(a+1)\times 3^2-7\times 3-3a=0$, $6a-12=0$ $\therefore a=2$ $3x^2-7x-6=0$ 에서 $(3x+2)(x-3)=0$ 따라서 다른 한 근은 $x=-\frac{2}{3}$

 $= x = -\frac{2}{2}$

0731
$$x=2$$
를 주어진 방정식에 대입하면 $4a-2(2a+1)+a^2-2=0, \quad a^2-4=0$ $(a+2)(a-2)=0 \quad \therefore a=2 \ (\because a>0)$ $2x^2-5x+2=0$ 에서 $(2x-1)(x-2)=0$ 따라서 다른 한 근은 $x=\frac{1}{2}$

 $x = \frac{1}{2}$

 $\therefore a=3$

 $\therefore a=2$

0732
$$x^2+x-6=0$$
에서 $(x+3)(x-2)=0$

$$\therefore x = -3 \pm x = 2$$

따라서 $x^2 - 3ax + 14 = 0$ 의 한 근이 x = 2이므로

$$2^2 - 3a \times 2 + 14 = 0$$
, $18 - 6a = 0$

$$0u-0$$

0733
$$(x+3)(x-b)=0$$
에서 $x=-3$ 또는 $x=b$ $2x^2+(3a+1)x+3=0$ 의 한 근이 $x=-3$ 이므로 $2\times(-3)^2-3(3a+1)+3=0$, $18-9a=0$

$$2x^2+7x+3=0$$
에서 $(x+3)(2x+1)=0$
 $\therefore x=-3$ 또는 $x=-\frac{1}{2}$

두 이차방정식의 해가 서로 같으므로 $b=-\frac{1}{2}$

$$\therefore a+b=\frac{3}{2}$$

$$\blacksquare 2$$

3

다른풀이 (x+3)(x-b)=0에서

$$x^2 + (3-b)x - 3b = 0$$

$$\therefore 2x^2 + 2(3-b)x - 6b = 0$$

이 이차방정식과 $2x^2 + (3a+1)x + 3 = 0$ 의 해가 서로 같으므로 2(3-b) = 3a+1, -6b = 3

두 식을 연립하여 풀면 $a=2, b=-\frac{1}{2}$

$$\therefore a+b=\frac{3}{2}$$

0734
$$x(x-2)=3$$
에서 $x^2-2x-3=0$

$$(x+1)(x-3)=0$$
 $\therefore x=-1 \pm x=3$

따라서 $3x^2+(2k+1)x+k=0$ 의 한 근이 x=-1이므로

$$3 \times (-1)^2 - (2k+1) + k = 0, \quad 2-k=0$$

$$\therefore k=2$$

0735
$$x=-3 = 2x^2 + ax - 3 = 0$$
에 대입하면

$$2 \times (-3)^2 - 3a - 3 = 0$$
, $15 - 3a = 0$

$$2x^2+5x-3=0$$
에서 $(x+3)(2x-1)=0$

따라서 다른 한 근은
$$x=\frac{1}{2}$$

 $x = \frac{1}{2} = 6x^2 - x + b = 0$ 에 대입하면

$$6 \times \left(\frac{1}{2}\right)^2 - \frac{1}{2} + b = 0$$
 : $b = -1$

□ -1

日(4)

0736
$$x^2+2x-15=0$$
에서 $(x+5)(x-3)=0$

$$5x^2-13x-6=0$$
에서 $(5x+2)(x-3)=0$

$$\therefore x = -\frac{2}{5}$$
 또는 $x = 3$

따라서 공통인 근은
$$x=3$$

 $\blacksquare x = 3$

0737
$$x^2 - x - 20 = 0$$
에서 $(x+4)(x-5) = 0$

$$\therefore x = -4 \, \text{\Xi} = 5$$

$$2x^2-9x-5=0$$
에서 $(2x+1)(x-5)=0$

$$\therefore x = -\frac{1}{2}$$
 또는 $x = 5$

따라서 공통이 아닌 두 근은 각각 x=-4, $x=-\frac{1}{2}$ 이므로 구하는 곱은

$$(-4)\times\left(-\frac{1}{2}\right)=2$$

0738
$$2x^2 - 3x - 2 = 0$$
 $|x|$ $(2x+1)(x-2) = 0$

$$\therefore x = -\frac{1}{2}$$
 또는 $x = 2$

$$6x^2+7x+2=0$$
에서 $(3x+2)(2x+1)=0$

$$\therefore x = -\frac{2}{3}$$
 또는 $x = -\frac{1}{2}$

따라서 공통인 근은 $x = -\frac{1}{2}$ 이므로 $p = -\frac{1}{2}$

$$p^2 = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\mathbb{F}^{\frac{1}{4}}$$

2

0739
$$x^2 - 6x - 16 = 0$$
 $(x+2)(x-8) = 0$

 $3x^2+7x+2=0$ 에서 (x+2)(3x+1)=0

$$\therefore x = -2 \stackrel{\leftarrow}{\text{E}} = -\frac{1}{3}$$

... 2

따라서 두 이차방정식의 공통인 근은 x=-2이므로 x=-2를 $2x^2+7x+8-a=0$ 에 대입하면

$$2 \times (-2)^2 + 7 \times (-2) + 8 - a = 0, \quad 2 - a = 0$$

$$\therefore a=2$$

··· **③**

채점 기준	비율
① $x^2 - 6x - 16 = 0$ 의 해를 구할 수 있다.	30%
② $3x^2 + 7x + 2 = 0$ 의 해를 구할 수 있다.	30%
③ a 의 값을 구할 수 있다.	40%

0740 ① *x*=1(중근)

②
$$(x-7)^2 = 0$$
이므로 $x = 7(중군)$

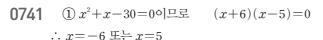
③
$$2(x+1)^2 = 0$$
이므로 $x = -1(중근)$

④
$$10+6x=x^2+6x+9$$
이므로 $x^2=1$

$$\therefore x = \pm 1$$

(5)
$$x^2+6x+9=0$$
이므로 $(x+3)^2=0$

$$\therefore x = -3(\frac{27}{2})$$



- ② $x^2 = 25$ 이므로 $x = \pm 5$
- $(3) x = -2(\frac{2}{6})$
- (4) $2x^2+20x+50=0$ 이므로 $2(x+5)^2=0$ $\therefore x = -5(\frac{27}{21})$
- ⑤ (x+5)(x+2)=0이므로 x=-5 또는 x=-2

(3), (4)

0742 (¬) x=0(중근)

- (L) x=0 生는 x=9
- (E) (x-1)(x-4)=0이므로 x=1 또는 x=4
- (리) 좌변이 완전제곱식이 아니므로 중근을 갖지 않는다.
- (p) $2x^2-12x+10=0$ 이므로 2(x-1)(x-5)=0 $\therefore x=1 \, \text{E} = x=5$
- (비) $x^2+4x+4=0$ 이므로 $(x+2)^2=0$ ∴ $x = -2(\frac{1}{1})^{-2}$

이상에서 중근을 갖는 이차방정식은 (기, (비)의 2개이다.

目 2

0743
$$3k-2=\left(\frac{-4}{2}\right)^2=4$$
이므로 $3k=6$
∴ $k=2$

0744 주어진 이차방정식의 양변을 2로 나누면 $x^2 + \frac{a}{2}x + 1 = 0$

 $1=\left(\frac{a}{4}\right)^2$ 이므로 $a^2=16$

 $\therefore a = \pm 4$

2, 4

0745 $x^2 + 12x + k = 0$ 이 중근을 가지므로 $k = \left(\frac{12}{2}\right)^2 = 36$

즉 $x^2+12x+36=0$ 이므로 $(x+6)^2=0$ $\therefore x = -6(\frac{27}{2})$

따라서 a = -6이므로 a + k = 30

30

0746 $x^2 - 4ax - 8a - 3 = 0$ 이 중근을 가지므로 $-8a-3=\left(\frac{-4a}{2}\right)^2$ $4a^2+8a+3=0$, (2a+3)(2a+1)=0 $\therefore a = -\frac{3}{2}$ 또는 $a = -\frac{1}{2}$

따라서 모든 a의 값의 합은 -2이다.

4

0747 $x^2 + 2x + 2k - 1 = 0$ 이 중근을 가지므로

$$2k-1=\left(\frac{2}{2}\right)^2=1 \qquad \therefore \ k=1 \qquad \qquad \cdots \quad \blacksquare$$

k=1을 $(k+1)x^2-7x+3k=0$ 에 대입하면

$$2x^2-7x+3=0$$
, $(2x-1)(x-3)=0$

$$\therefore x = \frac{1}{2} \, \pm \frac{1}{2} \, \pm x = 3 \qquad \cdots 2$$

따라서 두 근의 합은 $\frac{7}{2}$ 이다.

 $\blacksquare \frac{7}{2}$

채점 기준	비율
lacksquare k 의 값을 구할 수 있다.	50%
② $(k+1)x^2-7x+3k=0$ 의 두 근을 구할 수 있다.	40%
❸ 두 근의 합을 구할 수 있다.	10%

0748 $(x+2)^2 = 3$ 이므로 $x+2 = \pm \sqrt{3}$

 $\therefore x = -2 \pm \sqrt{3}$

따라서 a=-2, b=3이므로 ab=-6

2

0749 $(x-3)^2 = 6$ 이므로 $x-3 = \pm \sqrt{6}$

 $\therefore x=3\pm\sqrt{6}$

따라서 두 근의 합은

$$(3-\sqrt{6})+(3+\sqrt{6})=6$$

(5)

0750 $4(x+a)^2=12$ 이므로 $(x+a)^2=3$

 $x+a=\pm\sqrt{3}$ $\therefore x=-a\pm\sqrt{3}$

따라서 a=1, b=3이므로 a+b=4

0751 이차방정식 $(x+3)^2=2k-5$ 가 해를 가지므로

$$2k-5 \ge 0$$
 $\therefore k \ge \frac{5}{2}$

... ●

a 4

따라서 정수 k의 최솟값은 3이다.

... 2 **3**

채점 기준	비율
lacksquare k 의 값의 범위를 구할 수 있다.	60%
② 정수 k 의 최솟값을 구할 수 있다.	40%

- 이차방정식 $(x+p)^2=q$ 가
- ① 서로 다른 두 근을 가질 조건 $\bigcirc q>0$] 해를 가질 조건
- ② 중근을 가질 조건
- $\bigcirc q = 0$ $\bigcirc q \ge 0$
- ③ 해를 갖지 않을 조건
- $\bigcirc q < 0$

0752 ⓐ d = -2

0753 $x^2 - 10x + 5 = 0$ 에서 $x^2 - 10x = -5$ $x^2-10x+25=-5+25$, $(x-5)^2=20$ 따라서 p=-5, q=20이므로

$$\frac{p}{q} = -\frac{1}{4}$$

0754
$$x^2+6x+6=0$$
 에서 $x^2+6x=-6$
 $x^2+6x+9=-6+9$ ∴ $(x+3)^2=3$
∴ $a=3, b=3$

$$(x+3)^2 = 3$$
에서 $x+3 = \pm \sqrt{3}$

$$\therefore x = -3 \pm \sqrt{3}$$

$$c < d$$
이므로 $c = -3 - \sqrt{3}, d = -3 + \sqrt{3}$... $ac - bd = 3(-3 - \sqrt{3}) - 3(-3 + \sqrt{3})$ $= -9 - 3\sqrt{3} + 9 - 3\sqrt{3}$... $= -6\sqrt{3}$...

$$-6\sqrt{3}$$

(5)

채점 기준	비율
lacktriangle a, b 의 값을 구할 수 있다.	40%
② c, d 의 값을 구할 수 있다.	40%
$oldsymbol{\circ}$ $ac-bd$ 의 값을 구할 수 있다.	20%

0755
$$x(x+3)=2$$
에서 $x^2+3x-2=0$
 $\therefore x=\frac{-3\pm\sqrt{17}}{2}$
 $A=-3, B=17$ 이므로 $A+B=14$

(5)

0756
$$x^2+4x-2=0$$
에서 $x=-2\pm\sqrt{6}$
따라서 $a=-2$, $b=6$ 이므로 $b-a=8$

3

0757
$$3x^2 + 5x + 1 = 0$$
에서 $x = \frac{-5 \pm \sqrt{13}}{6}$ $\alpha > \beta$ 이므로 $\alpha = \frac{-5 + \sqrt{13}}{6}$, $\beta = \frac{-5 - \sqrt{13}}{6}$ $\therefore \alpha - \beta = \frac{\sqrt{13}}{3}$

0758
$$5x^2 - 6x - 3 = 0$$
에서 $x = \frac{3 \pm 2\sqrt{6}}{5}$
따라서 $m = \frac{3 + 2\sqrt{6}}{5} + \frac{3 - 2\sqrt{6}}{5} = \frac{6}{5}$ 이므로

$$5m-2=5\times\frac{6}{5}-2=4$$

(3)

0759
$$x^2 - 6x + 2 = 0$$
에서 $x = 3 \pm \sqrt{7}$ … **1** 두 근의 곱은

$$(3+\sqrt{7})(3-\sqrt{7})=3^2-(\sqrt{7})^2=2$$
 ... 2

$$x=2$$
가 $x^2+kx+6=0$ 의 근이므로 $2^2+2k+6=0$ $\therefore k=-5$

... (6) $\blacksquare -5$

채점 기준	비율
① $x^2 - 6x + 2 = 0$ 의 두 근을 구할 수 있다.	40%
❷ 두 근의 곱을 구할 수 있다.	30%
③ k 의 값을 구할 수 있다.	30%

0760
$$2x^2 + 3x - 1 = 0$$
 of $A = \frac{-3 \pm \sqrt{17}}{4}$

$$\therefore \alpha = \frac{-3 + \sqrt{17}}{4}, \beta = \frac{-3 - \sqrt{17}}{4}$$

①
$$\alpha + \beta = \frac{-3 + \sqrt{17}}{4} + \frac{-3 - \sqrt{17}}{4} = -\frac{3}{2}$$

②
$$\alpha - \beta = \frac{-3 + \sqrt{17}}{4} - \frac{-3 - \sqrt{17}}{4} = \frac{\sqrt{17}}{2}$$

$$(4) \alpha^{2} = \left(\frac{-3 + \sqrt{17}}{4}\right)^{2} = \frac{26 - 6\sqrt{17}}{16} = \frac{13 - 3\sqrt{17}}{8}$$

(5)
$$\alpha^2 + \beta^2 = \left(\frac{-3 + \sqrt{17}}{4}\right)^2 + \left(\frac{-3 - \sqrt{17}}{4}\right)^2$$

= $\frac{13 - 3\sqrt{17}}{8} + \frac{13 + 3\sqrt{17}}{8} = \frac{13}{4}$

이상에서 무리수인 것은 ②, ④이다.

2(2), (4)

0761
$$ax^2 + 5x + 1 = 0$$
에서
$$x = \frac{-5 \pm \sqrt{25 - 4a}}{2a} = \frac{-5 \pm \sqrt{b}}{4}$$

따라서 2a=4. 25-4a=b이므로

$$a=2, b=17$$

$$\therefore b-a=15$$

15

0762
$$x^2 - 3x + m = 0$$
 \Rightarrow $3 \pm \sqrt{9 - 4m} = 3 \pm \sqrt{29}$

$$x = \frac{3 \pm \sqrt{9 - 4m}}{2} = \frac{3 \pm \sqrt{29}}{2}$$

따라서
$$9-4m=29$$
이므로 $m=-5$

 $\blacksquare -5$

0763
$$2x^2+4x+A=0$$
에서 $x=\frac{-2\pm\sqrt{4-2A}}{2}=B\pm\frac{\sqrt{10}}{2}$

따라서
$$-1=B$$
, $4-2A=10$ 이므로

$$A = -3, B = -1$$

 $\blacksquare A = -3, B = -1$

0764 주어진 이차방정식의 양변에 10을 곱하면

$$10x-5(2x+1)(x-3)=2x+35$$

$$10x^2 - 33x + 20 = 0$$
, $(5x - 4)(2x - 5) = 0$

$$\therefore x = \frac{4}{5}$$
 또는 $x = \frac{5}{2}$

따라서 $\frac{4}{5} < n < \frac{5}{2}$ 를 만족시키는 자연수 n은 1, 2이므로 구하 는 합은

0765 주어진 이차방정식의 양변에 10을 곱하면 $3x^2+2x-1=0$, (x+1)(3x-1)=0 $\therefore x = -1 \, \text{ET} \, x = \frac{1}{3}$

따라서 두 근의 차는
$$\frac{1}{3} - (-1) = \frac{4}{3}$$

나라서 두 근의 차는
$$\frac{1}{3} - (-1) = \frac{4}{3}$$
 말③

0766 $4x^2+4x+1=5x^2+15x-2$ 이므로

$$x^2 + 11x - 3 = 0$$
 $\therefore x = \frac{-11 \pm \sqrt{133}}{2}$

따라서 두 근의 합은

$$\frac{-11+\sqrt{133}}{2} + \frac{-11-\sqrt{133}}{2} = -11$$

0767 주어진 이차방정식의 양변에 12를 곱하면

$$3x^2 + 4x - 6 = 0$$
 $\therefore x = \frac{-2 \pm \sqrt{22}}{3}$

따라서
$$p=-2$$
, $q=22$ 이므로 $p+q=20$

0768 주어진 이차방정식의 양변에 3을 곱하면

$$12(x+2)+x^2+3=3(x-1)(x+3)$$

$$x^2-3x-18=0$$
, $(x+3)(x-6)=0$

$$\therefore x=-3$$
 또는 $x=6$ ··· •

 $\alpha < \beta$ 이므로 $\alpha = -3, \beta = 6$

따라서
$$-3x+6=0$$
이므로 $x=2$

 $\blacksquare x = 2$

채점 기준	비율
● 이차방정식의 해를 구할 수 있다.	60%
② 일차방정식의 해를 구할 수 있다.	40%

0769 주어진 이차방정식의 양변에 6을 곱하면

$$3x^2 - 4x + 6A = 0$$

$$\therefore x = \frac{2 \pm \sqrt{4 - 18A}}{3} = \frac{B \pm \sqrt{10}}{3}$$

따라서 2=B, 4-18A=10이므로 $A=-\frac{1}{3}$, B=2

$$\therefore 3A+B=1$$

0770 x+4=A로 놓으면

$$3A^2-5A-2=0$$
, $(3A+1)(A-2)=0$

$$\therefore A = -\frac{1}{3}$$
 또는 $A = 2$

즉 $x+4=-\frac{1}{3}$ 또는 x+4=2이므로

$$x = -\frac{13}{3}$$
 또는 $x = -2$

따라서 정수인 해는 x=-2

1

 \square $\sqrt{11}$

0771 x-1=A로 놓으면

$$2A^2 + 6A - 1 = 0$$
 $\therefore A = \frac{-3 \pm \sqrt{11}}{2}$

즉
$$x-1=\frac{-3\pm\sqrt{11}}{2}$$
이므로 $x=\frac{-1\pm\sqrt{11}}{2}$

$$\alpha>\beta$$
이므로 $\alpha=\frac{-1+\sqrt{11}}{2},\ \beta=\frac{-1-\sqrt{11}}{2}$

$$\therefore \alpha - \beta = \sqrt{11}$$

0772 3x+1=A로 놓으면

$$A^2 + \frac{1}{10}A - 0.3 = 0$$

양변에 10을 곱하면 $10A^2 + A - 3 = 0$

$$(5A+3)(2A-1)=0$$
 $\therefore A=-\frac{3}{5} \ \pm \frac{1}{2} A=\frac{1}{2}$

즉 $3x+1=-\frac{3}{5}$ 또는 $3x+1=\frac{1}{2}$ 이므로

$$x = -\frac{8}{15} + \frac{1}{6}$$

따라서 두 근의 곱은 $\left(-\frac{8}{15}\right) \times \left(-\frac{1}{6}\right) = \frac{4}{45}$

 $\frac{4}{45}$

0773 전략 등식의 모든 항을 좌변으로 이항하여 정리한다.

 $\sqrt{3}$ = $3x^2 + 5x + 2 = 1 - ax^2$ 이므로 모든 항을 좌변으로 이항 하여 정리하면

$$(a-3)x^2+5x+1=0$$

따라서 이차방정식이 되려면
$$a \neq$$

(5)

0774 전략 $x = -\frac{1}{2}$ 을 주어진 이치방정식에 대입한다.

>풀이 $x = -\frac{1}{2}$ 을 $2x^2 + ax - 1 = 0$ 에 대입하면

$$2 \times \left(-\frac{1}{2}\right)^2 - \frac{1}{2}a - 1 = 0$$
 $\therefore a = -1$

0775 전략 주어진 해를 이처방정식에 대입한다.

x=a, x=b를 각각 주어진 이차방정식에 대입하면

$$a^2+3a-5=0$$
, $b^2+3b-5=0$

따라서 $a^2+3a=5$. $b^2+3b=5$ 이므로

$$(a^2+3a-3)(b^2+3b+2)=(5-3)(5+2)$$

=14

14

0776 전략 AB = 0이면 A = 0 또는 B = 0임을 이용한다.

) (1), (2), (3), (5) $x = -\frac{1}{3}$ 또는 $x = \frac{1}{2}$

$$4 x = -\frac{1}{2} \pm x = \frac{1}{3}$$

전략 주어진 이차방정식을 (ax+b)(cx+d)=0 꼴로 변 형하다.

>풀이
$$6x^2+4x-2=3x^2-x$$
에서 $3x^2+5x-2=0, \qquad (x+2)(3x-1)=0$ $\therefore x=-2$ 또는 $x=\frac{1}{3}$

0778 전략 이처방정식의 해가 x=a 또는 x=b(a < b)일 때, a < k < b를 만족시키는 정수 k를 구한다.

>풀이
$$8x^2 - 6x - 27 = 0$$
에서 $(2x+3)(4x-9) = 0$
 $\therefore x = -\frac{3}{2}$ 또는 $x = \frac{9}{4}$

따라서 $-\frac{3}{2}$ 과 $\frac{9}{4}$ 사이에 있는 정수는 -1, 0, 1, 2이므로 구하 는 합은

$$(-1)+0+1+2=2$$

0779 전략 x=4를 주어진 이처방정식에 대입하여 a의 값을 구

>풀이
$$x=4$$
를 $x^2+(2a+3)x-4a=0$ 에 대입하면 $4^2+4(2a+3)-4a=0$, $4a+28=0$ $∴ a=-7$ $x^2-11x+28=0$ 에서 $(x-4)(x-7)=0$ $∴ x=4$ 또는 $x=7$ 따라서 $b=7$ 이므로 $a+b=0$

0780 전략 공통인 근을 구하여 $x^2 + 8x + a = 0$ 에 대입한다.

 $\ge 풀이 x^2 + 12x + 36 = 0$ 에서

$$(x+6)^2 = 0$$
 : $x = -6$

두 이차방정식의 공통인 근이 x = -6이므로 x = -6을 $x^2 + 8x + a = 0$ 에 대입하면

$$(-6)^{2}+8\times(-6)+a=0$$
∴ $a=12$

0781 전략 중근을 가질 조건을 이용하여 k의 값을 구한다.

풀이 주어진 이차방정식의 양변을 2로 나누면

$$x^2-\frac{3-k}{2}x+16=0$$
 $16=\left(-\frac{3-k}{4}\right)^2$ 이어야 하므로 $\frac{k-3}{4}=\pm 4$ $k-3=\pm 16$ $\therefore k=-13$ 또는 $k=19$ 따라서 양수 k 의 값은 19이다.

0782 제곱근을 이용하여 이처방정식의 해를 구한다.
 (
$$x+A$$
) $^2=B$ 에서 $x+A=\pm\sqrt{B}$
 $x=-A\pm\sqrt{B}$
 따라서 $A=3, B=6$ 이므로 $A-B=-3$

0783 적당한 상수를 더하거나 빼서 식을 변형한다.

<u>둘</u>에 주어진 이차방정식의 양변을 3으로 나누면

$$x^2+4x+rac{5}{3}=0$$
, $x^2+4x=-rac{5}{3}$
$$x^2+4x+4=-rac{5}{3}+4 \qquad \therefore \ (x+2)^2=rac{7}{3}$$
 따라서 $a=2$, $b=rac{7}{3}$ 이므로 $3ab=14$

0784 절략 옳지 않음을 보이려면 성립하지 않는 예를 찾는다.

>풀이 (E) $(x+3)^2=2$ 의 해는 $x=-3\pm\sqrt{2}$ 이므로 모두 음수이

이상에서 옳은 것은 (¬), (L)이다. **(3)**

0785 전략 인수분해하거나 근의 공식을 이용하여 해를 구한다.

>풀에 ① x²=9이므로 x=±3

②
$$(x-1)^2 = 3$$
이므로 $x-1 = \pm \sqrt{3}$ $\therefore x = 1 \pm \sqrt{3}$ ③ $x = \frac{9 \pm \sqrt{53}}{2}$

④
$$(4x+1)(3x-2)=0$$
 ∴ $x=-\frac{1}{4}$ 또는 $x=\frac{2}{3}$

⑤ 괄호를 풀고 정리하면
$$6x^2 - x - 1 = 0$$

$$(3x+1)(2x-1)=0$$
 ∴ $x=-\frac{1}{3}$ 또는 $x=\frac{1}{2}$

0786 전략 양변에 10의 거듭제곱을 곱하여 계수를 정수로 만든

>풀이 주어진 이차방정식의 양변에 10을 곱하면

$$12x^2 - 11x + 2 = 0, \qquad (4x - 1)(3x - 2) = 0$$

$$\therefore x = \frac{1}{4} \text{ 또는 } x = \frac{2}{3}$$
 따라서 두 근의 곱은
$$\frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$$

전략》 양변에 분모의 최소공배수를 곱하여 계수를 정수로 0787 만든다.

>풀이 주어진 이차방정식의 양변에 6을 곱하면 3x(x+2)=2(x+1)(x+3)양변을 전개한 후 정리하면 $x^2-2x-6=0$ $\therefore x=1+\sqrt{7}$ 따라서 p=1, q=7이므로 p+q=8**(3)**

0788 전략 공통부분을 한 문자로 놓는다.

 \geq 풀에 2a-b=A로 놓으면 A(A-6)-27=0, $A^2-6A-27=0$ (A+3)(A-9)=0 : $A=-3 \pm A=9$

$$\therefore 2a-b=9 \ (\because 2a-b>0)$$

····· (¬) ··· (1)

..... (L) ... **2**

0789 전략》 두 근을 각각 이처방정식에 대입하여 얻은 연립방정 식을 푼다.

>풀이 x = -4를 $x^2 + ax + b = 0$ 에 대입하면

$$(-4)^2 - 4a + b = 0$$
 $\therefore 4a - b = 16$

x=1을 $x^2+ax+b=0$ 에 대입하면

$$1+a+b=0$$
 $\therefore a+b=-1$

$$\bigcirc$$
, \bigcirc 을 연립하여 풀면 $a=3, b=-4$

$$a^2+b^2=3^2+(-4)^2=25$$

$$\dots$$

 $k = -3 - \sqrt{2}$

를 택하다.

$$\therefore k+3 = -3 - \sqrt{2} + 3 = -\sqrt{2}$$

0792 전략 이처방정식의 해를 구한 후 부등식을 만족시키는 해

 \Box $-\sqrt{2}$

	2 5	채점 기준	비율
	비율	1 부등식의 해를 구할 수 있다.	20%
lacktriangle a, b 에 대한 연립방정식을 세울 수 있다.	40%	❷ 방정식의 해를 구할 수 있다.	40%
② a, b 의 값을 구할 수 있다.	40%	③ $k+3$ 의 값을 구할 수 있다.	40%
③ $a^2 + b^2$ 의 값을 구할 수 있다.	20%		

0790 전략 $x^2 - 2x - 8 = 0$ 의 두 근을 구하여 이치방정식에 각 각 대입한다.

>풀이
$$x^2-2x-8=0$$
에서 $(x+2)(x-4)=0$

$$\therefore x = -2 \stackrel{\leftarrow}{\text{}} x = 4$$

$$x=-2$$
를 $3x^2+(2m+1)x+m-4=0$ 에 대입하면

$$3 \times (-2)^2 - 2(2m+1) + m - 4 = 0, \quad 6 - 3m = 0$$

$$m=2$$
 ... 2

x=4를 $2x^2+nx-4=0$ 에 대입하면

$$2 \times 4^2 + 4n - 4 = 0$$
, $4n + 28 = 0$

$$\therefore n = -7$$
 ... §

$$m-n=2-(-7)=9$$

	α	$+{\alpha^2}=$	$\left(\alpha + \frac{\alpha}{\alpha}\right)$	_2=	α	α
🙆						

비율 채점 기준 30% ② m의 값을 구할 수 있다. 30% ❸ n의 값을 구할 수 있다. 30% 10%

0791 전략 두 이치방정식을 풀어 공통인 근을 구한다.

>풀이 $x^2+5x=0$ 에서 x(x+5)=0

$$\therefore x = -5 \, \text{ET} x = 0 \qquad \cdots \, \bullet$$

 $x^2+11x+30=0$ 에서 (x+6)(x+5)=0

$$\therefore x = -6 \stackrel{\mathsf{LL}}{=} x = -5$$
 ...

따라서 공통인 근은 x=-5이므로 x=-5를 $x^2+kx-15=0$ 에 대입하면

$$(-5)^2 - 5k - 15 = 0$$
 $\therefore k = 2$ \cdots 3

冒2

3 9

채점 기준	비율
① $x^2 + 5x = 0$ 의 해를 구할 수 있다.	20%
② $x^2 + 11x + 30 = 0$ 의 해를 구할 수 있다.	40%
🔞 k 의 값을 구할 수 있다.	40%

0793 전략 $x=\alpha$ 를 이차방정식에 대입한 후 식을 변형한다.

>풀이 $x(x+4)=2x^2-1$ 에서 $x^2+4x=2x^2-1$

$$x^2-4x-1=0$$

 $x=\alpha$ 를 대입하면 $\alpha^2-4\alpha-1=0$

>풀에 2x+3 < x+1에서 x < -2

 $x^2 + 6x + 7 = 0$ 에서 $x = -3 \pm \sqrt{2}$

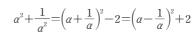
 \bigcirc . \bigcirc 을 모두 만족시키는 x의 값 k는

양변을 α로 나누면

$$\alpha - 4 - \frac{1}{\alpha} = 0$$
 $\therefore \alpha - \frac{1}{\alpha} = 4$

$$\therefore \alpha^2 + \frac{1}{\alpha^2} = \left(\alpha - \frac{1}{\alpha}\right)^2 + 2 = 4^2 + 2 = 18$$

18



0.794 전략 x=k를 대입하여 k에 대한 이차방정식을 푼다.

 \sum 물이 x=k를 주어진 방정식에 대입하면

$$2k^2 + (2k-1)k + 6k + 1 = 0$$

$$4k^2+5k+1=0$$
, $(k+1)(4k+1)=0$

$$\therefore k = -1 (\because k$$
는 정수)

k = -1을 주어진 이차방정식에 대입하면

$$2x^2-3x-5=0$$
, $(x+1)(2x-5)=0$

따라서 다른 한 근은
$$x=\frac{5}{2}$$

3 (5)

0795 전략 중근을 가질 조건을 이용하여 k의 값을 구한 후 두 이처방정식에 대입한다.

 \ge 풀에 이차방정식 $x^2-6x+k=0$ 이 중근을 가지려면

$$k = \left(\frac{-6}{2}\right)^2 = 9$$

 $x^2+7x+12=0$ 에서 (x+4)(x+3)=0

$$\therefore x = -4 \pm x = -3$$

 $2x^2+5x-12=0$ 에서 (x+4)(2x-3)=0

$$\therefore x = -4$$
 또는 $x = \frac{3}{2}$

따라서 공통인 근은 x=-4

(1)

Ⅲ. 이차방정식

07 이차방정식의 활용

0796 (1)
$$(-1)^2 - 4 \times 2 \times (-4) = 33$$

(1) 33 (2) 2

0797 (1)
$$(-5)^2 - 4 \times 3 \times 3 = -11$$

 $\blacksquare (1) - 11 (2) 0$

0798 (1)
$$0-4\times1\times(-25)=100$$

(1) 100 (2) 2

0799 (1)
$$(x+2)^2 = 8x$$
에서 $x^2 - 4x + 4 = 0$ 이므로 $(-4)^2 - 4 \times 1 \times 4 = 0$

(1) 0 (2) 1

0800
$$(-5)^2 - 4 \times 1 \times 1 = 21 > 0$$

따라서 서로 다른 두 근을 갖는다.

2

0801 $(-8)^2 - 4 \times 2 \times 9 = -8 < 0$

따라서 근을 갖지 않는다.

3 0

$0802 12^2 - 4 \times 9 \times 4 = 0$

따라서 중근을 갖는다.

1 (2) 80t

0803 $(-6)^2 - 4 \times 4 \times 1 = 20 > 0$

따라서 서로 다른 두 근을 갖는다.

2

0804 $(-7)^2 - 4 \times 5 \times 4 = -31 < 0$

따라서 근을 갖지 않는다.

3 0

0805 $8^2 - 4 \times 16 \times 1 = 0$

따라서 중근을 갖는다.

图 1

0806 (두근의 합)=
$$-\frac{-2}{1}$$
=2,

$$(두 근의 곱) = \frac{-3}{1} = -3$$

閏 2, −3

0807 (두근의 합)= $-\frac{0}{2}$ =0,

$$(두 근의 곱) = \frac{-4}{2} = -2$$

3 0, −2

0808 (두근의 합)=
$$-\frac{-5}{6}=\frac{5}{6}$$
,

 $(두 근의 곱) = \frac{1}{6}$

 $\frac{5}{6}, \frac{1}{6}$

0809
$$(x-3)(x-5)=0$$
이므로 $x^2-8x+15=0$

 $||||x^2-8x+15=0||$

0810
$$x(x+2)=0$$
이므로 $x^2+2x=0$

 $x^2 + 2x = 0$

0811
$$(x-1)^2 = 0$$
이므로 $x^2 - 2x + 1 = 0$

0812
$$\left(x+\frac{1}{3}\right)\left(x-\frac{1}{3}\right)=0$$
이므로 $x^2-\frac{1}{9}=0$

 $x^2 - \frac{1}{9} = 0$

0813 (1) $x^2 = 2x + 35$ 이므로 $x^2 - 2x - 35 = 0$

(2)
$$(x+5)(x-7)=0$$
 $\therefore x=7 \ (\because x>0)$

 $\blacksquare (1) x^2 - 2x - 35 = 0 (2) 7$

0814 (1) x+2

(2) x(x+2) = 48이므로 $x^2 + 2x - 48 = 0$

(3) (x+8)(x-6)=0 ∴ x=6 (∵ x는 자연수)

(4) 연속하는 두 짝수는 6, 8이다.

🔡 풀이 참조

0815 (1) 0 m

 $(2) 80t - 5t^2 = 0$ 에서 $t^2 - 16t = 0$

t(t-16)=0 : t=16 (:: t>0)

따라서 야구공이 지면에 떨어질 때까지 걸리는 시간은 16초 이다.

답(1)0 m (2)16초

0816 (1) 가로의 길이: (9-x) cm.

세로의 길이: (6-x) cm

(2) (9-x)(6-x)=18이므로 $x^2-15x+36=0$

(3) (x-3)(x-12)=0 $\therefore x=3 \ (\because 0 < x < 6)$

 $\exists (1) (9-x) \text{ cm}, (6-x) \text{ cm}$

(2) $x^2 - 15x + 36 = 0$ (3) 3

x는 길이에 대한 변수이므로 양수이고, 직사각형의 가로의 길이 9-x, 세로의 길이 6-x 모두 양수이어야 한다. 즉 x>0, 9-x>0, 6-x>0이므로 x의 값의 범위는

0 < x < 6

0817 ① $(-8)^2 - 4 \times 18 = -8 < 0$

따라서 근을 갖지 않는다.

冒(4)

07 이치방정식의 활용

- $(3) (-3)^2 4 \times 2 \times 5 = -31 < 0$ 따라서 근을 갖지 않는다.
- (4) $6^2 4 \times 4 \times 3 = -12 < 0$ 따라서 근을 갖지 않는다.
- (5) $\frac{1}{2}x^2 \frac{2}{3}x + 1 = 0$ \Rightarrow $3x^2 4x + 6 = 0$ $(-4)^2 - 4 \times 3 \times 6 = -56 < 0$ 따라서 근을 갖지 않는다. **(2)**
- **0818** (키 $(4x-3)^2 = 0$ 이므로 $x = \frac{3}{4}$ (중간) 따라서 중근을 갖는다.
- (L) $2x^2 \frac{1}{3}x + \frac{1}{5} = 0$ 에서 $30x^2 5x + 3 = 0$ $(-5)^2 - 4 \times 30 \times 3 = -335 < 0$ 따라서 근을 갖지 않는다.
- (E) $x^2 9 = 10x$ 이므로 $x^2 10x 9 = 0$ $(-10)^2 - 4 \times 1 \times (-9) = 136 > 0$ 따라서 서로 다른 두 근을 갖는다.
- (리) $6x^2+x+1=0$ 이므로 $1-4\times 6\times 1=-23<0$ 따라서 근을 갖지 않는다.
- 이상에서 근을 갖지 않는 것은 (니), (리)이다.

담 (니). (리)

- **0819** (1) $(-2)^2 4 \times 1 \times (-8) = 36 > 0$ 따라서 서로 다른 두 근을 갖는다.
- ② $x^2 = 2$ 이므로 $x = \pm \sqrt{2}$ 따라서 서로 다른 두 근을 갖는다.
- ③ $4x^2+x-1=0$ 이므로 $1-4\times4\times(-1)=17>0$ 따라서 서로 다른 두 근을 갖는다.
- ④ $2x^2 x 2 = 0$ 이므로 $(-1)^2 - 4 \times 2 \times (-2) = 17 > 0$ 따라서 서로 다른 두 근을 갖는다.
- (5) $x^2-6x+9=0$ 이므로 $(x-3)^2=0$ ∴ *x*=3 (중근) 따라서 중근을 갖는다. **3** (5)
- $(-6)^2-4\times1\times(2k-1)>0$ 이어야 하므로 40-8k>0 : k<5따라서 가장 큰 정수 k는 4이다. **3** 4
- **0821** $2^2 4 \times 3 \times k = 4 12k$
- (1) 4-12k>0이므로 $k<\frac{1}{2}$... 2

 $k=\frac{1}{2}$ (2) 4-12k=0이므로

 $\therefore A-B=4$

- (3) 4-12k<0이므로 $k>\frac{1}{2}$
 - \blacksquare (1) $k < \frac{1}{3}$ (2) $k = \frac{1}{3}$ (3) $k > \frac{1}{3}$

채점 기준	비율
$lackbox{1}{\bullet} b^2 - 4ac$ 를 k 에 대한 식으로 나타낼 수 있다.	25%
② 서로 다른 두 근을 가질 k 의 값의 범위를 구할 수 있다.	25%
	25%
$oldsymbol{\Phi}$ 근을 갖지 않을 k 의 값의 범위를 구할 수 있다.	25%

 $(-8)^2 - 4 \times 2m \times 1 \ge 0$ 이어야 하므로 $64 - 8m \ge 0$: $m \le 8$ 따라서 자연수 *m*은 1, 2, 3, ···, 8의 8개이다. **(5)**

0823 $x^2 + Ax - 7 = 0$ 의 두 근의 합이 -5이므로 -A = -5 $\therefore A = 5$ $\frac{1}{2}x^2 - 3x + B = 0$ 의 두 근의 곱이 2이므로 2B=2 $\therefore B=1$

0824
$$x^2 - 3x + 2k - 1 = 0$$
의 두 근의 함이 a 이므로 $a = -(-3) = 3$ 두 근의 곱이 -5 이므로 $2k - 1 = -5$ ∴ $k = -2$ ∴ $a + k = 1$

0825 (1)
$$\alpha + \beta = -\frac{6}{2} = -3$$
 ...

채점 기준	비율
$oldsymbol{\alpha}+oldsymbol{eta}$ 의 값을 구할 수 있다.	30%
o $lphaeta$ 의 값을 구할 수 있다.	30%
③ $\alpha^2 + \beta^2$ 의 값을 구할 수 있다.	40%

0826 구하는 이차방정식은 (x+2)(x-3)=0 $\therefore x^2-x-6=0$ 따라서 a=-1, b=-6이므로 a-b=5**(4)**

0827 구하는 이차방정식은

$$(x+4)^2 = 0$$
 $\therefore x^2 + 8x + 16 = 0$

따라서 a+b=8, a-b=16이므로

$$a=12, b=-4$$

(4)

0828 (1)
$$\alpha + \beta = -5$$
, $\alpha \beta = 3$

... €

(2) -5와 3을 두 근으로 하고 x^2 의 계수가 1인 이차방정식은

$$(x+5)(x-3)=0$$

$$x^2 + 2x - 15 = 0$$
 ...

$$\Box$$
 (1) $\alpha + \beta = -5$, $\alpha\beta = 3$ (2) $x^2 + 2x - 15 = 0$

채점 기준	비율
$lacksquare$ $\alpha+eta$, $lphaeta$ 의 값을 구할 수 있다.	40%
◎ 이치방정식을 구할 수 있다.	60%

0829 두 근이 $-\frac{1}{2}$, $\frac{1}{5}$ 이고 x^2 의 계수가 1인 이차방정식은

$$\left(x+\frac{1}{2}\right)\left(x-\frac{1}{5}\right)=0, \stackrel{\approx}{-} x^2+\frac{3}{10}x-\frac{1}{10}=0$$

$$\therefore a = \frac{3}{10}, b = -\frac{1}{10}$$

따라서 $\frac{3}{10}x^2 - \frac{1}{10}x - 1 = 0$ 이므로 양변에 10을 곱하면

$$3x^2 - x - 10 = 0$$
, $(3x+5)(x-2) = 0$

∴ *x*=2 (∵ *x*는 정수)

3 (5)

0830 세희가 잘못 본 이차방정식은

$$(x-1)(x-10)=0$$
 $\therefore x^2-11x+10=0$

따라서 원래 이차방정식의 상수항은 10이므로

$$b=10$$
 ...

호범이가 잘못 본 이차방정식은

$$(x+2)(x-9)=0$$
 $\therefore x^2-7x-18=0$

따라서 원래 이차방정식의 x의 계수는 -7이므로

$$a=-7$$
 ...

$$\therefore a+b=3$$

... (3)

3

채점 기준	비율
$lackbox{0}{lackbox{0}}$ b 의 값을 구할 수 있다.	40%
② a의 값을 구할 수 있다.	40%
③ $a+b$ 의 값을 구할 수 있다.	20%

0831 두 근을 α , 2α 로 놓으면 근과 계수의 관계에 의하여

$$\alpha + 2\alpha = 6$$
 $\therefore \alpha = 2$

따라서 두 근이 2, 4이므로 근과 계수의 관계에 의하여

$$2 \times 4 = 2a$$
 $\therefore a = 4$

3 4

0832 두 근을 2α , 3α 로 놓으면 근과 계수의 관계에 의하여

$$2\alpha + 3\alpha = -3k + 2$$

.....

$$2\alpha \times 3\alpha = 6k$$

.... (L)

$$\bigcirc$$
에서 $6\alpha^2$ = $6k$ ∴ k = α^2

 $k=\alpha^2$ 을 \bigcirc 에 대입하면

$$5\alpha = -3\alpha^2 + 2$$
, $3\alpha^2 + 5\alpha - 2 = 0$

$$(\alpha+2)(3\alpha-1)=0$$
 $\therefore \alpha=-2 \stackrel{\leftarrow}{=} \alpha=\frac{1}{3}$

이때 k는 정수이므로 $k=\alpha^2=(-2)^2=4$

3 (5)

0833 두 근을 α , $\alpha+3$ 으로 놓으면 근과 계수의 관계에 의 하여

$$\alpha + (\alpha + 3) = -m - 3$$

....

$$\alpha \times (\alpha + 3) = 18$$

$$\bigcirc$$
에서 $\alpha^2+3\alpha-18=0$

$$(\alpha+6)(\alpha-3)=0$$
 $\therefore \alpha=-6 \stackrel{\mathsf{L}}{=} \alpha=3$

 $(i)\alpha = -6$ 을 \bigcirc 에 대입하면

$$-6+(-3)=-m-3$$
 : $m=6$

(ii) α=3을 ¬에 대입하면

$$3+6=-m-3$$
 : $m=-12$

(i), (ii)에서 모든 m의 값의 합은

$$6+(-12)=-6$$

0834 $\frac{n(n-3)}{2}$ =35이므로 $n^2-3n-70=0$

따라서 구하는 다각형은 십각형이다.

4

0835
$$\frac{n(n+1)}{2}$$
=66이므로 $n^2+n-132=0$

图 11

0836
$$\frac{n(n-1)}{2} = 45$$
이므로 $n^2 - n - 90 = 0$

립 10명

0837 두 자연수를 x, x+5로 놓으면

$$x(x+5)=126$$

$$x^2+5x-126=0$$
, $(x+14)(x-9)=0$

따라서 두 자연수는 9, 14이므로 구하는 합은

$$9+14=23$$

23

0838 어떤 자연수를
$$x$$
라 하면 $3x=x^2-40$

$$x^2-3x-40=0$$
, $(x+5)(x-8)=0$

4

0839 십의 자리의 숫자를 x라 하면 일의 자리의 숫자는 9-x이므로

$$x(9-x)=(10x+9-x)-25$$

... 1

$$x^2-16=0$$
, $(x+4)(x-4)=0$
 $\therefore x=4$ ($\therefore x$ 는 자연수)

_

··· ②

图 45

채점 기준	비율
lacktriangle 십의 자리의 숫자를 x 로 놓고 이차방정식을 세울 수 있다.	40%
② x 의 값을 구할 수 있다.	40%
❸ 두 자리 자연수를 구할 수 있다.	20%

0840 연속하는 두 정수를 x, x+1로 놓으면

$$x^2 + (x+1)^2 = 145$$

$$x^2+x-72=0$$
, $(x+9)(x-8)=0$

따라서 구하는 두 정수는 -9, -8 또는 8, 9이므로 두 정수의 곱은 72이다.

0841 연속하는 세 자연수를 x-1, x, x+1로 놓으면

$$x^2 = 9(x+1+x-1)+19$$

$$x^2-18x-19=0$$
, $(x+1)(x-19)=0$

∴ *x*=19 (∵ *x*는 자연수)

따라서 가장 큰 수는 20이다.

3

다른풀이 연속하는 세 자연수를 <math> x-2, x-1, x로 놓으면

$$(x-1)^2 = 9(x+x-2)+19$$

$$x^2 - 20x = 0$$
, $x(x-20) = 0$

따라서 가장 큰 수는 20이다.

0842 연속하는 세 <u>홀</u>수를 x-2, x, x+2로 놓으면

$$(x+2)^2 = (x-2)^2 + x^2 + 7$$

$$x^2-8x+7=0$$
, $(x-1)(x-7)=0$

$$\therefore x=7 \ (\because x>2)$$

따라서 세 홀수는 5, 7, 9이므로 구하는 합은 21이다.

3

0843 민지가 호두과자를 나누어 준 친구 수를 x라 하면 한 사람에게 (x-3)개씩 나누어 주었으므로

$$26 \times 5 = x(x-3)$$

$$x^2-3x-130=0$$
, $(x+10)(x-13)=0$

따라서 13명의 친구들에게 나누어 주었다.

2 (2)

 $\mathbf{0844}$ 동생의 나이를 x살이라 하면 언니의 나이는 (x+2)살이므로 x(x+2)=195

$$x^2+2x-195=0$$
, $(x+15)(x-13)=0$

∴ *x*=13 (∵ *x*는 자연수)

따라서 동생의 나이는 13살이다.

립 13살

0845 펼친 면 중 왼쪽 면의 쪽수를 x라 하면 오른쪽 면의 쪽수는 x+1이므로

$$x(x+1)=156, \quad x^2+x-156=0$$

$$(x+13)(x-12)=0$$
 $\therefore x=12 (:: x는 자연수)$

따라서 두 면의 쪽수의 합은

12+13=25

(1)

0846 세로줄의 수를 x라 하면 가로줄의 수는 2x-1이므로

$$x(2x-1)=120, 2x^2-x-120=0$$

(2x+15)(x-8)=0

∴ x=8 (∵ x는 자연수)

따라서 가로줄의 수는 $2 \times 8 - 1 = 15$

日 15

0847 여행 날짜를 (x-1)일, x일, (x+1)일이라 하면

$$(x-1)^2+x^2+(x+1)^2=50$$

$$x^2-16=0$$
, $(x+4)(x-4)=0$

∴ *x*=4 (∵ *x*는 자연수)

따라서 여행에서 돌아오는 날짜는 5일이다.

 \blacksquare (3)

0848 지면에 떨어지는 것은 높이가 0 m일 때이므로

$$100+40t-5t^2=0$$

$$t^2-8t-20=0$$
, $(t+2)(t-10)=0$

$$\therefore t=10 \ (\because t>0)$$

따라서 10초 후에 지면에 떨어진다.

目(2)

0849 높이가 20 m이므로 20=20t-5t²

$$t^2-4t+4=0$$
, $(t-2)^2=0$

 $\therefore t=2$

따라서 2초 후에 높이가 20 m가 된다.

冒 2초

0850 (1)
$$k = -5 \times 2^2 + 60 \times 2 = 100$$

... 1

(2) 100= $-5t^2+60t$ 이므로

$$t^2 - 12t + 20 = 0,$$
 $(t-2)(t-10) = 0$

 $\therefore t=2 \pm t=10$

따라서 10초 후에 높이가 100 m인 지점을 다시 지난다.… ②

目 (1) 100 (2) 10초

채점 기준	비율
lacksquare k 의 값을 구할 수 있다.	40%
② 답을 구할 수 있다.	60%

0851 줄인 길이를 *x* m라 하면

$$(12-x)(8-x)=12\times 8-64$$

$$x^2-20x+64=0$$
, $(x-4)(x-16)=0$

$$\therefore x=4 \ (\because 0 < x < 8)$$

따라서 가로, 세로의 길이를 4 m씩 줄였다.

₽ 4 m

0852 처음 원의 반지름의 길이를 x cm라 하면

$$\pi \times (x+2)^2 = 4 \times \pi \times x^2$$

$$3x^2-4x-4=0$$
, $(3x+2)(x-2)=0$

$$\therefore x=2 (\because x>0)$$

따라서 처음 원의 반지름의 길이는 2 cm이다.

2

0853 가로의 길이를 $x \, \text{cm}$ 라 하면 세로의 길이는

(15-x)cm이므로

$$x(15-x)=54$$

$$x^2-15x+54=0$$
, $(x-6)(x-9)=0$

$$\therefore x=6 \ \text{£} = 9$$

이때 가로의 길이가 세로의 길이보다 더 길기 때문에 가로의 길이는 9 cm이다.

 $\overline{AP} = \overline{QC} = x \text{ cm}$ 라 하면

$$\overline{PB} = (10-x) \text{cm}, \overline{BQ} = (15-x) \text{cm}$$

△PBQ의 넓이가 42 cm²이므로

$$\frac{1}{2} \times (15-x) \times (10-x) = 42$$

$$x^2-25x+66=0$$
, $(x-3)(x-22)=0$

 $x=3 \ (x < 10)$

$$BQ = 15 - 3 = 12(cm)$$

4

0855 작은 정삼각형의 한 변의 길이를 $x \, \mathrm{cm}$ 라 하면 두 정 삼각형의 닮음비는

$$x:6-x$$

두 정삼각형의 넓이의 비가 1:2이므로

$$x^2$$
: $(6-x)^2=1:2$

$$2x^2 = (6-x)^2$$

$$2x^2 = x^2 - 12x + 36$$
, $x^2 + 12x - 36 = 0$...

$$\therefore x = -6 + 6\sqrt{2} \ (\because 0 < x < 3)$$

따라서 작은 정삼각형의 둘레의 길이는

$$3 \times (-6 + 6\sqrt{2}) = 18(\sqrt{2} - 1)$$
 (cm)

... 🔞

 $18(\sqrt{2}-1)$ cm

 $\sim (16-x) \text{ m}$

채점 기준	비율
❶ 이치방정식을 세울 수 있다.	50%
❷ 작은 정삼각형의 한 변의 길이를 구할 수 있다.	30%
❸ 답을 구할 수 있다.	20%

 $(10-x) \, \text{m}$

0856 도로의 폭을 x m라 하면 도로를 제외한 나머지 부

분의 넓이는 가로의 길이가

(16-x)m, 세로의 길이가

(10-x)m인 직사각형의 넓이와 같으므로

$$(16-x)(10-x)=91$$

$$x^2-26x+69=0$$
, $(x-3)(x-23)=0$

$$\therefore x=3 (\because 0 < x < 10)$$

따라서 도로의 폭은 3 m이다.

3

0857 길의 폭을 x m라 하면

$$(18-x)(12-x)=18\times12-104$$

$$x^2-30x+104=0$$
, $(x-4)(x-26)=0$

$$\therefore x=4 \ (\because 0 < x < 12)$$

따라서 길의 폭은 4 m이다.

(12-x) m ζx m

0858 길의 폭을 x m라 하면 길을 제외한 땅의 넓이는 한 변의 길이가 (12-x) m인 정사각형의

넓이와 같으므로

$$12 - x = \pm 10$$

$$\therefore x=2 (\because 0 < x < 12)$$

따라서 길의 폭은 2 m이다.

冒2 m

0859 산책로의 폭을 *x* m라 하면

$$(10+2x)(7+2x)-70=84$$

$$2x^2+17x-42=0$$
, $(2x+21)(x-2)=0$

$$\therefore x=2 (\because x>0)$$

따라서 산책로의 폭은 2 m이다.

₽ 2 m

 ${f 0860}$ 오려 내는 정사각형의 한 변의 길이를 $x \, {
m cm}$ 라 하면 상자의 밑면은 가로, 세로의 길이가 각각 $(8-2x) \, {
m cm}$,

(14-2x) cm인 직사각형이므로

$$(8-2x)(14-2x)=72$$

$$x^2-11x+10=0$$
, $(x-1)(x-10)=0$

$$\therefore x=1 (\because 0 < x < 4)$$

따라서 오려 내는 정사각형의 한 변의 길이는 1 cm이다.

图(2)

0861 처음 정사각형 모양의 종이의 한 변의 길이를 x cm라 하자. 직육면체의 밑면은 한 변의 길이가 (x-6)cm인 정사각형이고 높이가 3 cm이므로

$$(x-6)^2 \times 3 = 108, \quad (x-6)^2 = 36$$

$$x-6=\pm 6$$

$$\therefore x=12 (\because x>6)$$

따라서 정사각형 모양의 종이의 한 변의 길이는 12 cm이다.

0862 각 항의 계수를 정수로 만든 후 근의 개수를 판별하는 식의 부호를 이용한다.

$$\frac{1}{9}x^2 - \frac{10}{3}x + 25 = 0$$
의 양변에 9를 곱하면

$$x^2-30x+225=0$$
, $(x-15)^2=0$

∴ a=1

 $0.3x^2 - \frac{1}{2}x - 0.2 = 0$ 의 양변에 10을 곱하면

$$3x^2 - 5x - 2 = 0$$

$$(-5)^2 - 4 \times 3 \times (-2) = 49 > 0$$
이므로 $b=2$

 $-x^2+4x-4=3$ 에서

$$x^2 - 4x + 7 = 0$$

$$(-4)^2 - 4 \times 1 \times 7 = -12 < 0$$
이므로 $c = 0$

$$a+b-c=1+2-0=3$$

3

0863 전략 이차방정식이 해를 가질 조건을 이용한다.

>풀이 $(-5)^2-4\times3\times(1-m)\geq0$

$$13+12m \ge 0$$
 : $m \ge -\frac{13}{12}$

따라서 m의 값이 될 수 없는 것은 (1)이다.

0864 전략 이치방정식의 근과 계수의 관계를 이용한다.

≥풀이 근과 계수의 관계에 의하여

$$b = -\frac{12}{2} = -6$$

$$\frac{a}{2} = \frac{7}{2}$$
이므로 $a=7$

$$\therefore a+b=1$$

(4)

0865 전략 이치방정식의 근과 계수의 관계를 이용하여 k의 값을 먼저 구한다.

 \geq 풀에 두 근의 곱이 $\frac{2}{3}$ 이므로 $\frac{k}{3} = \frac{2}{3}$ $\therefore k=2$

즉
$$3x^2 + 8x + 2 = 0$$
이므로 $x = \frac{-4 \pm \sqrt{10}}{3}$

따라서 A = -4, B = 10이므로 A + B = 6

(2)

다른풀이< 근과 계수의 관계에 의하여 두 근의 합이 $-\frac{8}{3}$ 이므로

$$\frac{A+\sqrt{B}}{3} + \frac{A-\sqrt{B}}{3} = -\frac{8}{3}$$

$$\frac{2A}{3} = -\frac{8}{3} \qquad \therefore A = -4$$

두 근의 곱이 $\frac{2}{3}$ 이므로

$$\frac{-4+\sqrt{B}}{3}\times\frac{-4-\sqrt{B}}{3}=\frac{2}{3}$$

$$\frac{16-B}{\alpha} = \frac{2}{3}$$
 $\therefore B=10$

$$\therefore A+B=6$$

0866 전략 두 근이 a, b이고 x^2 의 계수가 1인 이차방정식은 (x-a)(x-b)=0임을 이용한다.

물이 근과 계수의 관계에 의하여

$$\alpha + \beta = 8$$
, $\alpha\beta = 6$

6, 8을 두 근으로 하고 x^2 의 계수가 1인 이차방정식은

$$(x-6)(x-8)=0$$
, $\stackrel{\text{d}}{=} x^2-14x+48=0$

(3)

P(2)

0867 전략 두 근을 α, 3α로 놓고 근과 계수의 관계를 이용한다.

 $_{\Xi 0}$ 두 근을 α , 3α 로 놓으면 근과 계수의 관계에 의하여

$$\alpha + 3\alpha = -8$$
 $\therefore \alpha = -2$

따라서 두 근이 -2, -6이므로

$$k = (-2) \times (-6) = 12$$

0868 전략 주어진 식을 이용하여 이차방정식을 세운다.

$$\frac{n(n+1)}{2}$$
=105이므로

$$n^2+n-210=0$$
, $(n+15)(n-14)=0$

따라서 14번째이다.

답 14번째

0869 연속하는 두 짝수를 x, x+2로 놓고 이차방정식을 세운다.

 \nearrow 물이 연속하는 두 짝수를 x, x+2라 하면

$$x^2 + (x+2)^2 = 340$$

$$x^2+2x-168=0$$
, $(x+14)(x-12)=0$

따라서 두 짝수는 12. 14이므로 구하는 곱은 168이다.

1168

0870 전략 학생 수를 x로 놓고 이차방정식을 세운다.

$$x(2x-3)=170$$

$$2x^2-3x-170=0$$
, $(2x+17)(x-10)=0$

따라서 10명의 학생이 참가하였다.

 \square (2)

0871 전략 두 수를 x-7, x로 놓고 이치방정식을 세운다.

 \mathbb{Z} 등 수 중에서 큰 수를 x라 하면 작은 수는 x-7이므로

$$x(x-7)=120, \quad x^2-7x-120=0$$

$$(x+8)(x-15)=0$$

$$\therefore x=15 \ (\because x>7)$$

0872 절략 물체의 높이가 25 m인 시각을 구한다.

 $\ge 플이 30t - 5t^2 = 25$ 이므로 $t^2 - 6t + 5 = 0$

$$(t-1)(t-5)=0$$
 ∴ $t=1$ 또는 $t=5$

따라서 높이가 25 m 이상인 것은 1 초부터 5 초까지이므로 4 초 동안이다.

김 4초

0873 큰 직각이등변삼각형의 한 변의 길이를 x cm로 놓고 이치방정식을 세운다.

 $2 \equiv 0$ 큰 직각이등변삼각형의 빗변이 아닌 한 변의 길이를 x cm라 하면 작은 직각이등변삼각형의 빗변이 아닌 한 변의 길이가 (8-x)cm이므로

$$\frac{1}{2} \times x^2 + \frac{1}{2} \times (8 - x)^2 = 20$$

$$x^2-8x+12=0$$
, $(x-2)(x-6)=0$

$$\therefore x=6 \ (\because 4 < x < 8)$$

따라서 큰 직각이등변삼각형의 빗변이 아닌 한 변의 길이는 6 cm이므로 구하는 넓이는

$$\frac{1}{2} \times 6^2 = 18 \text{ cm}^2$$

0874 $_{\odot}$ 늘이는 길이를 x cm로 놓고 이치방정식을 세운다.

 \geq 풀에 늘이는 길이를 x cm라 하면

$$(6+x)(4+x)=2\times 6\times 4$$

$$x^2+10x-24=0$$
, $(x+12)(x-2)=0$

$$\therefore x=2 \ (\because x>0)$$

0875 전략 가장 작은 원의 반지름의 길이를 x cm로 놓고 이차 방정식을 세운다.

 \ge 풀이 가장 작은 원의 반지름의 길이를 x cm라 하면 내부에 있는 나머지 원의 반지름의 길이는 (6-x)cm이므로

$$\pi \times 6^2 - \pi \times (6 - x)^2 - \pi \times x^2 = 16\pi$$

$$x^2-6x+8=0$$
, $(x-2)(x-4)=0$

$$\therefore x=2 (\because 0 < x < 3)$$

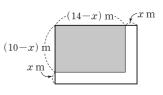
따라서 가장 작은 원의 반지름의 길이는 2 cm이다.

P (4)

(2)

0876 질을 제외한 땅을 모아 붙이면 직사각형이 됨을 이용한다.

출에 길을 제외한 나머지 부분의 넓이는 오른쪽 그림과 같이 가로의 길이가 (14-x) m, 세로의 길이가 (10-x) m인 직사각형의 넓이와 같으므로



$$(14-x)(10-x) = 96$$

$$x^{2}-24x+44=0, (x-2)(x-22)=0$$

$$\therefore x=2 (\because 0 < x < 10)$$

0877 전략 근의 개수를 판별하는 식을 이용하여 부등식을 세운다.

 $x^2 - 5x + 3 - m = 0$ 이 해를 가지므로

$$(-5)^2-4(3-m)\geq 0$$

$$4m \ge -13$$
 $\therefore m \ge -\frac{13}{4}$

..... 🗇 ... 🕦

图 2

 $(m-1)x^2+2x-3=0$ 이 해를 갖지 않으므로

$$2^2-4\times(m-1)\times(-3)<0$$

$$12m < 8$$
 $\therefore m < \frac{2}{3}$

····· 🕒 ··· 2

 \bigcirc , \bigcirc 에서 m의 값의 범위는 $-\frac{13}{4} \le m < \frac{2}{3}$... ③

$$-\frac{13}{4} \le m < \frac{2}{3}$$

채점 기준	비율
① $x^2 - 5x + 3 - m = 0$ 에서 m 의 값의 범위를 구할 수 있다.	40%
② $(m-1)x^2 + 2x - 3 = 0$ 에서 m 의 값의 범위를 구할 수 있다.	40%
0 m 의 값의 범위를 구할 수 있다.	20%

0878 잘못 본 이차방정식을 각각 구하여 일차항의 계수와 상수항을 구한다.

둘이 슬기가 잘못 본 이차방정식은

$$(x+8)(x-2)=0$$
 $\therefore x^2+6x-16=0$

따라서 처음에 주어진 이차방정식의 상수항은 -16이다. \cdots \bullet 영은이가 구한 두 근의 합과 곱은

$$(3-\sqrt{7})+(3+\sqrt{7})=6, (3-\sqrt{7})\times(3+\sqrt{7})=2$$
이므로 영은이가 잘못 본 이차방정식은

$$x^2 - 6x + 2 = 0$$

따라서 처음에 주어진 이차방정식의 x의 계수는 -6이다. \cdots ② 이상에서 처음에 주어진 이차방정식은 $x^2-6x-16=0$ 이므로

$$(x+2)(x-8)=0$$
 $\therefore x=-2 \pm x=8$ \cdots

달 x = -2 또는 x = 8

채점 기준	비율
❶ 처음에 주어진 이치방정식의 상수항을 구할 수 있다.	30%
② 처음에 주어진 이치방정식의 x 의 계수를 구할 수 있다.	40%
③ 처음에 주어진 이치방정식의 해를 구할 수 있다.	30%

0879 전략 어떤 자연수를 x로 놓고 이처방정식을 세운다.

> 풀이 어떤 자연수를 x라 하면

$$x(x+2)=143,$$
 $x^2+2x-143=0$... $(x+13)(x-11)=0$

따라서 원래 곱하려던 두 수의 곱은

3 99

채점 기준	비율
❶ 이치방정식을 세울 수 있다.	40%
⊘ 어떤 자연수를 구할 수 있다.	40%
❸ 원래의 두 수의 곱을 구할 수 있다.	20%

0880 전략》 물반이의 높이를 $x \, \mathrm{cm}$ 로 놓고 이치방정식을 세운다.

(2) $-2x^2+54x=360$ 이므로

$$x^2 - 27x + 180 = 0,$$
 $(x-12)(x-15) = 0$

∴ x=12 또는 x=15

따라서 물받이의 높이는 12 cm 또는 15 cm이다. ...

 $(1) (-2x^2+54x)$ cm² (2) 12 cm, 15 cm

채점 기준	비율
① 넓이를 x 에 대한 식으로 나타낼 수 있다.	40%
② 물받이의 높이를 구할 수 있다.	60%

0881 전략 기호의 뜻에 맞게 이차방정식을 세운다.

>풀이
$$(3x-2)-(x+1)+(3x-2)(x+1)=k$$
이므로 $3x^2+3x-5-k=0$

이 이차방정식의 두 근의 곱이 -3이므로 근과 계수의 관계에 의하여

$$\frac{-5-k}{3}$$
 = -3, -5-k=-9
∴ k=4

0882 (매출액)=(가격)×(판매량)임을 이용하여 이차 방정식을 세운다.

>풀이 인상 후 짜장면의 가격은

$$4000 \times \left(1 + \frac{5x}{100}\right)$$
원

가격을 인상하기 전에 k그릇의 짜장면이 팔렸다고 하면 인상 후 짜장면의 판매량은 $k imes \left(1 - \frac{4x}{100}\right)$

가격 인상 전후의 매출액이 같으므로

$$4000k\!=\!4000\!\!\left(1\!+\!\frac{5x}{100}\right)\!\!\times\!k\!\!\left(1\!-\!\frac{4x}{100}\right)$$

$$20x^2 - 100x = 0$$
, $x(x-5) = 0$

$$\therefore x=5 (\because x>0)$$

따라서 인상한 짜장면 한 그릇의 가격은

$$4000 \times \left(1 + \frac{25}{100}\right) = 5000(원)$$

(4)

0883 전략 $\overline{AB} = x \text{ cm}$ 로 놓고 닮음인 두 도형에서 대응하는 변의 길이의 비가 같음을 이용한다.

>풀이 □ABCD∽□DEFC이므로

 $\overline{AB} : \overline{DE} = \overline{AD} : \overline{DC}$

 $\overline{AB} = x \text{ cm}$ 라 하면

$$x: (12-x)=12: x, x^2+12x-144=0$$

$$x = -6 + 6\sqrt{5} \ (x > 0)$$

 \Box $(-6+6\sqrt{5})$ cm

평면도형에서 닮음의 성질

- ① 대응하는 변의 길이의 비는 일정하다.
- ② 대응하는 각의 크기는 각각 같다.

Ⅳ. 이차함수

08) 이차함수의 그래프 (1)

0884 目×

0885 母○

0886 $y=x^2-(x^2-4x+4)=4x-4$

0887 $y=3x^2+3x$

0888 **∄** ×

0889 母○

0890 y=4x이므로 이차함수가 아니다. 📔 풀이 참조

0891 $y = \frac{1}{2} \times (x+1) \times 4 = 2x+2$ 이므로 이차함수가 아니

다. 를 풀이 참조

0892 $y = \pi x^2$ 이므로 이차함수이다. **립** 풀이 참조

0893 $y=x^3$ 이므로 이차함수가 아니다. 답 풀이 참조

0894 $y=x(x+2)=x^2+2x$ 이므로 이차함수이다.

🖪 풀이 참조

0895 f(0) = -4

0896 $f(1)=1^2+2\times 1-4=-1$

0897 $f(-3) = (-3)^2 + 2 \times (-3) - 4 = -1$

0898 $f(2) = 2^2 - 4 \times 2 + 3 = -1$

0899 $f(2) = 3 \times 2^2 + 2 - 2 = 12$

0900 $f(2) = 4 \times 2^2 - 5 \times 2 = 6$

0901 달아래 0902 달(0,0)

0903 급 *x* **0904 급** 감소

0905 달위 **0906 달**x=0

0907 답증가

0908 $y = -3 \times (-1)^2 = -3$

0909 달(¬), (ㄴ), (ㅁ) **0910** 달(¬)

0911 달(니과 (비)

보충학습

이차함수 $y=ax^2$ 에서

① a의 부호: 그래프의 볼록한 방향을 결정

② a의 절댓값: 그래프의 폭을 결정

0912 (□ (□ 0913 (□ (□

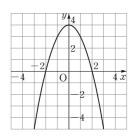
0914 日(¬) **0915 日**(□)

0917 a $y = -x^2 + 3$

0918 a $y = -\frac{1}{3}x^2 - \frac{1}{2}$

0919 $y=-x^2+4$ 의 그래프는 $y=-x^2$ 의 그래프를 y축의 방향으로 4만큼 평행이동한 것이므로 오른쪽 그림과 같다.

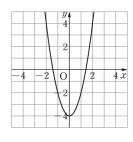
또 꼭짓점의 좌표는 (0, 4)이고 축의 방정식은 x=0이다.



답 풀이 참조

0920 $y=2x^2-4$ 의 그래프는 $y=2x^2$ 의 그래프를 y축의 방향으로 -4만큼 평행이동한 것이므로 오른쪽 그림과 같다.

또 꼭짓점의 좌표는 (0, -4)이고 축의 방정식은 x=0이다.



🖪 풀이 참조

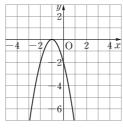
0922 2 $y = -5(x-1)^2$

8

0923 2
$$y = \frac{4}{5} \left(x + \frac{1}{3} \right)^2$$

0924 $y=-2(x+1)^2$ 의 그래프 는 $y = -2x^2$ 의 그래프를 x축의 방향 으로 -1만큼 평행이동한 것이므로 오 른쪽 그림과 같다.

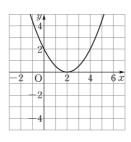
또 꼭짓점의 좌표는 (-1, 0)이고 축 의 방정식은 x=-1이다.



답 풀이 참조

0925 $y = \frac{1}{2}(x-2)^2$ 의 그래프는 $y=\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 2만큼 평행이동한 것이므로 오른쪽 그 림과 같다.

또 꼭짓점의 좌표는 (2, 0)이고 축의 방정식은 x=2이다.



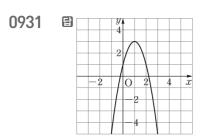
답 풀이 참조

0927 3
$$y = -3(x+1)^2 - 2$$

0928 a
$$y = \frac{1}{3}(x-3)^2 - \frac{1}{3}$$

0929 a
$$y = -\frac{4}{5} \left(x + \frac{1}{2} \right)^2 + 1$$

0930



0932 $\blacksquare -1, 5$

0933 \blacksquare (-1, 5)

0934

0935 및 꼭짓점의 좌표:
$$(-2, -1)$$
, 축의 방정식: $x=-2$

0936 目 꼭짓점의 좌표: (3, 4), 축의 방정식:
$$x=3$$

0937 ② 꼭짓점의 좌표:
$$\left(\frac{1}{3}, 5\right)$$
, 축의 방정식: $x = \frac{1}{3}$

0938 🖪 꼭짓점의 좌표:
$$\left(-\frac{1}{2}, 2\right)$$
, 축의 방정식: $x = -\frac{1}{2}$

0939 (3)
$$y=x^2-x(x^2-1)=-x^3+x^2+x$$

$$(4)$$
 $y=(x-1)^2-x^2=x^2-2x+1-x^2=-2x+1$

⑤
$$y = x(x-1) = x^2 - x$$

2, **5**

0940 (¬)
$$x-y^2=0$$
에서 $y^2=x$

$$(-) x^2 - y = 0$$
에서 $y = x^2$

$$(E) y = (x-3)^2 = x^2 - 6x + 9$$

(a)
$$y=x(x+1)^2=x(x^2+2x+1)=x^3+2x^2+x$$

(II)
$$y=2x^2-(x+1)^2=2x^2-(x^2+2x+1)=x^2-2x-1$$

(
$$y = (2x+1)(2x-1) = 4x^2-1$$

이상에서 y가 x에 대한 이차함수인 것은 (L), (E), (E), (B)의 4개이 다. **4**

0941 ①
$$y = \frac{1}{2}\pi x^2$$
 ② $y = x^2$

②
$$y = x^2$$

(3)
$$y = 2x^2$$

$$(4) y = 2x^2$$

(5)
$$y = \frac{1}{2} \times (x+x-2) \times 2 = 2x-2$$

이상에서 y가 x에 대한 이차함수가 아닌 것은 (5)이다.

3 (5)

- ① (평행사변형의 넓이)=(밑변의 길이)×(높이)
- ② (사다리꼴의 넓이)

 $=\frac{1}{2}\times\{(\mathrm{org}_{\dot{a}})+(\mathrm{gh}_{\dot{a}})\times(\mathrm{ho}_{\dot{a}})$

0942 $y=kx^2-2(x-3x^2)=(k+6)x^2-2x$

따라서 이차함수가 되려면

 $k+6\neq 0$ $\therefore k\neq -6$

 $\blacksquare k \neq -6$

0943 $y=(2a-1)x^2-2x+5$ 가 이차함수이므로

$$2a-1\neq 0$$
 $\therefore a\neq \frac{1}{2}$

0944
$$y=(k^2+2k-3)x^2-x+4$$
가 이차함수이므로 $k^2+2k-3\neq 0, \qquad (k+3)(k-1)\neq 0$ $\therefore k\neq -3$ 이고 $k\neq 1$

(1), (4)

0945
$$f(x) = -x^2 - x + 5$$

$$f(2) = -2^2 - 2 + 5 = -1,$$

$$f(-2) = -(-2)^2 - (-2) + 5 = 3$$

$$f(2)+f(-2)=2$$

0946 $f(x) = 3x^2 - ax + 2$ 에서

$$f(-2) = 3 \times (-2)^2 - a \times (-2) + 2$$

= 2a + 14

즉
$$2a+14=0$$
이므로 $a=-7$

0947 $f(x) = -x^2 + 4x + 6$ 에서

$$f(k) = -k^2 + 4k + 6$$

즉
$$-k^2+4k+6=1$$
이므로 $k^2-4k-5=0$

$$(k+1)(k-5)=0$$

이때
$$k$$
가 양수이므로 $k=5$

0948 $f(x) = ax^2 + 7x - 5$ 에서

$$f(1)=a+7-5=a+2$$

즉
$$a+2=4$$
이므로 $a=2$

따라서 $f(x) = 2x^2 + 7x - 5$ 이므로

$$b=f(2)=2\times 2^2+7\times 2-5=17$$
 ... 2

$$\therefore ab = 34$$

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
❷ <i>b</i> 의 값을 구할 수 있다.	50%
	10%

0949 그래프가 위로 볼록하므로 x^2 의 계수가 음수이어야 하다.

 x^2 의 계수가 음수인 이차함수의 x^2 의 계수의 절댓값의 대소를 비교하면

$$\left| -\frac{1}{3} \right| < \left| -\frac{1}{2} \right| < |-2|$$

따라서 그래프가 위로 볼록하면서 폭이 가장 좁은 것은 ①이다.

图(1)

0950 주어진 그래프에서

$$\frac{1}{4} < a < 4$$
 ...

따라서 정수 a는 1, 2, 3의 3개이다.

... 2 **3**

채점 기준	비율
lacktriangle a 의 값의 범위를 구할 수 있다.	60%
② 정수 a 의 개수를 구할 수 있다.	40%

0951 $y=ax^2$ 의 그래프의 폭이 $y=-x^2$ 의 그래프보다 넓으 ㅁ로

|a| < |-1|, $\leq |a| < 1$

 $y=ax^2$ 의 그래프의 폭이 $y=\frac{1}{2}x^2$ 의 그래프보다 좁으므로

$$|a| > \left| \frac{1}{3} \right|, \leq |a| > \frac{1}{3}$$

$$\therefore a < -\frac{1}{3}$$
 또는 $a > \frac{1}{3}$

 \bigcirc , 으에서 $-1 < a < -\frac{1}{3}$ 또는 $\frac{1}{3} < a < 1$

달
$$-1 < a < -\frac{1}{3}$$
 또는 $\frac{1}{3} < a < 1$

0952 ② 축의 방정식은 x=0이다.

2 (2)

0953 그래프가 x축에 대하여 대칭이면 x^2 의 계수의 부호가 다르고 절댓값이 같으므로 (¬)과 (ㅂ), (ㅂ)과 (ㅁ)의 그래프가 각각 x축에 대하여 대칭이다.

2, 4

0954 ① *y*축에 대하여 대칭인 포물선이다.

- (2) 꼭짓점의 좌표는 (0, 0)이다.
- (3) |a| < |2a|이므로 $y = 2ax^2$ 의 그래프보다 폭이 넓다.
- (4) $y = -ax^2$ 의 그래프와 x축에 대하여 대칭이다.
- (5) a < 0이면 x > 0에서 x의 값이 증가할 때 y의 값은 감소한다.

(3)

0955 ① 그래프가 아래로 볼록한 것은 (L), (E)이다.

- ② 그래프의 폭이 가장 좁은 것은 (기)이다.
- ③ 그래프의 폭이 가장 넓은 것은 (리)이다.
- (5) x < 0에서 x의 값이 증가할 때 y의 값이 감소하는 것은 (L). (띠)이다.

(4)

0956 $y=ax^2$ 의 그래프가 점 (3, -27)을 지나므로

$$-27 = a \times 3^2 \qquad \therefore a = -3$$

$$y = -3x^2$$
의 그래프가 점 $(-1, b)$ 를 지나므로

$$b = -3 \times (-1)^2 = -3$$

$$\therefore a+b=-6$$

 \Box -6

0957 $y = -3x^2$ 의 그래프가 점 (a, 2a)를 지나므로

$$2a = -3a^2$$
, $3a^2 + 2a = 0$

$$a(3a+2)=0$$
 : $a=-\frac{2}{2}(\because a\neq 0)$

80

0958 $y = \frac{1}{4}x^2$ 의 그래프와 x축에 대하여 대칭인 그래프의

식은
$$y = -\frac{1}{4}x^2$$

이 그래프가 점 (-2, k)를 지나므로

$$k = -\frac{1}{4} \times (-2)^2 = -1$$

0959 (1) 위로 볼록한 그래프의 식은

$$y = -x^2, y = -\frac{1}{2}x^2$$

이때 ①의 폭이 더 좁으므로 ①의 함수의 식은

$$y = -x^2$$
 ...

 $(2) y = -x^2$ 의 그래프가 점 (a, -8)을 지나므로 $-8 = -a^2, \quad a^2 = 8$

 $(1) y = -x^2 (2) 2\sqrt{2}$

채점 기준	비율
● ③의 함수의 식을 구할 수 있다.	50%
lacktriangle a 의 값을 구할 수 있다.	50%

0960 구하는 이차함수의 식을 $y=ax^2$ 이라 하면 그래프가 점 (2, -3)을 지나므로

$$-3 = a \times 2^2$$
, $4a = -3$

$$\therefore a = -\frac{3}{4}$$

따라서 구하는 이차함수의 식은 $y=-\frac{3}{4}x^2$ 이다.

(3)

0961 $f(x)=ax^2$ 이라 하면 y=f(x)의 그래프가 점 $\left(-\frac{1}{2},\ \frac{1}{2}\right)$ 을 지나므로

$$\frac{1}{2} = a \times \left(-\frac{1}{2}\right)^2, \qquad \frac{1}{4}a = \frac{1}{2}$$

$$\therefore a=2$$

따라서 $f(x)=2x^2$ 이므로

$$f(3) = 2 \times 3^2 = 18$$

... 1

채점 기준	비율
	60%
② $f(3)$ 의 값을 구할 수 있다.	40%

0962 주어진 포물선을 그래프로 하는 이차함수의 식을 $y=ax^2$ 이라 하면 그래프가 점 (4,2)를 지나므로

$$2 = a \times 4^2$$
, $16a = 2$

$$\therefore a = \frac{1}{9}$$

따라서 $y=\frac{1}{8}x^2$ 의 그래프가 점 (-2,k)를 지나므로

$$k = \frac{1}{8} \times (-2)^2 = \frac{1}{2}$$

0963 $y = \frac{1}{2}(x+2)^2 - 1$ 의 그래프는 $y = \frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 -1만큼 평행이동한 것이므로

$$a = \frac{1}{2}, p = -2, q = -1$$

∴ $a + p + q = -\frac{5}{2}$

 $y=-\frac{3}{2}x^2$ 의 그래프를 평행이동하여 완전히 포개어 지려면 x^2 의 계수가 $-\frac{3}{2}$ 이어야 하므로 (기), (디)이다.

(□), (□)

0965 $y=-(x-3)^2+1$ 의 그래프는 $y=-x^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 1만큼 평행이동한 것이 므로 m=3, n=1 … ① 따라서 $y=x^2$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 x 항향으로 1만큼, y 장의 방향으로 x 항향으로 x 만큼 평행이동한 그래프의 식은

$$y=(x-1)^2-3$$
 ··· ②

 $y=(x-1)^2-3$

채점 기준	비율
$lackbox{1}{}$ m, n 의 값을 구할 수 있다.	50%
② 그래프의 식을 구할 수 있다.	50%

 $y=ax^2$ 의 그래프를 평행이동한 그래프의 식은 다음과 같이 구한다.

- ② y축의 방향으로 q만큼 평행이동하면 y 대신 y-q를 대입한다. ③ $y=ax^2+q$
- ③ x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동하면 x 대신 x-p, y 대신 y-q를 대입한다.
 - $y = a(x-p)^2 + q$

0966 평행이동한 그래프의 식은

$$y=2(x-4)^2-3$$

이 그래프가 점 (-1, k)를 지나므로

$$k=2\times(-5)^2-3=47$$

4

0967 평행이동한 그래프의 식은

$$y = \frac{1}{4}x^2 + q$$

이 그래프가 점 (2, -2)를 지나므로

$$-2 = \frac{1}{4} \times 2^2 + q \qquad \therefore q = -3$$

 $\blacksquare -3$

0968 평행이동한 그래프의 식은

$$y=a(x+1)^2+5$$

이 그래프가 점 (0, 3)을 지나므로

$$3=a+5$$
 $\therefore a=-2$ \cdots

따라서 $y=-2(x+1)^2+5$ 의 그래프가 점 (-3, b)를 지나므

$$b = -2 \times (-2)^2 + 5 = -3$$

... 🔞 ... 4

$$\therefore a+b=-5$$

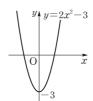
 $\blacksquare -5$

채점 기준	비율
❶ 평행이동한 그래프의 식을 구할 수 있다.	30%
② a의 값을 구할 수 있다.	30%

③ b의 값을 구할 수 있다. 30% **4** a+b의 값을 구할 수 있다.

(4)

0969 ④ $y=2x^2-3$ 의 그래프가 오른쪽 그림과 같으므로 모든 사분면을 지난다.

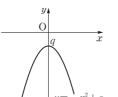


0970 $y = \frac{1}{3}x^2 + 5$ 의 그래프의 꼭짓점의 좌표는 (0, 5)

즉 a=0, b=5이므로 a-b=-5

 $\blacksquare -5$

- **0971** (¬) 꼭짓점의 좌표가 (0, q)이므로 꼭짓점은 y축 위에 있다.
- (L) x^2 의 계수의 절댓값이 같으므로 $y=x^2$ 의 그래프와 폭이 같다.
- (E) q < 0이면 $y = -x^2 + q$ 의 그래프가 오른쪽 그림과 같으므로 제1시분면 과 제 2 사분면을 지나지 않는다.



이상에서 옳은 것은 (¬). (L)이다.

2 (2)

0972 $y=-\frac{1}{2}(x-3)^2$ 의 그래프의 꼭짓점의 좌표는

(3, 0), 축의 방정식은 x=3이므로

$$a=3, b=0, c=3$$

$$\therefore a+b+c=6$$

图 6

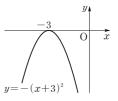
0973 (기 꼭짓점의 좌표는 (4, 0)이다. 이상에서 옳은 것은 (L), (E)이다.

(5)

0974 평행이동한 그래프의 식은

$$y = -(x+3)^2$$

이므로 그래프가 오른쪽 그림과 같다. 따라서 x의 값이 증가할 때 y의 값도 증 가하는 x의 값의 범위는 x < -3이다.



(2)

0975 ③ $y=(x-2)^2-2$ 의 그래프 가 오른쪽 그림과 같으므로 제 3 사분 면을 지나지 않는다.

 $y y = (x-2)^2 - 2$

0976 각 그래프의 꼭짓점의 좌표는 다음과 같다.

- (1)(-4,0) (2)(0,-3)
- (3) (1, 3)
- (4) (-3, -1) (5) (-2, 2)

따라서 꼭짓점이 제 2 사분면 위에 있는 것은 (5)이다.

3 (5)

사분면	xयम	y좌표
제 1 사분면	+	+
제 2 사분면	_	+
제 3 사분면	_	_
제 4 사분면	+	_

0977 평행이동한 그래프의 식은

 $y=4(x+1)^2+4$

따라서 꼭짓점의 좌표는 (-1, 4), 축의 방정식은 x = -1이므

$$m=-1, n=4, k=-1$$

$$\therefore mn+k=-5$$

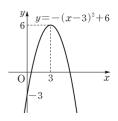
日-5

채점 기준	비율
❶ 평행이동한 그래프의 식을 구할 수 있다.	40%
② m, n, k 의 값을 구할 수 있다.	40%
③ $mn+k$ 의 값을 구할 수 있다.	20%

0978 $y=-(x-3)^2+6$ 의 그래 프는 꼭짓점의 좌표가 (3, 6)이고 위 로 볼록한 포물선이다.

또 x=0일 때 y=-3이므로 그래프가 오른쪽 그림과 같다.

따라서 제 2 사분면을 지나지 않는다.



답 제 2 사분면

0979 주어진 조건을 만족시키는 이차함수의 식은

$$y=4(x-5)^2-3$$

따라서 a=4, p=-5, q=-3이므로

$$apq = 60$$

(4)

0980 그래프의 꼭짓점의 좌표가 (0, -1)이므로

$$f(x) = ax^2 - 1$$
로 놓을 수 있다.

... 0

이 그래프가 점 (-1, 1)을 지나므로

$$1 = a \times (-1)^2 - 1$$
 : $a = 2$

따라서
$$f(x)=2x^2-1$$
이므로

$$f(4) = 2 \times 4^2 - 1 = 31$$

... 🔞

31

채점 기준	비율
① 꼭짓점의 좌표를 이용하여 $f(x)$ 의 식을 세울 수 있다.	40%
② f(x)를 구할 수 있다.	40%
③ $f(4)$ 의 값을 구할 수 있다.	20%

0981 그래프의 꼭짓점의 좌표가 (-2, -5)이므로 이차함 수의 식을 $y=a(x+2)^2-5$ 로 놓을 수 있다.

이 그래프가 점 (1, 4)를 지나므로

$$4=a\times3^2-5$$
 $\therefore a=1$

$$\therefore y = (x+2)^2 - 5$$

⑤
$$\frac{5}{4} = \left(\frac{1}{2} + 2\right)^2 - 5$$
이므로 점 $\left(\frac{1}{2}, \frac{5}{4}\right)$ 는 주어진 그래프 위의 점이다.

(5)

0982 조건 (개), 따에 의하여 이차함수의 식을

 $y = -2(x+3)^2 + k$ 로 놓을 수 있다.

조건 (4)에 의하여 이 그래프가 점 (3, -8)을 지나므로

$$-8 = -2 \times 6^2 + k$$
 : $k = 64$

즉 그래프의 식이 $y=-2(x+3)^2+64$ 이므로 꼭짓점의 좌표는 (-3,64)이다.

(-3, 64)

0983 그래프의 꼭짓점의 좌표가 (-2, 4)이므로 이차함수의 식을 $y=a(x+2)^2+4$ 로 놓을 수 있다. ... ①

이 그래프가 점 (0, 2)를 지나므로

$$2=a\times 2^2+4$$
, $4a=-2$

$$\therefore a = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x+2)^2 + 4$$
 ...

이 그래프가 점 (k, 0)을 지나므로

$$0 = -\frac{1}{2} \times (k+2)^2 + 4$$

$$(k+2)^2 = 8, \qquad k+2 = \pm 2\sqrt{2}$$

$$\therefore k = -2 + 2\sqrt{2} (:: k > 0)$$

... 🔞

 $-2+2\sqrt{2}$

채점 기준	비율
● 꼭짓점의 좌표를 이용하여 이차함수의 식을 세울 수 있다.	30%
❷ 이차함수의 식을 구할 수 있다.	30%
③ k 의 값을 구할 수 있다.	40%

라쎈 특강 (그)

이차방정식 $(k+2)^2=8$ 을 전개해서 근의 공식을 이용하여 풀 수도 있지만 이 경우에는 제곱근을 이용하여 푸는 것이 더 간단해. 제곱근을 이용한 이차방정식의 풀이 방법을 기억하고 이용하면 풀이 시간을 단축할 수 있어.

 $(x+p)^2=q (q>0)$ 의 해 $x=-p\pm\sqrt{q}$

0984 평행이동한 그래프의 식은

$$y = -3(x-p+2)^2-4+q$$

이 그래프와 $y = -3x^2$ 의 그래프가 일치하므로

$$-p+2=0, -4+q=0$$

- $\therefore p=2, q=4$
- $\therefore p+q=6$

(5)

0985 평행이동한 그래프의 식은

$$y=a(x-5)^2+\frac{1}{2}$$

이 그래프가 점 (2, 2)를 지나므로

$$2=a\times(-3)^2+\frac{1}{2}$$
, $9a=\frac{3}{2}$

$$\therefore a = \frac{1}{6}$$

 $\blacksquare \frac{1}{6}$

0986 평행이동한 그래프의 식은

$$y = -(x+1-3)^2 + 1 - 7$$

$$=-(x-2)^2-6$$

따라서 이 그래프의 꼭짓점의 좌표는 (2, -6)이다.

 $\blacksquare (2, -6)$

0987 평행이동한 그래프의 식은

$$y = \frac{1}{2}(x-2+1)^2 - \frac{1}{2} - 1$$

$$=\frac{1}{2}(x-1)^2-\frac{3}{2}$$

이 그래프가 점 (-2, k)를 지나므로

$$k = \frac{1}{2} \times (-3)^2 - \frac{3}{2} = 3$$

0988 평행이동한 그래프의 식은

$$y = -(x-p)^2 - 4$$

이므로 꼭짓점의 좌표는 (p, -4)

••• (

점 (p, -4)가 직선 y=-x+3 위에 있으므로

$$-4 = -p + 3$$
 $\therefore p = 7$

... 2

图 7

채점 기준	비율
● 평행이동한 그래프의 꼭짓점의 좌표를 구할 수 있다.	50%
② <i>p</i> 의 값을 구할 수 있다.	50%

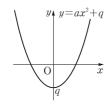
0989 그래프가 위로 볼록하므로 a < 0 꼭짓점이 제 4 사분면 위에 있으므로 b > 0, q < 0

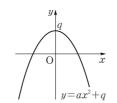
(1)

0990 꼭짓점이 x축 위에 있으므로 q=0 꼭짓점이 원점의 오른쪽에 있으므로 p>0

2

0991 $y=ax^2+q$ 의 그래프가 모든 사분면을 지나는 경우는 다음과 같다.





즉 a>0, q<0 또는 a<0, q>0이므로 aq<0

4

0992 전략 x, y 사이의 관계식을 세운다.

 \geq 풀이 (¬) $y=2\pi x$

(L) $y = \frac{1}{2}x^3$

 $(\Box) y = 6x^2$

 $(z) y = 10\pi x^2$

이상에서 y가 x에 대한 이차함수인 것은 (c), (c)이다.

(5)

0993 전략 우변을 정리하여 x^2 의 계수를 구한다.

 \geq 풀이 $y=kx^2+1-4x(x+2)$

$$=(k-4)x^2-8x+1$$

따라서 $y=(k-4)x^2-8x+1$ 이 x에 대한 이차함수이므로

$$k-4\neq 0$$
 $\therefore k\neq 4$

3 (5)

0994 전략 *a*의 절댓값의 범위를 구한다.

물이 $y=ax^2$ 의 그래프의 폭이 $y=-\frac{1}{2}x^2$ 의 그래프보다 좁으므로

$$|a| > \left| -\frac{1}{2} \right|, \stackrel{2}{=} |a| > \frac{1}{2}$$

$$\therefore a < -\frac{1}{2}$$
 또는 $a > \frac{1}{2}$

..... 🗇

 $y=ax^2$ 의 그래프의 폭이 $y=2x^2$ 의 그래프보다 넓으므로 0<|a|<|2|, 즉 0<|a|<2

..... (L)

 \bigcirc , ⓒ에서 $-2 < a < -\frac{1}{2}$ 또는 $\frac{1}{2} < a < 2$

따라서 a의 값이 될 수 없는 것은 ③이다.

(3)

0995 전략》 $y=ax^2$ 의 그래프의 성질을 이용한다.

둘에 (니) 축의 방정식은 x=0이다.

(\mathbf{r}) $y = \frac{1}{3}x^2$ 의 그래프는 제 1 사분면과 제 2 사분면을 지난다.

이상에서 옳은 것은 (ㅋ)뿐이다.

(1)

0996 $y=ax^2$ 으로 놓고 그래프가 지나는 점을 이용한다. 줄에 주어진 포물선의 식을 $y=ax^2$ 이라 하면 그래프가 점 (2,-2)를 지나므로

$$-2=a\times 2^2$$
 $\therefore a=-\frac{1}{2}$

- ① 이차함수 $y = -\frac{1}{2}x^2$ 의 그래프이다.
- ② x=1을 대입하면 $y=-\frac{1}{2}$ 이므로 점 $\left(1,\ -\frac{1}{2}\right)$ 을 지난다.
- ③ 직선 x=0에 대하여 대칭이다.
- ⑤ $\left| -\frac{1}{2} \right| < |2|$ 이므로 $y = 2x^2$ 의 그래프보다 폭이 넓다.

(4)

0997 전략 평행이동한 그래프를 그려 본다.

물이 평행이동한 그래프의 식은

$$y = \frac{1}{2}(x-2)^2$$

이므로 그래프는 오른쪽 그림과 같다.

⑤ x=2이면 y=0이므로 모든 실수 x

O 2 x

에 대하여 *y*의 값은 음이 아닌 실수이다.

3 (5)

0998 전략 평행이동한 그래프의 식을 구한다.

>풀이 평행이동한 그래프의 식은

$$y=4(x-4)^2-2$$

이치함수의 그래프(1)

따라서 꼭짓점의 좌표는 (4, -2)이므로

$$p=4, q=-2$$

이 그래프가 점 (0, k)를 지나므로

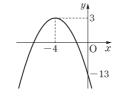
$$k=4\times(-4)^2-2=62$$

$$\therefore p+q+k=64$$

1 64

 $\mathbf{0999}$ 잭 꼭짓점과 y축과의 교점의 좌표를 이용하여 그래 프를 그린다.

 $y=-(x+4)^2+3$ 의 그래프는 꼭 짓점의 좌표가 (-4, 3)이고 위로 볼록 한 포물선이다.

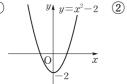


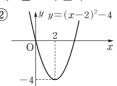
또 x=0일 때 y=-13이므로 그래프가 오른쪽 그림과 같다.

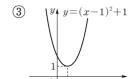
따라서 제 1 사분면을 지나지 않는다.

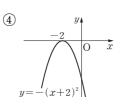
1 (1)

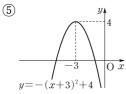
1000 전략 이차함수의 그래프를 그려 본다.











이상에서 x < -2에서 x의 값이 증가할 때 y의 값도 증가하는 것은 4이다.

4

1001 전략 이차함수의 그래프의 꼭짓점의 좌표를 이용하여 식을 세운다.

 \ge 풀에 그래프의 꼭짓점의 좌표가 (-1, 3)이므로 이차함수 의 식을 $y=a(x+1)^2+3$ 으로 놓을 수 있다.

이 그래프가 원점을 지나므로

$$0=a+3$$
 $\therefore a=-3$

$$\therefore y = -3(x+1)^2 + 3$$

이 그래프가 점 (2, -k)를 지나므로

$$-k = -3 \times 3^2 + 3 = -24$$
 : $k = 24$

24

1002 절략 평행이동한 그래프의 식을 구한다.

물이 평행이동한 그래프의 식은

$$y=2(x+4-1)^2+3-5=2(x+3)^2-2$$

x=0을 대입하면

$$y=2\times3^2-2=16$$

따라서 구하는 점의 좌표는 (0.16)

 \blacksquare (0, 16)

1003 평행이동한 그래프의 식에 점 (3, 12)의 좌표를 대입한다.

물이 평행이동한 그래프의 식은

$$y = (x-k-2)^2 + 1-k$$

이 그래프가 점 (3, 12)를 지나므로

$$12 = (-k+1)^2 + 1 - k, \qquad k^2 - 3k - 10 = 0$$
$$(k+2)(k-5) = 0$$

$$\therefore k=5 \ (\because k>0)$$

3 5

1004 전략 그래프의 모양과 꼭짓점의 위치를 생각한다.

 \geq 풀이 a>0이므로 $y=a(x-p)^2+q$ 의 그래프는 아래로 볼록한 포물선이다.

꼭짓점의 좌표는 (p, q)이고 p < 0, q > 0이므로 꼭짓점은 제 2 사분면 위에 있다.

따라서 $y=a(x-p)^2+q$ 의 그래프로 알맞은 것은 ③이다.

(3)

1005 전략 주어진 함숫값을 이용하여 a, b의 값을 구한다.

$$a=f(-1)=(-1)^2-4\times(-1)+3=8$$

... •

f(b) = -1에서

$$-1=b^2-4b+3$$
, $b^2-4b+4=0$

$$(b-2)^2 = 0$$
 : $b=2$

... 2

$$\therefore a+b=10$$

··· **③**

채점 기준	비율
lacktriangle a 의 값을 구할 수 있다.	40%
olimits b의 값을 구할 수 있다.	50%
③ $a+b$ 의 값을 구할 수 있다.	10%

1006 전략 이차함수의 그래프의 꼭짓점의 좌표를 직선의 방정식에 대입한다.

 $y = -2(x-p)^2 - p$ 의 그래프의 꼭짓점의 좌표는

$$(p, -p)$$

점 (p, -p)가 직선 y=2x+4 위의 점이므로

$$-p=2p+4, \quad 3p=-4$$

$$\therefore p = -\frac{4}{3}$$

... 2

 $-\frac{4}{3}$

채점 기준	비율
● 꼭짓점의 좌표를 구할 수 있다.	40%
② <i>p</i> 의 값을 구할 수 있다.	60%

1007 전략 꼭짓점의 좌표와 y축과의 교점의 좌표를 이용한 다.

 $y=a(x-p)^2+q$ 의 그래프의 꼭짓점의 좌표는 (p,q)

이때 주어진 그래프의 꼭짓점의 좌표가 (2, 3)이므로

p=2, q=3... •

 $y=a(x-2)^2+3$ 의 그래프가 점 (0, 2)를 지나므로

$$2 = 4a + 3$$
 : $a = -\frac{1}{4}$

 $\therefore apq = -\frac{3}{2}$

채점 기준	비율
$lackbox{1}{f p},q$ 의 값을 구할 수 있다.	30%
② a 의 값을 구할 수 있다.	50%
③ <i>aþq</i> 의 값을 구할 수 있다.	20%

1008 전략 평행이동한 그래프의 식을 구한다.

둘이 평행이동한 그래프의 식은

$$y = -2(x+5+a)^2 - 2+5$$

= $-2(x+5+a)^2 + 3$... •••

이 그래프가 점 (-4, 2)를 지나므로

$$2 = -2(a+1)^2 + 3, \qquad (a+1)^2 = \frac{1}{2}$$

$$a+1=\pm\frac{\sqrt{2}}{2} \qquad \therefore a=-1\pm\frac{\sqrt{2}}{2} \qquad \cdots 2$$

따라서 모든 a의 값의 합은

$$\left(-1 + \frac{\sqrt{2}}{2}\right) + \left(-1 - \frac{\sqrt{2}}{2}\right) = -2$$
 ...

 $\Box -2$

채점 기준	비율
❶ 평행이동한 그래프의 식을 구할 수 있다.	30%
② <i>a</i> 의 값을 구할 수 있다.	50%
③ 모든 a 의 값의 합을 구할 수 있다.	20%

1009 전략 BC=CD임을 이용한다.

둘에 점 B의 x좌표를 a(a>0)라 하면

$$B(a, a^2-8), C(a, 0), D(-a, 0)$$

 $\overline{BC} = \overline{CD}$ 이므로

$$0-(a^2-8)=a-(-a)$$

$$a^2+2a-8=0$$
, $(a+4)(a-2)=0$

$$\therefore a=2 (::a>0)$$

따라서 \square ABCD의 한 변의 길이가 2a, 즉 4이므로

$$\Box ABCD = 4^2 = 16$$

16

1010 전략 평행이동한 그래프의 식을 구한다.

물이 평행이동한 그래프의 식은

$$y=2(x-a-4)^2+3+b$$

이므로 꼭짓점의 좌표는

$$(a+4, b+3)$$

 $y=2x^2-7$ 의 그래프의 꼭짓점의 좌표는 (0, -7)이므로

$$a+4=0, b+3=-7$$

따라서 a=-4, b=-10이므로

$$a+b = -14$$

-14

1011 전략 주어진 일차함수의 그래프를 이용하여 a, b의 부 호를 구하다.

둘이 ax+y+b=0에서 y=-ax-b

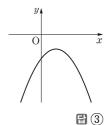
주어진 일차함수의 그래프의 기울기와 y절편이 모두 음수이

$$-a < 0, -b < 0$$
 : $a > 0, b > 0$

 $y=-(x-a)^2-b$ 의 그래프는 위로 볼록한 포물선이고 꼭짓 점의 좌표가 (a, -b)이다.

이때 a>0, -b<0이므로 꼭짓점은 제 4 사분면 위에 있다.

따라서 그래프가 오른쪽 그림과 같으므 로 제 1 사분면과 제 2 사분면을 지나지 않는다.



일차함수 y=ax+b의 그래프에서 a, b의 부호

- (1) a의 부호: 직선의 방향으로 결정된다.
 - ① 직선이 오른쪽 위로 향한다. a>0
 - ② 직선이 오른쪽 아래로 향한다. **○** *a*<0
- (2) **b의 부호**: *y*축과의 교점의 위치로 결정된다.
 - ① y축과의 교점이 원점의 위쪽에 위치 $\bigcirc b>0$ ② y축과의 교점이 원점에 위치
 - ③ y축과의 교점이 원점의 아래쪽에 위치 $\bigcirc b < 0$

Ⅳ. 이처함수

1012
$$y=x^2-2x-1=(x-1)^2-2$$

$$y = (x-1)^2 - 2$$

1013
$$y=-2x^2+12x+5$$

= $-2(x^2-6x)+5$
= $-2(x-3)^2+23$

$$y = -2(x-3)^2 + 23$$

1014
$$y=3x^2+6x+3$$

=3(x²+2x)+3
=3(x+1)²

$$y=3(x+1)^2$$

1015
$$y = -\frac{1}{2}x^2 + 2x + 1$$

= $-\frac{1}{2}(x^2 - 4x) + 1$
= $-\frac{1}{2}(x - 2)^2 + 3$

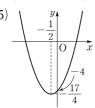
$$y = -\frac{1}{2}(x-2)^2 + 3$$

1016 (1)
$$y=x^2+x-4=\left(x+\frac{1}{2}\right)^2-\frac{17}{4}$$

$$(2)\left(-\frac{1}{2}, -\frac{17}{4}\right)$$
 $(3) x = -\frac{1}{2}$ $(4) (0, -4)$

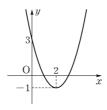
(3)
$$x = -\frac{1}{2}$$

$$(4)(0,-4)$$



🕒 풀이 참조

1017 $y=x^2-4x+3=(x-2)^2-1$ 이므로 그래프는 오른쪽 그림과 같다. 또 꼭짓점의 좌표는 (2, -1), 축의 방정 식은 x=2이다.



답 풀이 참조

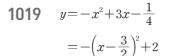
1018
$$y = \frac{1}{2}x^2 + x - 1$$

= $\frac{1}{2}(x+1)^2 - \frac{3}{2}$

이므로 그래프는 오른쪽 그림과 같다.

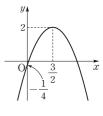
또 꼭짓점의 좌표는 $\left(-1, -\frac{3}{2}\right)$, 축의 방정식은 x = -1이다.

답 풀이 참조



이므로 그래프는 오른쪽 그림과 같다.

또 꼭짓점의 좌표는 $\left(\frac{3}{2}, 2\right)$, 축의 방정식 은 $x=\frac{3}{2}$ 이다.



답 풀이 참조

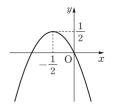
1020
$$y = -2x^2 - 2x$$

= $-2(x + \frac{1}{2})^2 + \frac{1}{2}$

이므로 그래프는 오른쪽 그림과 같다.

또 꼭짓점의 좌표는 $\left(-\frac{1}{2}, \frac{1}{2}\right)$, 축의 방

정식은 $x=-\frac{1}{2}$ 이다.



답 풀이 참조

1021
$$x=0$$
을 대입하면 $y=-6$

$$(0, -6)$$

$$\blacksquare$$
 (0, -6)

1022
$$y=0$$
을 대입하면

$$0=x^2+x-6$$
, $(x+3)(x-2)=0$

따라서 구하는 교점의 좌표는

$$(-3,0),(2,0)$$

 \blacksquare (-3, 0), (2, 0)

1023
$$\blacksquare$$
 (1) > (2) >, > (3) <

1024
$$\blacksquare$$
 (1) < (2) < , > (3) >

1025 그래프가 아래로 볼록하므로

a > 0

축이 y축의 오른쪽에 있으므로

이때 a>0이므로 b<0

y축과의 교점이 원점의 아래쪽에 있으므로

c < 0

目 > , < , <

1026 그래프가 아래로 볼록하므로

a > 0

축이 y축의 왼쪽에 있으므로

ab>0

이때 a>0이므로 b>0

y축과의 교점이 원점의 위쪽에 있으므로

 $c \ge 0$

目>,>,>

1027 그래프가 위로 볼록하므로

a < 0

축이 y축의 오른쪽에 있으므로

ab < 0

이때 a < 0이므로 b > 0

y축과의 교점이 원점의 아래쪽에 있으므로

 $c \leq 0$

冒<,>,<

1028 그래프가 위로 볼록하므로

a < 0

축이 y축의 왼쪽에 있으므로

ab > 0

이때 a < 0이므로 b < 0

y축과의 교점이 원점의 위쪽에 있으므로

 $c \ge 0$

冒<,<,>

1029 $y=2x^2+6x+3=2\left(x+\frac{3}{2}\right)^2-\frac{3}{2}$

따라서 $a=2, p=-\frac{3}{2}, q=-\frac{3}{2}$ 이므로

a+p+q=-1

冒(5)

1030 $y = -3x^2 + 6x - 1$

 $=-3(x^2-2x)-1$

 $=-3(x^2-2x+1)-1$

 $= -3(x-1)^{2}+3-1$ $= -3(x-1)^{2}+2$

 $\therefore \text{ (7) } 2 \text{ (4) } 1 \text{ (4) } 1 \text{ (4) } 3 \text{ (4) } 2$

4

1031 $y = -\frac{1}{2}x^2 + 4x - 5 = -\frac{1}{2}(x - 4)^2 + 3$

따라서 p=4, q=3이므로 p+q=7

3 7

1032 $y=4x^2-2x+1=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}$...

따라서 $y=4x^2-2x+1$ 의 그래프는 $y=4x^2$ 의 그래프를 x축의 방향으로 $\frac{1}{4}$ 만큼, y축의 방향으로 $\frac{3}{4}$ 만큼 평행이동한 것이므로

$$a=4, p=\frac{1}{4}, q=\frac{3}{4}$$
 ...

 $\therefore a+p+q=5$

··· **③** 冒 5

채점 기준	비율
• $y=a(x-p)^2+q$ 꼴로 변형할 수 있다.	50%
② a, p, q 의 값을 구할 수 있다.	40%
	10%

1033 $y=-x^2+ax+3$ 의 그래프가 점 (-1, 6)을 지나므로 $6=-(-1)^2+a\times(-1)+3$

 $\alpha = -4$

 $y=-x^2-4x+3=-(x+2)^2+7$ 이므로 그래프의 꼭짓점의 좌표는 (-2,7)이다.

3

1034 ① $y=2x^2+3$ 의 그래프의 축의 방정식은

② $y=(x-1)^2$ 의 그래프의 축의 방정식은 x-1

③ $y = -\left(x - \frac{1}{2}\right)^2 + 3$ 의 그래프의 축의 방정식은 $x = \frac{1}{2}$

④ $y = \frac{1}{2}x^2 + x - 3 = \frac{1}{2}(x+1)^2 - \frac{7}{2}$ 따라서 그래프의 축의 방정식은 x = -1

⑤ $y=-x^2+4x+1=-(x-2)^2+5$ 따라서 그래프의 축의 방정식은 x=2 이상에서 그래프의 축이 가장 오른쪽에 있는 것은 ⑤이다.

3 (5)

1035 ① $y = -2x^2 + x + 1 = -2\left(x - \frac{1}{4}\right)^2 + \frac{9}{8}$

따라서 그래프의 꼭짓점의 좌표가 $\left(\frac{1}{4},\,\frac{9}{8}\right)$ 이므로 제 1 사분 면 위에 있다.

② $y = -x^2 - x + 3 = -\left(x + \frac{1}{2}\right)^2 + \frac{13}{4}$

따라서 그래프의 꼭짓점의 좌표가 $\left(-\frac{1}{2},\,\frac{13}{4}\right)$ 이므로 제 2 사분면 위에 있다.

(3) $y = \frac{1}{3}x^2 + 2x + 1 = \frac{1}{3}(x+3)^2 - 2$

따라서 그래프의 꼭짓점의 좌표가 (-3, -2)이므로 제 3 사분면 위에 있다.

④ $y=x^2-8x+15=(x-4)^2-1$ 따라서 그래프의 꼭짓점의 좌표가 (4, -1)이므로 제 4 사분 면 위에 있다.

 $5 y=2x^2+8x-1=2(x+2)^2-9$

따라서 그래프의 꼭짓점의 좌표가 (-2, -9)이므로 제 3사분면 위에 있다.

(2)

1036 $y=x^2-2ax-2=(x-a)^2-a^2-2$

이므로 그래프의 꼭짓점의 좌표는

$$(a, -a^2-2)$$
 ··· •

 $y=2x^2-8x+b=2(x-2)^2+b-8$ 이므로 그래프의 꼭짓점의 좌표는

두 그래프의 꼭짓점이 일치하므로

$$a=2, -a^2-2=b-8$$

따라서 a=2, b=2이므로

$$a-b=0$$

... 🔞 **3** 0

채점 기준	비율
1 $y=x^2-2ax-2$ 의 그래프의 꼭짓점의 좌표를 구할 수 있다.	40%
② $y=2x^2-8x+b$ 의 그래프의 꼭짓점의 좌표를 구할 수 있다.	40%
	20%

1037
$$y = -\frac{1}{4}x^2 + x + k = -\frac{1}{4}(x-2)^2 + k + 1$$

이므로 그래프의 꼭짓점의 좌표는

$$(2, k+1)$$

꼭짓점이 제4사분면 위에 있으므로

$$k+1 < 0$$
 : $k < -1$

 \square (2)

1038
$$y=2x^2-px+3=2\left(x-\frac{p}{4}\right)^2+3-\frac{p^2}{8}$$

이므로 그래프의 축의 방정식은 $x=\frac{p}{4}$

즉
$$\frac{p}{4}$$
=-3이므로 p =-12

-12

다른풀이 축의 방정식이 x = -3이므로 이차함수의 식을 $y=2(x+3)^2+a$ 로 놓을 수 있다.

 $y=2(x+3)^2+a=2x^2+12x+18+a$ 의 그래프가 $y=2x^2-px+3$ 의 그래프와 일치하므로

$$12 = -p$$
, $18 + a = 3$

$$\therefore p = -12, a = -15$$

1039 $y=x^2-6x+8$ 에 y=0을 대입하면

$$x^2-6x+8=0$$
, $(x-2)(x-4)=0$

 $\therefore x=2 \stackrel{\leftarrow}{=} x=4$

또 x=0을 대입하면 y=8

따라서 p=2, q=4, r=8 또는 p=4, q=2, r=8이므로

$$p+q+r=14$$

3 (5)

1040 그래프가 점 (3, -5)를 지나므로

$$-5 = -3^2 + 6 \times 3 + k$$
 : $k = -14$

 $y = -x^2 + 6x - 14$ 에 x = 0을 대입하면 y = -14

따라서 그래프가 y축과 만나는 점의 좌표는

$$(0, -14)$$

 \blacksquare (0, -14)

채점 기준	비율
lacksquare k 의 값을 구할 수 있다.	50%
② 그래프가 y 축과 만나는 점의 좌표를 구할 수 있다.	50%

1041 $y = \frac{1}{2}x^2 - 2x - 6$ 에 y = 0을 대입하면

$$\frac{1}{2}x^2-2x-6=0$$
, $x^2-4x-12=0$

$$(x+2)(x-6)=0$$

$$\therefore x = -2$$
 또는 $x = 6$

따라서 그래프와 x축의 교점의 좌표가 (-2, 0), (6, 0)이므로

$$\overline{AB} = 6 - (-2) = 8$$

B 8

1042
$$y = -x^2 - 3x + 4 = -\left(x + \frac{3}{2}\right)^2 + \frac{25}{4}$$

이므로
$$b=-\frac{3}{2}, c=\frac{25}{4}$$

x=0을 대입하면 y=4

$$\therefore d=4$$

y=0을 대입하면 $-x^2-3x+4=0$

$$x^2+3x-4=0$$
, $(x+4)(x-1)=0$

$$\therefore a=-4, e=1$$

(1)

1043 $y=x^2-4x+2=(x-2)^2-2$

따라서 꼭짓점의 좌표가 (2, -2)이고 y축과의 교점의 좌표가 (0, 2)이므로 그래프는 (3)과 같다.

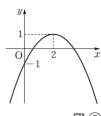
3

1044
$$y = -\frac{1}{2}x^2 + 2x - 1$$

= $-\frac{1}{2}(x-2)^2 + 1$

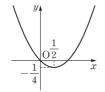
이므로 그래프의 꼭짓점의 좌표는 (2, 1) 이고 y축과의 교점의 좌표는 (0, -1)

따라서 그래프가 오른쪽 그림과 같으므로 제2사분면을 지나지 않는다.

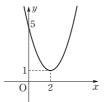


2 (2)

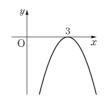
1045 ① $y=x^2-x=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}$ 이므로 그래프가 오른쪽 그림과 같다. 따라서 x축과 서로 다른 두 점에서 만난다.



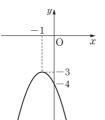
② $y=x^2-4x+5=(x-2)^2+1$ 이므로 그래프가 오른쪽 그림과 같다. 따라서 x축과 만나지 않는다.



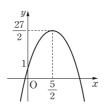
③ $y=-x^2+6x-9=-(x-3)^2$ 이므로 그래프가 오른쪽 그림과 같다. 따라서 x축과 한 점에서 만난다.



④ $y=-x^2-2x-4=-(x+1)^2-3$ 이므로 그래프가 오른쪽 그림과 같다. 따라서 x축과 만나지 않는다.



(5) $y = -2x^2 + 10x + 1$ = $-2\left(x - \frac{5}{2}\right)^2 + \frac{27}{2}$



- 이므로 그래프가 오른쪽 그림과 같다. 따라서 x축과 서로 다른 두 점에서 만 난다.
- **3**

다른풀이
 주어진 식에 y=0을 대입하여 그래프와 x축의 교점의 x좌표를 구하면

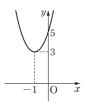
- ① $x^2 x = 0$ 에서 x(x-1) = 0 $\therefore x = 0$ 또는 x = 1따라서 x축과 두 점에서 만난다.
- ② $x^2 4x + 5 = 0$ 을 만족시키는 실수 x가 존재하지 않으므로 x축과 만나지 않는다.
- ③ $-x^2+6x-9=0$ 에서 $x^2-6x+9=0$ $(x-3)^2=0$ $\therefore x=3(중군)$ 따라서 x축과 한 점에서 만난다.
- ④ $-x^2-2x-4=0$ 에서 $x^2+2x+4=0$ 위의 방정식을 만족시키는 실수 x가 존재하지 않으므로 x축과 만나지 않는다.
- ⑤ $-2x^2+10x+1=0$ 에서 $2x^2-10x-1=0$ ∴ $x=\frac{5\pm 3\sqrt{3}}{2}$

따라서 x축과 두 점에서 만난다.

이차함수 $y=ax^2+bx+c$ 를 $y=a(x-p)^2+q$ 꼴로 변형했을 때, a, p, q의 부호에 따라 그래프와 x축의 교점이 다음과 같다. ① q=0 ② 그래프가 x축과 한 점에서 만난다.

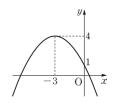
- ② *aq* < 0 ♥ 그래프가 *x*축과 서로 다른 두 점에서 만난다.
- ③ *aq* > 0 ♥ 그래프가 *x*축과 만나지 않는다.

1046 $y=2x^2+4x+5=2(x+1)^2+3$ 이므로 그래프가 오른쪽 그림과 같다. 따라서 x<-1에서 x의 값이 증가할 때 y의 값이 감소한다.



2 (2)

1047 $y = -\frac{1}{3}x^2 - 2x + 1$ = $-\frac{1}{3}(x+3)^2 + 4$



이므로 그래프가 오른쪽 그림과 같다.

따라서 x < -3에서 x의 값이 증가할 때 y의 값도 증가한다.

... 2

채점 기준	비율
❶ 이차함수의 그래프를 그릴 수 있다.	50%
② x 의 값의 범위를 구할 수 있다.	50%

1048 $y = -x^2 + 2ax + 1 = -(x-a)^2 + a^2 + 1$

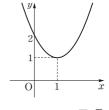
- 이므로 그래프의 축의 방정식이 x=a이다.
- 이때 x=-2를 기준으로 y의 값의 증가 \cdot 감소가 바뀌므로

$$a=-2$$

 \Box -2

1049 $y=x^2-2x+2=(x-1)^2+1$ 이므로 그래프가 오른쪽 그림과 같다.

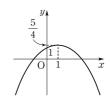
(5) 제 3 사분면과 제 4 사분면을 지나지 않는다.



5

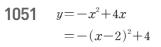
1050
$$y = -\frac{1}{4}x^2 + \frac{1}{2}x + 1$$

= $-\frac{1}{4}(x-1)^2 + \frac{5}{4}$



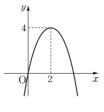
이므로 그래프가 오른쪽 그림과 같다.

- (c) 모든 사분면을 지난다.
- 이상에서 옳은 것은 (¬), (L)이다.



이므로 그래프가 오른쪽 그림과 같다.

⑤ x>2에서 x의 값이 증가할 때 y의 값



1052
$$y=3x^2-6x+6=3(x-1)^2+3$$
 이므로 평행이동한 그래프의 식은 $y=3(x+1-1)^2+3+3=3x^2+6$ 따라서 $a=3,\ b=0,\ c=6$ 이므로 $a+b+c=9$

1 9

1053
$$y=x^2+6x+8=(x+3)^2-1$$
 이므로 평행이동한 그래프의 식은
$$y=(x+1+3)^2-1-2=(x+4)^2-3$$
 따라서 그래프의 축의 방정식은 $x=-4$

(1)

1054
$$y = -x^2 - 4x + 10 = -(x+2)^2 + 14$$
 … 이므로 평행이동한 그래프의 식은

$$y = -(x-3+2)^2 + 14-2$$

= $-(x-1)^2 + 12$...

따라서 그래프의 꼭짓점의 좌표는

(1, 12)

채점 기준	비율
0 $y=a(x-p)^2+q$ 꼴로 변형할 수 있다.	40%
❷ 평행이동한 그래프의 식을 구할 수 있다.	40%
③ 꼭짓점의 좌표를 구할 수 있다.	20%

1055
$$y = -3x^2 + 6x - 8 = -3(x - 1)^2 - 5$$

이므로 평행이동한 그래프의 식은

$$y=-3(x+4-1)^2-5=-3(x+3)^2-5$$

이 그래프가 점 (-2, k)를 지나므로

$$k = -3 \times 1 - 5 = -8$$

 $\blacksquare -8$

1056
$$y = \frac{1}{2}x^2 + 4x - 8 = \frac{1}{2}(x+4)^2 - 16$$

이므로 평행이동한 그래프의 식은

$$y = \frac{1}{2}(x - m + 4)^2 - 16 + n$$

이때 $y = \frac{1}{2}x^2 + x - \frac{9}{2} = \frac{1}{2}(x+1)^2 - 5$ 이고 두 그래프가 일치

$$-m+4=1, -16+n=-5$$

$$\therefore m=3, n=11$$

$$\therefore m+n=14$$

4

1057
$$y = -\frac{1}{2}x^2 - 2x + 6 = -\frac{1}{2}(x+2)^2 + 8$$

이므로 A(-2, 8)

$$y = -\frac{1}{2}x^2 - 2x + 6$$
에 $y = 0$ 을 대입하면

$$-\frac{1}{2}x^2-2x+6=0$$
, $x^2+4x-12=0$

$$(x+6)(x-2)=0$$

∴
$$x=-6$$
 또는 $x=2$

따라서 B(-6,0), C(2,0)이므로

$$\overline{BC} = 2 - (-6) = 8$$

$$\therefore \triangle ABC = \frac{1}{2} \times 8 \times 8 = 32$$

冒 32

1058
$$y = -x^2 + 3x + 2 = -\left(x - \frac{3}{2}\right)^2 + \frac{17}{4}$$

이므로
$$A\left(\frac{3}{2}, \frac{17}{4}\right)$$

$$y = -x^2 + 3x + 2$$
에 $x = 0$ 을 대입하면 $y = 2$

B(0, 2)

$$\therefore \triangle OAB = \frac{1}{2} \times 2 \times \frac{3}{2} = \frac{3}{2}$$

2 (2)

1059 (1)
$$y=x^2-3x-4$$
에 $x=0$ 을 대입하면 $y=-4$

$$\therefore C(0, -4)$$

... ●

 $(2) y = x^2 - 3x - 4$ 에 y = 0을 대입하면

$$x^2-3x-4=0$$
, $(x+1)(x-4)=0$

... 2

따라서 A(-1, 0), B(4, 0)이므로

$$\overline{AB} = 4 - (-1) = 5$$

$$(3) \triangle ABC = \frac{1}{2} \times 5 \times 4 = 10$$

$$\blacksquare (1) C(0, -4) (2) 5 (3) 10$$

채점 기준	비율
● 점 C의 좌표를 구할 수 있다.	20%
② x 축과의 교점의 x 좌표를 구할 수 있다.	40%
 ● AB의 길이를 구할 수 있다. 	20%
$lacktriangle$ $\triangle ABC$ 의 넓이를 구할 수 있다.	20%

1060 그래프가 위로 볼록하므로 a<0 축이 y축의 왼쪽에 있으므로 ab>0 이때 a<0이므로 b<0 또 y축과의 교점이 원점의 위쪽에 있으므로 c>0

(4)

1061 그래프가 위로 볼록하므로 a<0축이 y축의 오른쪽에 있으므로 ab<0이때 a<0이므로 b>0

또 y축과의 교점이 원점의 아래쪽에 있으므로 c<0

- (1) a < 0
- ② -b < 0
- (3) b-a>0

- $\bigcirc 4$ bc < 0
- \bigcirc abc> 0

3, (5)

1062 a>0이므로 그래프가 아래로 볼록하고 ab>0이므로 축이 y축의 왼쪽에 있다.

또 c<0에서 y축과의 교점이 원점의 아래쪽에 있으므로 $y=ax^2+bx+c$ 의 그래프는 (4)와 같다.

1063 $y=ax^2+bx+c$ 의 그래프가 아래로 볼록하므로 a>0

축이 y축의 오른쪽에 있으므로 ab < 0 이때 a > 0이므로 b < 0

또 y축과의 교점이 원점의 위쪽에 있으므로

c > 0

 $y=bx^2+cx+a$ 에서 b<0이므로 그래프는 위로 볼록하고 bc<0이므로 축이 y축의 오른쪽에 있다.

또 a>0이므로 y축과의 교점이 원점의 위쪽에 있다.

따라서 $y=bx^2+cx+a$ 의 그래프는 (3)과 같다.

1064 전략 완전제곱식을 만드는 과정에 필요한 수를 생각한다.

$$y = \frac{1}{2}x^2 + 5x - 3$$

$$= \frac{1}{2}(x^2 + 10x) - 3$$

$$= \frac{1}{2}(x^2 + 10x + 25 - 25) - 3$$

$$= \frac{1}{2}(x + 5)^2 - \frac{31}{2}$$

따라서 m=10, n=25, l=5, $k=\frac{31}{2}$ 이므로

$$m-n+l+k=\frac{11}{2}$$

 $\frac{11}{2}$

(3)

1065 $y=a(x-p)^2+q$ 꼴로 변형한다. _풀이 $y=-2x^2+12x-7=-2(x-3)^2+11$ 이므로 그래프의 꼭짓점의 좌표는 (3, 11), 축의 방정식은 x=3이다. 따라서 p=3, q=11, r=3이므로 p+q+r=17

1066 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 그래프의 축의 방 정식을 구한다.

 \sum 물이 ① $y=-2x^2+4x+4=-2(x-1)^2+6$ 이므로 그래프의 축의 방정식은 x=1

- ② $y=-x^2-2x+1=-(x+1)^2+2$ 이므로 그래프의 축의 방정식은 x=-1
- ③ $y=x^2+4x+3=(x+2)^2-1$ 이므로 그래프의 축의 방정식은 x=-2
- ④ $y=2x^2-4x-2=2(x-1)^2-4$ 이므로 그래프의 축의 방정식은 x=1
- ⑤ $y = \frac{1}{4}x^2 + x 1 = \frac{1}{4}(x+2)^2 2$ 이므로 그래프의 축의 방정식은 x = -2

2 (2)

1067 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 꼭짓점의 좌표를 구한다.

돌에 $y=x^2+10x+k=(x+5)^2+k-25$ 이므로 그래프의 꼭짓점의 좌표는 (-5,k-25)꼭짓점이 직선 x-3y-4=0 위에 있으므로 -5-3(k-25)-4=0, -3k+66=0 $\therefore k=22$

>풀이 $y=-2x^2+4x+1$ 에 y=0을 대입하면 $0=-2x^2+4x+1$, $2x^2-4x-1=0$ $\therefore x=\frac{2\pm\sqrt{6}}{2}$

 $y=-2x^2+4x+1$ 에 x=0을 대입하면 y= $\therefore p+q+r=\frac{2+\sqrt{6}}{2}+\frac{2-\sqrt{6}}{2}+1=3$

3

1069 전략 평행이동한 그래프의 식에 y=0을 대입한다.

물이 평행이동한 그래프의 식은

$$y = \frac{1}{3}(x-3)^2 - 12$$

y=0을 대입하면

$$\frac{1}{3}(x-3)^2-12=0, (x-3)^2=36$$

 $x-3=\pm 6$ $\therefore x=-3 \pm x=9$

따라서 x축과의 교점의 좌표가 (-3, 0), (9, 0)이므로 두 점사이의 거리는 12이다.

1070 전략 그래프를 이용하여 먼저 c의 값을 구한다.

 Σ 플에 그래프가 y축과 만나는 점의 좌표가 (0, 1)이므로 C=1

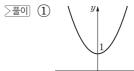
$$y=-rac{1}{2}x^2+3x+1$$
에 $y=0$ 을 대입하면
$$-rac{1}{2}x^2+3x+1=0, \qquad x^2-6x-2=0$$

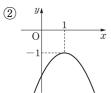
$$\therefore x=3\pm\sqrt{11}$$

$$\therefore ab = (3-\sqrt{11})(3+\sqrt{11})=3^2-(\sqrt{11})^2=-2$$

2 (2)

1071 전략 이차함수의 그래프를 그린다.

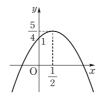




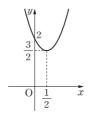
③
$$y = \frac{1}{2}x^2 - 4x + 1 = \frac{1}{2}(x - 4)^2 - 7$$

이므로 그래프가 오른쪽 그림과 같다.

④
$$y = -x^2 + x + 1 = -\left(x - \frac{1}{2}\right)^2 + \frac{5}{4}$$
 이므로 그래프가 오른쪽 그림과 같다.



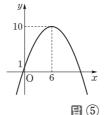
⑤
$$y=2x^2-2x+2=2\left(x-\frac{1}{2}\right)^2+\frac{3}{2}$$
 이므로 그래프가 오른쪽 그림과 같다.



4

1072 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 그래프를 그린다.

$$\begin{array}{c} \frac{2}{4} & y = -\frac{1}{4}x^2 + 3x + 1 \\ & = -\frac{1}{4}(x - 6)^2 + 10 \end{array}$$



이므로 그래프가 오른쪽 그림과 같다. 따라서 x>6에서 x의 값이 증가할 때 y의 값이 감소한다. 1073 전략》 $y=a(x-p)^2+q$ 꼴로 변형하여 평행이동한 그래 프의 식을 구한다.

 $> \equiv 0$ $y=2x^2-4x+1=2(x-1)^2-1$

이므로 평행이동한 그래프의 식은

$$y=2(x-1-1)^2-1+2$$

=2(x-2)^2+1

x=0을 대입하면

$$y=2\times(-2)^2+1=9$$

3 9

1074 전략 평행이동한 그래프의 꼭짓점의 y좌표가 0임을 이용한다.

$$\sum_{=0}^{+} y = \frac{1}{3}x^2 - 4x - 6 = \frac{1}{3}(x - 6)^2 - 18$$

이므로 평행이동한 그래프의 식은

$$y = \frac{1}{3}(x-6)^2 - 18 + k$$

따라서 꼭짓점의 좌표가 (6, -18+k)이므로 꼭짓점이 x축 위에 있으려면

$$-18+k=0$$
 : $k=18$

18

1075 평행이동한 그래프의 식을 구하고 이차함수의 그래 프의 성질을 이용한다.

 ≥ 50 $y=x^2-4x-2=(x-2)^2-6$

이므로 평행이동한 그래프의 식은

$$y=(x+1-2)^2-6-2$$

= $(x-1)^2-8$

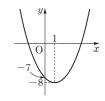
(L) x = 0을 대입하면

$$y = -7$$

따라서 y축과의 교점의 좌표는

$$(0, -7)$$

(c), (c) 그래프가 오른쪽 그림과 같으므로 모든 사분면을 지나고, x축과 두 점에 서 만난다.



이상에서 옳은 것은 (기, (리)이다.

P(2)

1076 전략 두점C, D의 좌표를 구한다.

$$\geq$$
풀이 $y=-x^2-2x+2=-(x+1)^2+3$

이므로
$$C(-1, 3)$$

$$y = -x^2 - 2x + 2$$
에 $x = 0$ 을 대입하면 $y = 2$

 \therefore D(0, 2)

$$\therefore \triangle ABC : \triangle ABD = \frac{1}{2} \times \overline{AB} \times 3 : \frac{1}{2} \times \overline{AB} \times 2$$
$$= 3 : 2$$

 \triangle ABC와 \triangle ABD는 밑변 AB가 공통이므로 두 삼각형의 넓이 의 비는 높이의 비와 같아.

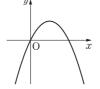
따라서 두 점 A, B의 좌표를 구하지 않고 두 점 C, D의 y좌표만 구해서 두 삼각형의 넓이의 비를 알 수 있어.

1077 전략》 주어진 일차함수의 그래프를 이용하여 a, b의 부호를 구한다.

물이 주어진 일차함수의 그래프에서

a < 0, b > 0

 $y=ax^2+bx$ 에서 a<0이므로 그래프는 위로 볼록하고, ab<0이므로 축이 y축의 오른쪽에 있다.



또 원점을 지나므로 그래프가 오른쪽 그림 과 같다.

따라서 이차함수의 그래프는 제 2 사분면을 지나지 않는다.

P(2)

1078 전략》 주어진 일차함수의 그래프에서 a, b의 값을 구한다. $\ge 300 \ y = ax + b$ 의 그래프가 두 점 (3, 0), (0, -6)을 지나 다른

$$a = \frac{-6 - 0}{0 - 3} = 2, b = -6$$
 ...

$$y = x^2 + 2x - 6 = (x+1)^2 - 7$$
 ...

따라서 그래프의 꼭짓점의 좌표는 (-1, -7) ··· ③

 \blacksquare (-1, -7)

채점 기준	비율
lacktriangle a , b 의 값을 구할 수 있다.	40%
② 이차함수의 식을 $y=(x-p)^2+q$ 꼴로 변형할 수 있다.	30%
③ 꼭짓점의 좌표를 구할 수 있다.	30%

일차함수 y=ax+b에서

① a=(기울기 $)=\frac{(y)}{(r)}$ 값의 증가량)

② *b*=(*y*절편)



채점 기준	비율
❶ 꼭짓점의 좌표를 구할 수 있다.	50%
② a의 값의 범위를 구할 수 있다.	50%

1080 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 평행이동한 그래 프의 식을 구한다.

이므로 평행이동한 그래프의 식은

$$y = \frac{1}{2}(x+1-6)^{2} - 15 + m$$

$$= \frac{1}{2}(x-5)^{2} + m - 15 \qquad \cdots ②$$

꼭짓점의 좌표가 (5, m-15)이므로

$$5=n, m-15=-3$$

따라서 m=12, n=5이므로

$$m + n = 17$$

... **③**

채점 기준	비율
1 $y=a(x-p)^2+q$ 꼴로 변형할 수 있다.	30%
❷ 평행이동한 그래프의 식을 구할 수 있다.	30%
③ $m+n$ 의 값을 구할 수 있다.	40%

1081 전략》 $y=(x-p)^2+q$ 꼴로 변형하여 꼭짓점의 x좌표, y 좌표의 부호를 구한다.

$$\sum_{\frac{m}{2}}^{\frac{m}{2}} y = x^2 + ax + b = \left(x + \frac{a}{2}\right)^2 + b - \frac{a^2}{4}$$

이므로 그래프의 꼭짓점의 좌표는

$$\left(-\frac{a}{2},\,b-\frac{a^2}{4}\right)$$
 ... \bullet

이때 a>0, b<0이므로

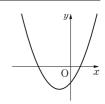
$$-\frac{a}{2} < 0, b - \frac{a^2}{4} < 0$$
 ...

따라서 그래프의 꼭짓점은 제3사분면 위에 있다.

립 제3사분면

채점 기준	비율
● 꼭짓점의 좌표를 구할 수 있다.	40%
② 꼭짓점의 x 좌표와 y 좌표의 부호를 알 수 있다.	40%
③ 꼭짓점이 위치한 사분면을 구할 수 있다.	20%

다른풀이 $y=x^2+ax+b$ 에서 이차항의 계수가 양수이므로 그래프는 아래로 볼록하고, $1\times a>0$ 이므로 축이 y축의 왼쪽에 있다. 또 b<0이므로 y축과의 교점이 원점의 아래쪽에 있다.



따라서 $y=x^2+ax+b$ 의 그래프는 오른쪽 그림과 같으므로 그래프의 꼭짓점은 제3사분면 위에 있다.

이므로 평행이동한 그래프의 식은

프의 식을 구한다.

$$y=4\left(x-k+\frac{1}{4}\right)^2+\frac{11}{4}-k$$

따라서 꼭짓점의 좌표가 $\left(k-\frac{1}{4}\,,\,\,\frac{11}{4}-k\right)$ 이고 꼭짓점이 제1사 분면 위에 있으므로

1082 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 평행이동한 그래

$$k - \frac{1}{4} > 0, \ \frac{11}{4} - k > 0$$

$$\therefore \frac{1}{4} < k < \frac{11}{4}$$

 $\frac{1}{4} < k < \frac{11}{4}$

1083 전략 두 그래프의 모양이 같음을 이용한다.

 \sum 플이 $y=x^2-2x-3=(x-1)^2-4$, $y=x^2-8x+12=(x-4)^2-4$ 에서

 $y=x^2-8x+12$ 의 그래프는

 $y = x^2 - 2x - 3$ 의 그래프를 x축의 방향 으로 2마크 명해이도한 거이므로

으로 3만큼 평행이동한 것이므로

$$\overline{AD} = \overline{BC} = 3$$

또 오른쪽 그림에서 빗금친 두 부분의 넓이가 같으므로 색칠한 부분의 넓이는 평행사변형 ABCD의 넓이와 같다.

따라서 구하는 넓이는

 $\Box ABCD = 3 \times 4 = 12$

目 12

1084 전략 x=1, x=-1일 때의 함숫값의 부호를 이용한다.

 \rightarrow 풀이 그래프가 위로 볼록하므로 a<0

축이 y축의 왼쪽에 있으므로 ab>0

이때 a < 0이므로 b < 0

y축과의 교점이 원점의 위쪽에 있으므로 c>0

- ① a<0, b<0이므로 a+b<0
- ② *b*<0, *c*>0이므로 *bc*<0
- ③ a < 0, c > 0이므로 $\frac{a}{c} < 0$
- ④ x=1일 때, y=a+b+c 주어진 그래프에서 x=1일 때의 함숫값이 음수이므로 a+b+c<0
- ⑤ x=-1일 때, y=a-b+c 주어진 그래프에서 x=-1일 때의 함숫값이 양수이므로 a-b+c>0

3 (5)

10 이차함수의 활용

1085 구하는 이차함수의 식을 $y=a(x+1)^2+1$ 로 놓으면 그래프가 점 (0,3)을 지나므로

3=a+1 $\therefore a=2$

$$\therefore y = 2(x+1)^2 + 1$$

$$y=2(x+1)^2+1$$

1086 구하는 이차함수의 식을 $y=a(x-1)^2+4$ 로 놓으면 그래프가 점 (-1,0)을 지나므로

0=4a+4 $\therefore a=-1$

$$\therefore y = -(x-1)^2 + 4$$

$$y = -(x-1)^2 + 4$$

1087 그래프의 꼭짓점의 좌표가 (-2, 3)이므로 이차함수의 식을 $y=a(x+2)^2+3$ 으로 놓을 수 있다.

이 그래프가 점 (0, -1)을 지나므로

$$-1 = 4a + 3$$
 : $a = -1$

$$\therefore y = -(x+2)^2 + 3$$

$$y = -(x+2)^2 + 3$$

1088 구하는 이차함수의 식을 $y=a(x+2)^2+q$ 로 놓으면 그래프가 두 점 (-3, -2), (0, 1)을 지나므로

-2 = a + q, 1 = 4a + q

위의 두 식을 연립하여 풀면 a=1, a=-3

$$\therefore y = (x+2)^2 - 3$$

$$y=(x+2)^2-3$$

1089 구하는 이차함수의 식을 $y=a(x-2)^2+q$ 로 놓으면 그래프가 두 점 (1, 1), (0, -5)를 지나므로

1=a+q, -5=4a+q

위의 두 식을 연립하여 풀면 a=-2, q=3

$$\therefore y = -2(x-2)^2 + 3$$

$$y=-2(x-2)^2+3$$

1090 그래프의 축의 방정식이 x=1이므로 이차함수의 식을 $y=a(x-1)^2+q$ 로 놓을 수 있다.

이 그래프가 두 점 (0, 1), (4, 5)를 지나므로

1=a+q, 5=9a+q

위의 두 식을 연립하여 풀면 $a = \frac{1}{2}, q = \frac{1}{2}$

$$\therefore y = \frac{1}{2}(x-1)^2 + \frac{1}{2}$$

$$y = \frac{1}{2}(x-1)^2 + \frac{1}{2}$$

♥ 등 정답 및 **풀이**

1092 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그 래프가 점 (0,5)를 지나므로 5=c \bigcirc

점 (-1, 6)을 지나므로 6=a-b+c …… \bigcirc

점 (1, 0)을 지나므로 0=a+b+c ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=-2, b=-3, c=5$$

 $\therefore y=-2x^2-3x+5$

 $y = -2x^2 - 3x + 5$

1093 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그 래프가 점 (0,2)를 지나므로 2=c \bigcirc

점 (-1, -7)을 지나므로 -7 = a - b + c ©

점 (1, -5)를 지나므로 -5=a+b+c ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=-8, b=1, c=2$$

$$\therefore y = -8x^2 + x + 2$$

$$y = -8x^2 + x + 2$$

1094 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그 래프가 점 (0,-1)을 지나므로

$$-1=c$$

점 (-2, -1)을 지나므로 -1=4a-2b+c …… ©

점 (1, 5)를 지나므로 5=a+b+c ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=2, b=4, c=-1$$

$$y = 2x^2 + 4x - 1$$

 $y = 2x^2 + 4x - 1$

1096 구하는 이차함수의 식을 y=a(x+2)(x-2)로 놓으면 그래프가 점 (0, -8)을 지나므로

$$-8 = -4a$$
 : $a = 2$

$$y=2(x+2)(x-2)$$

$$y=2(x+2)(x-2)$$

1097 구하는 이차함수의 식을 y=a(x+3)(x-1)로 놓으면 그래프가 점 (-1, 12)를 지나므로

$$12 = -4a$$
 : $a = -3$

$$\therefore y = -3(x+3)(x-1)$$

$$\exists y = -3(x+3)(x-1)$$

1098 그래프가 x축과 두 점 (-1, 0), (4, 0)에서 만나므로 이차함수의 식을 y=a(x+1)(x-4)로 놓을 수 있다. 이 그래프가 점 (0, 2)를 지나므로

$$2 = -4a$$
 : $a = -\frac{1}{2}$

$$\therefore y = -\frac{1}{2}(x+1)(x-4)$$

$$y = -\frac{1}{2}(x+1)(x-4)$$

1099 (1) $y = -2x^2 - 4x + 7 = -2(x+1)^2 + 9$

(2) x = -1에서 최댓값 9를 갖는다.

目(1)
$$y = -2(x+1)^2 + 9$$
 (2) 최댓값: 9. $x = -1$

1100 目 최**次**값: 5, *x*=2

1101 답 최댓값: 3, x=0

1102 $y = -x^2 + 12x + 3 = -(x-6)^2 + 39$

따라서 x=6에서 최댓값 39를 갖는다.

답 최댓값: 39, x=6

1103 $y=2x^2+8x-1=2(x+2)^2-9$

따라서 x=-2에서 최솟값 -9를 갖는다.

目 최솟값: -9, x = -2

1104 $y=3x^2+6x-2=3(x+1)^2-5$

따라서 x=-1에서 최솟값 -5를 갖는다.

립 최솟값: -5, x=-1

1105 $y = -\frac{1}{2}x^2 - 2x + 5 = -\frac{1}{2}(x+2)^2 + 7$

따라서 x=-2에서 최댓값 7을 갖는다.

目 최댓값: 7. x = -2

1107 (3) $y = x(18-x) = -x^2 + 18x = -(x-9)^2 + 81$

이므로 y는 x=9일 때 최댓값 81을 갖는다.

따라서 직사각형의 넓이의 최댓값은 81 cm²이다.

(1) (18-x)cm (2) y=x(18-x)

 $(3) 81 \text{ cm}^2$ (4) 9 cm

1108 꼭짓점의 좌표가 (1, -5)이므로 이차함수의 식을 $y=a(x-1)^2-5$ 로 놓을 수 있다.

이 그래프가 점 (0, -1)을 지나므로

$$-1 = a - 5$$
 : $a = 4$

따라서 $y=4(x-1)^2-5=4x^2-8x-1$ 이므로

$$b = -8, c = -1$$

$$\therefore a+b-c=-3$$

1109 꼭짓점의 좌표가 (2, 9)이므로 이차함수의 식을 $y=a(x-2)^2+9$ 로 놓을 수 있다.

이 그래프가 점 (-1, 0)을 지나므로

$$0 = 9a + 9$$
 : $a = -1$

$$\therefore y = -(x-2)^2 + 9$$

위의 식에 x=0을 대입하면 y=5

따라서 y축과 만나는 점의 좌표는 (0, 5)이다.

 \blacksquare (0, 5)

(1)

1110 그래프의 꼭짓점의 좌표가 (-2, 0)이므로 이차함수의 식을 $y=a(x+2)^2$ 으로 놓을 수 있다.

이 그래프가 점 $\left(0, \frac{4}{3}\right)$ 를 지나므로

$$\frac{4}{3} = 4a$$
 : $a = \frac{1}{3}$

따라서 $y = \frac{1}{3}(x+2)^2$ 의 그래프가 점 (1, k)를 지나므로

$$k = \frac{1}{3} \times 3^2 = 3$$

 \square (2)

1111 그래프의 꼭짓점의 좌표가 (1, 6)이므로 이차함수의 식을 $y=a(x-1)^2+6$ 으로 놓을 수 있다.

이 그래프가 점 (0, 4)를 지나므로

$$4 = a + 6$$
 : $a = -2$

따라서 $y=-2(x-1)^2+6=-2x^2+4x+4$ 이므로

$$b=4, c=4$$

$$\therefore 3a + 2b - c = -2$$

... **③ ■** -2

... 2

채점 기준	비율
1 a의 값을 구할 수 있다.	40%
$\ensuremath{ 2 \over 2 } b, c$ 의 값을 구할 수 있다.	40%
③ $3a+2b-c$ 의 값을 구할 수 있다.	20%

1112 축의 방정식이 x=2이므로 이차함수의 식을 $y=a(x-2)^2+q$ 로 놓을 수 있다.

이 그래프가 두 점 (-1, 19), (1, 3)을 지나므로

19 = 9a + q, 3 = a + q

위의 두 식을 연립하여 풀면

$$a=2, q=1$$

따라서 $y=2(x-2)^2+1$ 이므로 x=0을 대입하면

$$y=9$$

3

1113 축의 방정식이 x=-1이므로 이차함수의 식을 $y=(x+1)^2+q$ 로 놓을 수 있다.

이 그래프가 점 (2, 4)를 지나므로

$$4 = 9 + q$$

$$\therefore q = -5$$

따라서 $y=(x+1)^2-5=x^2+2x-4$ 이므로

$$a=2, b=-4$$

$$\therefore a-b=6$$

B 6

1114 그래프의 축의 방정식이 x=-2이므로 이차함수의 식을 $y=a(x+2)^2+q$ 로 놓을 수 있다.

이 그래프가 두 점 (-5, 0), (0, 5)를 지나므로

$$0 = 9a + q$$
, $5 = 4a + q$

위의 두 식을 연립하여 풀면

$$a = -1, q = 9$$

$$\therefore y = -(x+2)^2 + 9 = -x^2 - 4x + 5$$

2

1115 그래프가 점 (0, 2)를 지나므로

$$2=c$$
 ······ \bigcirc

점
$$(1, -2)$$
를 지나므로 $-2 = a + b + c$ ©

점
$$(2, -4)$$
를 지나므로 $-4 = 4a + 2b + c$ ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=1, b=-5, c=2$$

$$\therefore abc = -10$$

... •

1116 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그

래프가 점
$$(0, 1)$$
을 지나므로 $1=c$

..... ⋽

점
$$(-1, 2)$$
를 지나므로 $2=a-b+c$
점 $(1, 4)$ 를 지나므로 $4=a+b+c$

····· ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=2, b=1, c=1$$

$$\therefore y = 2x^2 + x + 1$$

$$=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}$$

따라서 그래프의 꼭짓점의 좌표는

$$\left(-\frac{1}{4}, \frac{7}{8}\right)$$

(1 7)

채점 기준	비율
lacktriangle a,b,c 의 값을 구할 수 있다.	50%
❷ 꼭짓점의 좌표를 구할 수 있다.	50%

1117 그래프가 점 (0, 8)을 지나므로

8=*c* ¬

점 (3, -4)를 지나므로 -4=9a+3b+c …… ①

점 (4, 0)을 지나므로 0=16a+4b+c ····· ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=2, b=-10, c=8$$

$$\therefore a-b+c=20$$

冒 20

1118 그래프가 x축과 두 점 (-3, 0), (3, 0)에서 만나므로 이차함수의 식을 y=a(x+3)(x-3)으로 놓을 수 있다.

이 그래프가 점 (0, 18)을 지나므로

$$18 = -9a$$
 : $a = -2$

따라서 $y=-2(x+3)(x-3)=-2x^2+18$ 이므로

$$b=0, c=18$$

$$\therefore a+b+c=16$$

16

다른풀이 그래프가 점 (0, 18)을 지나므로

18=c ······ \bigcirc

점 (3, 0)을 지나므로 0=9a+3b+c ······ ©

점 (-3, 0)을 지나므로 0=9a-3b+c ····· ©

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a = -2, b = 0, c = 18$$

$$\therefore a+b+c=16$$

1119 x^2 의 계수가 $\frac{1}{2}$ 이고 그래프와 x축의 교점의 좌표가

(-2, 0), (3, 0)이므로 구하는 이차함수의 식은

$$y = \frac{1}{2}(x+2)(x-3)$$

$$=\frac{1}{2}x^2-\frac{1}{2}x-3$$

(2)

... 2

1120 그래프가 x축과 두 점 (-1, 0), (2, 0)에서 만나므로 이차함수의 식을 y=a(x+1)(x-2)로 놓을 수 있다.

이 그래프가 점 (1, -6)을 지나므로

$$-6 = -2a$$
 : $a = 3$

$$\therefore y=3(x+1)(x-2)=3x^2-3x-6$$
 ...

이 그래프가 점 (k, 12)를 지나므로

$$12=3k^2-3k-6$$
, $k^2-k-6=0$

$$(k+2)(k-3)=0$$
 : $k=3$ (: $k>0$)

채점 기준	비율
1 이차함수의 식을 구할 수 있다.	60%
❷ k의 값을 구할 수 있다.	40%

1121 그래프가 x축과 두 점 (-2, 0), (6, 0)에서 만나므로 이차함수의 식을 y=a(x+2)(x-6)으로 놓을 수 있다.

이 그래프가 점 (0, 4)를 지나므로

$$4 = -12a$$
 : $a = -\frac{1}{3}$

$$\therefore y = -\frac{1}{3}(x+2)(x-6) = -\frac{1}{3}(x^2 - 4x - 12)$$
$$= -\frac{1}{3}(x-2)^2 + \frac{16}{3}$$

따라서 그래프의 꼭짓점의 좌표는

1122 $y = -2x^2 + 4x + 7 = -2(x-1)^2 + 9$ 이므로

M=9

$$y = \frac{2}{3}x^2 + \frac{4}{3}x - 2 = \frac{2}{3}(x+1)^2 - \frac{8}{3}$$
이므로

$$m = -\frac{8}{3}$$

$$\therefore M+m=\frac{19}{3}$$

 $\frac{19}{2}$

1123 $y=3x^2-6x-2=3(x-1)^2-5$

따라서 x=1에서 최솟값 -5를 가지므로

$$a=1, b=-5$$

$$\therefore ab = -5$$

1124 ①, ② 최댓값이 없다.

- ③ $y = -x^2 + 12x 35 = -(x-6)^2 + 1$ 이므로 최댓값은 1이다.
- ④ $y = -2x^2 12x + 24 = -2(x+3)^2 + 42$ 이므로 최댓값은 42이다.
- ⑤ $y = -3x^2 12x 8 = -3(x+2)^2 + 4$ 이므로 최댓값은 4이다.

3 (5)

1125 ① 최솟값은 4이다.

② 최솟값은 1이다.

(3)
$$y = \frac{2}{5}x^2 + 4x + 1 = \frac{2}{5}(x+5)^2 - 9$$

이므로 최솟값은 -9이다.

- ④ $y=x^2+4x+6=(x+2)^2+2$ 이므로 최숙값은 2이다.
- $(5) y = 2x^2 8x + 2 = 2(x-2)^2 6$

이므로 최솟값은 -6이다.

이상에서 최솟값이 가장 작은 것은 ③이다.

1126 그래프가 점 (1, -5)를 지나므로

$$-5 = 2 + a - 3$$
 : $a = -4$

따라서 $y=2x^2-4x-3=2(x-1)^2-5$ 이므로 최솟값은 -5이 다.

3 (5)

1127 평행이동한 그래프의 식은

$$y=-3(x-2)^2+1-3=-3(x-2)^2-2$$

따라서 이 이차함수의 최댓값은 -2이다.

(1)

이차함수 $y=a(x-p)^2+q$ 의 그래프를 x축의 방향으로 m만 큼, y축의 방향으로 n만큼 평행이동한 그래프의 식은 x 대신 x-m, y 대신 y-n을 대입한다.

 $\bigcirc y = a(x-m-p)^2+q+n$

1128 x^2 의 계수가 1이므로 이차함수의 식은

$$y=(x+3)(x-2)=x^2+x-6$$
 ... $\mathbf{1}$
= $\left(x+\frac{1}{2}\right)^2-\frac{25}{4}$

따라서 이 이차함수의 최솟값은 $-\frac{25}{4}$ 이다.

 $-\frac{25}{4}$

채점 기준	비율
● 이차함수의 식을 구할 수 있다.	50%
② 최솟값을 구할 수 있다.	50%

1129 조건 (개), (내)에 의하여 주어진 이차함수의 식을

$$y = -\frac{1}{3}(x+3)^2 + q$$
로 놓을 수 있다.

조건 (대)에 의하여

$$0 = -\frac{1}{3}(3+3)^2 + q$$
 : $q = 12$

따라서 $y = -\frac{1}{3}(x+3)^2 + 12$ 이므로 최댓값은 12이다.

2

1130 $y=-x^2+6x+k=-(x-3)^2+k+9$

이므로 이 그래프의 꼭짓점의 좌표는

(3, k+9)

꼭짓점이 직선 y=3x+2 위에 있으므로

$$k+9=9+2$$
 : $k=2$

따라서 $y = -(x-3)^2 + 11$ 이므로 최댓값은 11이다.

图 11

1131 $y = -2x^2 + 12x + k - 3 = -2(x - 3)^2 + k + 15$

이 함수의 최댓값이 3이므로

$$k+15=3$$
 : $k=-12$

3 (5)

1132 $y=mx^2-4mx+1=m(x-2)^2+1-4m$

이 함수의 최솟값이 -3이므로

$$1-4m = -3$$
 : $m=1$

4

1133 $y=2x^2+4x+2a+1=2(x+1)^2+2a-1$ … 이 함수의 최솟값이 -3이므로

$$2a-1=-3$$
 $\therefore a=-1$

... 2

따라서 $y=2x^2+4x-1$ 이므로

$$b=-1$$
 ··· •

$$\therefore a+b=-2$$

... **4** ■ -2

채점 기준	비율
• $y=2(x-p)^2+q$ 꼴로 변형할 수 있다.	30%
extstyle a의 값을 구할 수 있다.	30%
$oldsymbol{\circ}$ b 의 값을 구할 수 있다.	20%
$m{a}$ $a+b$ 의 값을 구할 수 있다.	20%

1134 $y = -2x^2 + 8x + 6 + 2k = -2(x-2)^2 + 14 + 2k$

이므로 최댓값은 14+2k이다.

$$y=(x+3)(x-5)-k=x^2-2x-15-k$$

= $(x-1)^2-16-k$

이므로 최솟값은 -16-k이다.

따라서 14+2k=-16-k이므로

$$k = -10$$

-10

1135 $y=-x^2-6x+a=-(x+3)^2+9+a$

이므로 평행이동한 그래프의 식은

$$f(x) = -(x-3+3)^2 + 9 + a - 1$$

= $-x^2 + 8 + a$

이 함수의 최댓값이 6이므로

$$8+a=6$$
 : $a=-2$

(5)

1136 x=1에서 최솟값 -2를 가지므로 이차함수의 식을 $y=a(x-1)^2-2$ 로 놓을 수 있다.

이 그래프가 점 (0, 1)을 지나므로

$$1=a-2$$
 $\therefore a=3$

따라서 $y=3(x-1)^2-2=3x^2-6x+1$ 이므로

$$b = -6, c = 1$$

$$\therefore a-b+c=10$$

图 10

1137 함수 $y=2x^2+ax+b$ 가 x=2에서 최솟값 1을 가지 므로

$$y=2(x-2)^2+1=2x^2-8x+9$$

 $\therefore a=-8, b=9$

(2)

1138 x^2 의 계수가 $-\frac{1}{2}$ 이고, x=-3에서 최댓값 5를 갖는 이차함수는

$$y = -\frac{1}{2}(x+3)^2 + 5 = -\frac{1}{2}x^2 - 3x + \frac{1}{2}$$

1139 함수 $y=kx^2-12x+5$ 가 x=3에서 최솟값 p를 가지 p=1

$$y=k(x-3)^2+p=kx^2-6kx+9k+p$$

따라서 $-6k=-12,\ 9k+p=5$ 이므로

$$k=2, p=-13$$

$$\therefore k+p=-11$$

圓 −11

1140 $y=-\frac{1}{2}x^2+(a+1)x-\frac{3}{4}$ 이 x=-2에서 최댓값 k를 가지므로

$$y = -\frac{1}{2}(x+2)^2 + k = -\frac{1}{2}x^2 - 2x - 2 + k$$

따라서 a+1=-2, $-\frac{3}{4}=-2+k$ 이므로

$$a = -3, k = \frac{5}{4}$$

$$\therefore a+4k=2$$

4

1141 함수 $y=3x^2+ax+5$ 가 x=-1에서 최솟값 b를 가지므로

$$y=3(x+1)^2+b=3x^2+6x+3+b$$

따라서 a=6, 5=3+b이므로

$$a=6, b=2$$
 ... •

 $y=3x^2+6x+5$ 의 그래프가 점 (k, 14)를 지나므로

$$14=3k^2+6k+5$$
, $k^2+2k-3=0$

$$(k+3)(k-1)=0$$
 $\therefore k=1 (\because k>0)$ \cdots

$$\therefore a-b+k=5$$
 ... §

冒 5

채점 기준	비율
lacktriangle a,b 의 값을 구할 수 있다.	50%
② k의 값을 구할 수 있다.	40%
	10%

1142 조건 (n), (u)에 의하여 이차함수의 식을 $y=a(x-3)^2$ 으로 놓을 수 있다.

조건 (\Box) 에 의하여 이 그래프가 점 (0, -3)을 지나므로

$$-3 = 9a$$
 : $a = -\frac{1}{3}$

$$\therefore y = -\frac{1}{3}(x-3)^2 = -\frac{1}{3}x^2 + 2x - 3$$

$$y = -\frac{1}{3}x^2 + 2x - 3$$

1143 두 수를 x, x+20이라 하고 두 수의 곱을 y라 하면 $y=x(x+20)=x^2+20x$

$$=(x+10)^2-100$$

이므로 y = x = -10일 때 최솟값 -100을 갖는다.

따라서 두 수의 곱의 최솟값은 -100이다.

2 (2)

1144 두 수를 x, 14-x라 하고 두 수의 곱을 y라 하면

$$y=x(14-x)=-x^2+14x$$

= $-(x-7)^2+49$

이므로 y는 x=7일 때 최댓값 49를 갖는다.

따라서 두 수의 곱이 최대일 때, 두 수는 모두 7이므로 그 차는 0이다.

라쎈 특강 (그)

일반적으로 합이 일정한 두 수의 곱은 두 수가 같을 때 최대이고, 차가 일정한 두 수의 곱은 두 수의 합이 0일 때 최소가 돼.

1145 (1) x=8+2y

... •

(2) $xy = (8+2y)y = 2y^2 + 8y = 2(y+2)^2 - 8$

이므로 xy의 최솟값은 -8이다.

... 2

 \blacksquare (1) x=8+2y (2) -8

채점 기준	비율
① x 를 y 에 대한 식으로 나타낼 수 있다.	30%
② xy의 최솟값을 구할 수 있다.	70%

1146 닭장의 세로의 길이를 x m라 하면 닭장의 가로의 길이는 (72-2x)m

닭장의 넓이를 y m²라 하면

$$y=x(72-2x)=-2x^2+72x$$

$$=-2(x-18)^2+648$$

이므로 y는 x=18일 때 최댓값 648을 갖는다.

따라서 닭장의 넓이의 최댓값은 648 m²이다.

(2)

1147 삼각형의 밑변의 길이를 $x \, \mathrm{cm}$ 라 하면 높이는

(80-x)cm

삼각형의 넓이를 $y \text{ cm}^2$ 라 하면

$$y = \frac{1}{2}x(80-x) = -\frac{1}{2}x^2 + 40x$$
$$= -\frac{1}{2}(x-40)^2 + 800$$

이므로 y는 x=40일 때 최댓값 800을 갖는다. 따라서 삼각형의 최대 넓이는 800 cm²이다.

冒 800 cm²

1148 부채꼴의 반지름의 길이를 x cm라 하면 호의 길이는 (28-2x)cm

부채꼴의 넓이를 y cm²라 하면

$$y = \frac{1}{2}x(28-2x) = -x^2 + 14x$$
$$= -(x-7)^2 + 49$$

이므로 y는 x=7일 때 최댓값 49를 갖는다.

따라서 부채꼴의 넓이가 최대일 때의 반지름의 길이는 7 cm이다.

冒7 cm

반지름의 길이가 r, 호의 길이가 l인 부채꼴의 넓이 $\bigcirc \frac{1}{2}rl$

1149 새로운 직사각형의 가로, 세로의 길이는 각각 (8+2x)cm, (8-x)cm이므로 직사각형의 넓이를 y cm 2 라 하면

$$y=(8+2x)(8-x)=-2x^2+8x+64$$

= $-2(x-2)^2+72$

이므로 y는 x=2일 때 최댓값 72를 갖는다.

따라서 새로운 직사각형의 넓이의 최댓값은 72 cm²이다.

2

1150 $\overline{AP} = x \text{ cm}$ 라 하면

$$\overline{\mathrm{BP}} = (10 - x) \mathrm{cm}$$

두 정사각형의 넓이의 합을 $y \text{ cm}^2$ 라 하면

$$y=x^2+(10-x)^2=2x^2-20x+100$$

=2(x-5)²+50

이므로 y는 x=5일 때 최솟값 50을 갖는다.

따라서 \overline{AP} =5 cm일 때 두 정사각형의 넓이의 합이 최소이다.

1151 x초 후의 물의 높이를 y m라 하면

$$y=20x-5x^2=-5(x-2)^2+20$$

이므로 y는 x=2일 때 최댓값 20을 갖는다.

따라서 물을 쏘아 올릴 수 있는 최대 높이는 20 m이다.

3

(2)

1152 $y = -5x^2 + 40x + 11 = -5(x-4)^2 + 91$

이므로 y는 x=4일 때 최댓값 91을 갖는다.

이라 하면

따라서 4초 후에 로켓이 가장 높이 올라간다.

1153 (1) 하루에 x개의 제품을 생산할 때의 이익을 y만 원

$$y = -\frac{1}{10}x^{2} + 20x - 500$$

$$= -\frac{1}{10}(x - 100)^{2} + 500 \qquad \cdots$$

이므로 y는 x=100일 때 최댓값 500을 갖는다.

따라서 하루 최대 이익은 500만 원이다.

... 🙆

(2) 하루에 100개의 제품을 생산할 때 이익이 최대가 된다. ... ❸

目(1)500만원 (2)100개

채점 기준	비율
● 이차함수의 식을 세우고 표준형으로 변형할 수 있다.	60%
② 하루 최대 이익을 구할 수 있다.	20%
❸ 이익이 최대일 때의 제품 생산량을 구할 수 있다.	20%

1154 전략 꼭짓점의 좌표가 (p, q)인 이차함수의 식을 $y=a(x-p)^2+q$ 로 놓는다.

 $\ge _{=0}$ 그래프의 꼭짓점의 좌표가 (-1, 3)이므로 이차함수의 식을 $y=a(x+1)^2+3$ 으로 놓을 수 있다.

이 그래프가 점 (-2, 1)을 지나므로

$$1=a+3$$
 $\therefore a=-2$

따라서 $y=-2(x+1)^2+3=-2x^2-4x+1$ 이므로

$$b = -4, c = 1$$

$$\therefore a-b-c=1$$

3 1

1155 전략 그래프의 축의 방정식이 x=p인 이처함수의 식을 $y=a(x-p)^2+q$ 로 놓는다.

 \sum 풀이 그래프의 축의 방정식이 x=1이므로 이차함수의 식을 $f(x) = a(x-1)^2 + q$ 로 놓을 수 있다.

y=f(x)의 그래프가 두 점 (0, -8), (4, 0)을 지나므로

$$-8 = a + q$$
, $0 = 9a + q$

위의 두 식을 연립하여 풀면 a=1, q=-9

따라서 $f(x) = (x-1)^2 - 9$ 이므로

$$f(-1)=(-2)^2-9=-5$$

□ -5

1156 전략》 $y=ax^2+bx+c$ 로 놓고 그래프 위의 세 점을 이용한다.

 \geq 풀에 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그래

프가 점 (0, -2)를 지나므로 -2=c ······ \bigcirc

점 (-1, -3)을 지나므로 -3=a-b+c …… ①

점 (1,7)을 지나므로 7=a+b+c (2)

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a=4, b=5, c=-2$$

따라서 구하는 이차함수의 식은

$$y = 4x^2 + 5x - 2$$

1157 전략》 그래프가 x축과 두 점 (m, 0), (n, 0)에서 만나는 이치함수의 식을 y=a(x-m)(x-n)으로 놓는다.

 \ge 풀이 그래프가 x축과 두 점 (-1, 0), (3, 0)에서 만나므로 이차함수의 식을 y=a(x+1)(x-3)으로 놓을 수 있다.

이 그래프가 점 (0, 12)를 지나므로

$$12 = -3a \qquad \therefore a = -4$$

$$\therefore y = -4(x+1)(x-3) = -4x^2 + 8x + 12$$

$$= -4(x-1)^2 + 16$$

따라서 이 그래프의 꼭짓점의 *y*좌표는 16이다.

1158 전략 $y=a(x-p)^2+q$ 꼴로 변형한다.

$$\text{Tend} \ y = -\frac{1}{3}x^2 - \frac{4}{3}x - \frac{1}{3} = -\frac{1}{3}(x+2)^2 + 1$$

따라서 x=-2일 때 최댓값 1을 갖는다.

- 1159 a>0일 때 $y=a(x-p)^2+q$ 의 최솟값은 q이다.
- $_{\overline{z}}$ ① x=0일 때 최솟값 3을 갖는다.
- ② x = -1일 때 최솟값 3을 갖는다.
- ③ x=3일 때 최솟값 3을 갖는다. ④ $y=x^2-2x+4=(x-1)^2+3$

따라서 x=1일 때 최솟값 3을 갖는다.

 $5 y = x^2 + 4x + 1 = (x+2)^2 - 3$

따라서 x=-2일 때 최솟값 -3을 갖는다.

이상에서 최솟값이 다른 것은 ⑤이다.

1160 전략 $y=a(x-p)^2+q$ 꼴로 변형한다.

$$\text{Sign} \ y \! = \! -\frac{1}{4} x^2 \! + \! x \! - \! 1 \! = \! -\frac{1}{4} (x \! - \! 2)^2$$

- ① 이차함수의 최댓값은 0이다.
- ② 축의 방정식은 x=2이다.
- (4) *x*축과 한 점에서 만난다.
- ⑤ $y = -\frac{1}{4}x^2$ 의 그래프를 x축의 방향으로 2만큼 평행이동한 것이다.

3

3 (5)

(2)

1161 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 그래프의 축의 방 정식이 x=p임을 이용한다.

 $> \exists 0$ $y=x^2+2kx+k=(x+k)^2+k-k^2$

이 함수의 그래프의 축의 방정식이 x=2이므로

$$-k=2$$
 $\therefore k=-2$

따라서 구하는 최솟값은

$$k-k^2=-2-(-2)^2=-6$$

다른풀이 x^2 의 계수가 1이고 그래프의 축의 방정식이 x=2이 므로

$$y=(x-2)^2+q=x^2-4x+4+q$$

따라서 -4=2k, 4+q=k이므로

$$k = -2, q = -6$$

즉 $y = (x-2)^2 - 6$ 이므로 구하는 최솟값은 -6이다.

1162 전략》 $y=3(x-p)^2+q$ 꼴로 변형하여 최솟값이 q임을 이용한다.

 $\geq 3x^2 + 6ax = 3(x+a)^2 - 3a^2$

이 함수의 최솟값이 -12이므로

$$-3a^2 = -12$$
, $a^2 = 4$

$$\therefore a=2 (::a>0)$$

따라서 $y=3x^2+12x$ 의 그래프가 점 (-1, k)를 지나므로

$$k=3\times(-1)^2+12\times(-1)=-9$$

 $\blacksquare -9$

(4)

1163 전략 x=p에서 최댓값 q를 갖는 이처함수의 식을 $y=a(x-p)^2+q$ 로 놓는다.

>풀이 $y=ax^2+6x+4$ 가 x=3에서 최댓값 b를 가지므로

$$y=a(x-3)^2+b=ax^2-6ax+9a+b$$

따라서 6 = -6a, 4 = 9a + b이므로

$$a = -1, b = 13$$

$$\therefore 3a+b=10$$

1164 전략 x=p에서 최솟값 q를 갖는 이처함수의 식을 $y=a(x-p)^2+q$ 로 놓는다.

돌에 $y=ax^2+bx+c$ 가 x=-1일 때 최솟값 1을 가지므로

$$y = a(x+1)^2 + 1$$

이 이차함수의 그래프가 점 (1, 13)을 지나므로

$$13 = 4a + 1$$
 : $a = 3$

따라서 $y=3(x+1)^2+1=3x^2+6x+4$ 이므로

$$b = 6, c = 4$$

$$\therefore a+b-c=5$$

1165 전략》 가로의 길이를 x cm, 넓이를 y cm²라 하고 y를 x 에 대한 식으로 나타낸다.

 $_{\overline{z}}$ 직사각형의 가로의 길이를 $x \, \mathrm{cm}$ 라 하면 세로의 길이는

$$(16-x)$$
cm

직사각형의 넓이를 $y \text{ cm}^2$ 라 하면

이므로 y는 x=8일 때 최댓값 64를 갖는다. 따라서 직사각형의 최대 넓이는 64 cm²이다.

(3)

- 이 문제에서 직사각형의 넓이가 최대일 때의 가로의 길이는 $8~{
 m cm}$ 이고, 세로의 길이도 $16-8=8({
 m cm})$ 임을 알 수 있어.
- 이처럼 둘레의 길이가 일정한 직사각형의 넓이는 가로의 길이와 세 로의 길이가 서로 같을 때, 즉 정사각형일 때 최대가 돼.

1166 전략 새로운 삼각형의 넓이를 $y \text{ cm}^2$ 라 하고 x, y에 대한 식을 세운다.

 \geq 풀에 새로운 삼각형의 밑변의 길이는 (6+x)cm, 높이는 (10-x)cm이다.

새로운 삼각형의 넓이를 y cm²라 하면

$$y = \frac{1}{2}(6+x)(10-x) = \frac{1}{2}(-x^2+4x+60)$$
$$= -\frac{1}{2}(x-2)^2+32$$

이므로 y는 x=2일 때 최댓값 32를 갖는다.

따라서 삼각형의 최대 넓이는 32 cm²이다.

 \blacksquare (2)

1167 전략 빗금친 직사각형의 넓이를 $y \text{ cm}^2$ 라 하고 y = x에 대한 식으로 나타낸다.

>풀에 빗금친 직사각형의 가로의 길이는

(20-2x)cm

빗금친 부분의 넓이를 y cm²라 하면

$$y=x(20-2x)=-2x^2+20x$$

= $-2(x-5)^2+50$

이므로 y는 x=5일 때 최댓값 50을 갖는다.

따라서 x=5일 때 빗금친 부분의 넓이가 최대이다. **달** 5

1168 전략 $h=a(t-p)^2+q$ 꼴로 변형하여 h의 최댓값을 구한다.

 $= -5t^2 + 20t + 30 = -5(t-2)^2 + 50$

이므로 h는 t=2일 때 최댓값 50을 갖는다.

따라서 최고 높이에 도달했을 때, 지면으로부터의 높이는 $50~\mathrm{m}$ 이다.

冒 50 m

1169 전략》 $y=ax^2+bx+c$ 로 놓고 그래프 위의 세 점을 이용한다.

 \ge 풀이 이차함수의 식을 $y=ax^2+bx+c$ 로 놓으면 그래프가 점

(0, -2)를 지나므로 -2 = c

..... ⋽

점 (2, 4)를 지나므로

4 = 4a + 2b + c

.... L

점 (4, 2)를 지나므로

2 = 16a + 4b + c

..... ₪

⊙, ⓒ, ⓒ을 연립하여 풀면

$$a = -1, b = 5, c = -2$$

$$\therefore y = -x^2 + 5x - 2$$

... 🙃

이 함수의 그래프가 점 (1, k)를 지나므로

$$k = -1 + 5 - 2 = 2$$

··· ②

채점기준	비율
● 이차함수의 식을 구할 수 있다.	70%
② k의 값을 구할 수 있다.	30%

1170 전략 $y = -(x-p)^2 + q$ 꼴로 변형하여 최댓값이 q임을 이용한다.

 $y = -x^2 + 2ax - a^2 + 3a = -(x-a)^2 + 3a$...

이 함수의 최댓값이 3이므로

$$3a=3$$
 $\therefore a=1$ \cdots

따라서 $y = -(x-1)^2 + 3$ 이므로 그래프의 꼭짓점의 좌표는

월 (1, 3)

채점 기준	비율
$0 \ y = -(x-p)^2 + q$ 꼴로 변형할 수 있다.	30%
② a 의 값을 구할 수 있다.	40%
③ 꼭짓점의 좌표를 구할 수 있다.	30%

1171 전략 그래프의 축의 방정식이 x=p이고 최솟값이 q인 이 차함수의 식을 $y=a(x-p)^2+q$ 로 놓는다.

________ 그래프의 축의 방정식이 x=4이고 최솟값이 -12인 이차 함수의 식을 $y=a(x-4)^2-12$ 로 놓을 수 있다.

이 함수의 그래프가 원점을 지나므로

$$0 = 16a - 12$$
 $\therefore a = \frac{3}{4}$

$$\therefore y = \frac{3}{4}(x-4)^2 - 12$$

이 함수의 그래프가 점 (2, k)를 지나므로

$$k = \frac{3}{4} \times (-2)^2 - 12 = -9$$

 $\blacksquare -9$

채점 기준	비율
● 이차함수의 식을 구할 수 있다.	70%
② <i>k</i> 의 값을 구할 수 있다.	30%

1172 전략 $x^2 + y^2 \ge x$ 에 대한 식으로 나타낸 후 $a(x-p)^2 + q$ 꼴로 변형한다.

... 🕦

 $(2) x^2 + y^2 = x^2 + (4 - x)^2$

$$=2x^2-8x+16$$

$$=2(x-2)^2+8$$

따라서 x^2+y^2 의 최솟값은 8이다.

... 2

(3) x^2+y^2 의 값은 x=2일 때 최소이므로 이때의 y의 값은

(1) y = 4 - x (2) 8 (3) x = 2, y = 2

채점 기준	비율
① y 를 x 에 대한 식으로 나타낼 수 있다.	20%
② $x^2 + y^2$ 의 최솟값을 구할 수 있다.	60%
③ x^2+y^2 의 값이 최소일 때의 x , y 의 값을 구할 수 있다.	20%

1173 쪽의 꼭짓점의 좌표와 그래프 위의 한 점의 좌표를 이용하여 이차함수의 식을 구한다.

______ 그래프의 꼭짓점의 좌표가 (1, -8)이므로 이차함수의 식을 $y=a(x-1)^2-8$ 로 놓을 수 있다.

이 그래프가 점 (0, -6)을 지나므로

$$-6 = a - 8$$
 : $a = 2$

즉 $y=2(x-1)^2-8=2x^2-4x-6$ 이므로 y=0을 대입하면

$$x^2-2x-3=0$$
, $(x+1)(x-3)=0$

$$\therefore x = -1 \stackrel{\leftarrow}{} \stackrel{\leftarrow}{} x = 3$$

따라서 B(-1, 0), C(3, 0)이므로

$$\overline{BC} = 3 - (-1) = 4$$

$$\therefore \triangle ABC = \frac{1}{2} \times 4 \times 8 = 16$$

1174 전략》 f(m)을 구한 후 $f(m) = a(m-p)^2 + q$ 꼴로 변형하다.

돌에 $y=-x^2+2mx+3m=-(x-m)^2+m^2+3m$ 따라서 $y=-x^2+2mx+3m=-(x-m)^2+m^2+3m$

$$f(m) = m^2 + 3m = \left(m + \frac{3}{2}\right)^2 - \frac{9}{4}$$

즉
$$f(m)$$
은 $m=-\frac{3}{2}$ 일 때 최솟값 $-\frac{9}{4}$ 를 갖는다.

1175 \square OQPR의 가로, 세로의 길이를 점 \square P의 \square \square 모표로 나타낸다.

>풀이 두 점 (8, 0), (0, 4)를 지나는 직선 l의 방정식은

$$y = -\frac{1}{2}x + 4$$

점 P의 좌표를 $\left(x, -\frac{1}{2}x+4\right)$ 라 하면

$$\overline{OQ} = x$$
, $\overline{OR} = -\frac{1}{2}x + 4$

 \square OQPR의 넓이를 y라 하면

$$y = x\left(-\frac{1}{2}x+4\right) = -\frac{1}{2}x^2 + 4x$$
$$= -\frac{1}{2}(x-4)^2 + 8$$

이므로 y는 x=4일 때 최댓값 8을 갖는다.

따라서 x=4일 때 \square OQPR의 넓이가 최대이므로 구하는 점 P 의 좌표는 (4,2)이다. \square P(4,2)

대단원 모의고사

I . 제곱근과 실수

01 ⑤	02 ③	03 ②	04 ③	05 ④
06 ③	07 ④	08 ④	09 4	10 ②
11 ③	12 ①	13 ④	14 (5)	15 4
16 ⑤	17 ⑤	18 ③	19 20	20 15
21 33	22 5	23 3개	24 32√3	$\pi \text{ cm}^3$
25 $\frac{14\sqrt{3}}{5}$	<u>10</u> m/s			

01 전략 제곱근의 뜻을 이용한다.

둘이 $x^2=15$, $y^2=10$ 이므로 $x^2-y^2=5$

3 (5)

02 전략 제곱해서 음수가 되는 수는 없다.

풀이 ③ 음수의 제곱근은 없다.

3

03 전략 제곱근의 성질을 이용한다.

>풀이 (L) $(-\sqrt{13})^2=13$

 $(E) - \sqrt{0.2^2} = -0.2$

이상에서 옳은 것은 (기), (리)이다.

(2)

04 전략 제곱하는 식의 부호를 생각한다.

 $_{ }$ 둘이 -3 < a < 1이므로 a+3 > 0, a-1 < 0

$$\therefore \sqrt{(a+3)^2} + \sqrt{(a-1)^2} = a+3-(a-1)=4$$

3 (3)

05 전략 근호 안의 수가 0 또는 자연수의 제곱이 되도록 하는 x의 값을 구한다.

 $\sqrt{24-x}$ 가 정수가 되려면 24-x가 0 또는 24보다 작은 제곱인 자연수가 되어야 하므로

24-x=0, 1, 4, 9, 16

 $\therefore x = 24, 23, 20, 15, 8$

따라서 자연수 x의 개수는 5이다.

4

06 약 a, b에 대하여 $\sqrt{a} < \sqrt{b}$ 이면 a < b임을 이용한다.

>풀이 $1 \le \sqrt{2x-3} < 5$ 에서 $1 \le 2x-3 < 25$

 $4 \le 2x < 28$ $\therefore 2 \le x < 14$

따라서 구하는 정수 x는 2, 3, 4, ..., 13의 12개이다.

07 전략 무리수의 뜻을 이용한다.

 $\sqrt{9}$ ① $\sqrt{9} = \sqrt{3^2} = 3$ 이므로 $\sqrt{9}$ 는 유리수이다.

- ② $\sqrt{5}$ 는 무리수이므로 $\frac{(정수)}{(0$ 이 아닌 정수)}로 나타낼 수 없다.
- ③ 유리수 0과 무리수의 곱은 0이므로 유리수가 된다.
- ⑤ 넓이가 4인 정사각형의 한 변의 길이는 $\sqrt{4} = \sqrt{2^2} = 2$ 이므로 유리수이다.

4

 ${f 08}$ 전략》 세 실수 a, b, c에 대하여 a < b이고 b < c이면 a < b < c임을 이용한다.

) 플이
$$P-R=(\sqrt{13}+2)-4=\sqrt{13}-2=\sqrt{13}-\sqrt{4}>0$$

이므로 P>R

$$Q-R=(\sqrt{17}-1)-4=\sqrt{17}-5=\sqrt{17}-\sqrt{25}<0$$

이므로 Q < R

$$\therefore Q < R < P$$

(4)

09 전략 양수 a, b에 대하여 $\sqrt{a}\sqrt{b} = \sqrt{ab}$ 임을 이용한다.

$$\begin{array}{l} \geq \text{ } \text{ } \text{ } \sqrt{7} \times \sqrt{14} \times \sqrt{24} = \sqrt{7} \times \sqrt{2 \times 7} \times \sqrt{2^3 \times 3} \\ = \sqrt{2^4 \times 3 \times 7^2} = 28\sqrt{3} \end{array}$$

 $\therefore a=28$

4

10 전략 두 정사각형의 한 변의 길이를 각각 구한다.

>풀이 $\overline{BC} = \sqrt{16} = 4$ (cm), $\overline{CA} = \sqrt{12} = 2\sqrt{3}$ (cm)이므로

$$\triangle ABC = \frac{1}{2} \times \overline{BC} \times \overline{AC}$$
$$= \frac{1}{2} \times 4 \times 2\sqrt{3} = 4\sqrt{3}(cm^{2})$$

2 (2)

11 전략 소수를 분수로 나타낸다.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} = \\ \end{array} \end{array} \begin{array}{c} \sqrt{3.36} = \sqrt{\frac{336}{100}} = \sqrt{\frac{4^2 \times 3 \times 7}{10^2}} \\ \\ = \frac{4 \times \sqrt{3} \times \sqrt{7}}{10} = \frac{2}{5} ab \end{array}$$

3

12 전략 $(a+b)(a-b)=a^2-b^2$ 을 이용하여 분모를 유리화한 다.

$$\begin{array}{c} \frac{2}{3+\sqrt{8}} = \frac{2}{3+2\sqrt{2}} = \frac{2(3-2\sqrt{2})}{(3+2\sqrt{2})(3-2\sqrt{2})} \\ = \frac{6-4\sqrt{2}}{9-8} = 6-4\sqrt{2} \end{array}$$

(1)

13 전략 x와 $\frac{1}{x}$ 의 분모를 유리화한다.

$$\begin{array}{c} {\rm SHO} \ \, x = \frac{2+\sqrt{3}}{2-\sqrt{3}} = \frac{(2+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})} \\ \\ = \frac{4+4\sqrt{3}+3}{4-3} = 7+4\sqrt{3} \end{array}$$

$$\frac{1}{x} = \frac{2 - \sqrt{3}}{2 + \sqrt{3}} = \frac{(2 - \sqrt{3})^2}{(2 + \sqrt{3})(2 - \sqrt{3})}$$

$$= \frac{4 - 4\sqrt{3} + 3}{4 - 3} = 7 - 4\sqrt{3}$$

$$\therefore x - \frac{1}{x} = (7 + 4\sqrt{3}) - (7 - 4\sqrt{3})$$

$$= 8\sqrt{3}$$

4

14 전략 근호를 포함한 식의 사칙계산을 한다.

$$\begin{array}{l} \frac{3}{3-2\sqrt{2}} - \sqrt{2}(\sqrt{6}-2\sqrt{2}) + \sqrt{12} \\ = \frac{3(3+2\sqrt{2})}{(3-2\sqrt{2})(3+2\sqrt{2})} - \sqrt{12} + 4 + \sqrt{12} \\ = \frac{9+6\sqrt{2}}{9-8} + 4 \\ = 9+6\sqrt{2} + 4 \\ = 13+6\sqrt{2} \end{array}$$

(5)

15 전략 \sqrt{a} 의 소수 부분은 $\sqrt{a} - (\sqrt{a}$ 의 정수 부분)임을 이용한다.

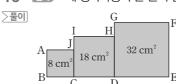
$$1 < \sqrt{8} - 1 < 2$$

따라서
$$a=1$$
, $b=(\sqrt{8}-1)-1=2\sqrt{2}-2$ 이므로

$$\begin{aligned} \frac{2a}{b} &= \frac{2}{2\sqrt{2} - 2} = \frac{1}{\sqrt{2} - 1} \\ &= \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} \\ &= \sqrt{2} + 1 \end{aligned}$$

4

16 전략 세 정사각형의 한 변의 길이를 각각 구한다.



위의 그림에서 정사각형 ABCJ의 한 변의 길이는

$$\sqrt{8} = 2\sqrt{2}$$
 (cm)

정사각형 ICDH의 한 변의 길이는

$$\sqrt{18} = 3\sqrt{2}$$
 (cm)

정사각형 GDEF의 한 변의 길이는

 $\sqrt{32} = 4\sqrt{2}$ (cm)

따라서

 $\overline{IJ} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2}(cm)$.

 $\overline{GH} = 4\sqrt{2} - 3\sqrt{2} = \sqrt{2}(cm)$

이므로 구하는 도형의 둘레의 길이는

 $2\sqrt{2} \times 3 + 3\sqrt{2} \times 2 + 4\sqrt{2} \times 3 + \sqrt{2} \times 2 = 26\sqrt{2}$ (cm)

(5)

다른풀이 앞의 그림에서

 $\overline{AI} + \overline{IH} + \overline{GF} = \overline{BE}$, $\overline{AB} + \overline{II} + \overline{GH} = \overline{EF}$

이므로 구하는 둘레의 길이는

 $\overline{AB} + \overline{BE} + \overline{EF} + \overline{AJ} + \overline{IJ} + \overline{IH} + \overline{GH} + \overline{GF}$

- $=\overline{BE}+\overline{EF}+(\overline{AB}+\overline{IJ}+\overline{GH})+(\overline{AJ}+\overline{IH}+\overline{GF})$
- $=\overline{BE}+\overline{EF}+\overline{EF}+\overline{BE}$
- $=2(\overline{BE}+\overline{EF})$
- $=2(2\sqrt{2}+3\sqrt{2}+4\sqrt{2}+4\sqrt{2})$
- $=26\sqrt{2}(cm)$
- 17 전략 □ABCD의 넓이를 이용하여 한 변의 길이를 구한다.

$$\supseteq \exists O \square ABCD = 3 \times 3 - 4 \times \left(\frac{1}{2} \times 1 \times 2\right) = 5$$

이므로 $\overline{AB} = \overline{AD} = \sqrt{5}$

따라서 $\overline{AP} = \overline{AQ} = \sqrt{5}$ 이므로

$$a=-1+\sqrt{5}, b=-1-\sqrt{5}$$

 $\therefore a-b=(-1+\sqrt{5})-(-1-\sqrt{5})$
 $=2\sqrt{5}$

3 (5)

18 A-B의 부호를 이용하여 실수 A, B의 대소를 비교한다.

$$\begin{array}{l} \geq \stackrel{=}{\underline{=}0} \ \ (\exists) \ (2\sqrt{2}+1) - (3\sqrt{2}-2) = 2\sqrt{2}+1 - 3\sqrt{2}+2 \\ = 3 - \sqrt{2} \\ = \sqrt{9} - \sqrt{2} > 0 \end{array}$$

$$\therefore 2\sqrt{2}+1>3\sqrt{2}-2$$

(L)
$$(\sqrt{45}-3)-(2\sqrt{5}+1)=3\sqrt{5}-3-2\sqrt{5}-1$$

= $\sqrt{5}-4$
= $\sqrt{5}-\sqrt{16}<0$

$$1.0 \sqrt{45} - 3 < 2\sqrt{5} + 1$$

(c)
$$(\sqrt{3}+\sqrt{18})-(\sqrt{75}-\sqrt{2})=\sqrt{3}+3\sqrt{2}-5\sqrt{3}+\sqrt{2}$$

= $4\sqrt{2}-4\sqrt{3}$
= $4(\sqrt{2}-\sqrt{3})<0$

$$\therefore \sqrt{3} + \sqrt{18} < \sqrt{75} - \sqrt{2}$$

$$\begin{array}{l} (\mathbf{z}) \; (\sqrt{48} + \sqrt{5}\;) - (\sqrt{27} + 2\sqrt{5}\;) = 4\sqrt{3} + \sqrt{5} - 3\sqrt{3} - 2\sqrt{5} \\ = \sqrt{3} - \sqrt{5} < 0 \end{array}$$

 $\therefore \sqrt{48} + \sqrt{5} < \sqrt{27} + 2\sqrt{5}$

이상에서 옳은 것은 (니), (디)이다.

3

19 제곱근의 뜻을 이용한다.

 \mathbb{Z} \mathbb{Z}

$$x = \pm \sqrt{225} = \pm 15$$

 $y = \sqrt{625} = 25$ 의 제곱근이므로

$$y = \pm \sqrt{25} = \pm 5$$

x=15, y=-5일 때, x-y가 최대가 되므로 x-y의 최댓값은 15-(-5)=20

20

20 전략 540을 소인수분해하여 소인수의 지수가 모두 짝수가 되도록 하는 a의 값을 정한다.

 $\sqrt{\frac{540}{a}} = \sqrt{\frac{2^2 \times 3^3 \times 5}{a}}$ 가 자연수가 되려면 a는 540의 약수이면 서 $3 \times 5 \times ($ 자연수) 2 꼴이어야 한다.

따라서 가장 작은 자연수 *a*는

$$a=3\times 5=15$$

② 가장 작은 a의 값을 구할 수 있다.

… **②** 目 15

3점

채점 기준	점수
1 540을 소인수분해할 수 있다.	1점

21 전략 400-a가 최대이고 30+b가 최소일 때 주어진 수가 최대임을 이용한다.

 $\sqrt{400-a}-\sqrt{30+b}$ 가 가장 큰 정수가 되려면 $\sqrt{400-a}$ 는 가장 큰 정수이어야 하고, $\sqrt{30+b}$ 는 가장 작은 정수이어야 한다.

 $\sqrt{400-a}$ 가 가장 큰 정수가 되려면 400-a는 400보다 작은 제 곱인 자연수 중에서 가장 큰 수이어야 하므로

$$400-a=361$$
 : $a=39$

 $\sqrt{30+b}$ 가 가장 작은 정수가 되려면 30+b가 30보다 큰 제곱인 자연수 중에서 가장 작은 수이어야 하므로

$$30+b=36$$
 : $b=6$

$$\therefore a-b=33$$

33

22 전략 제곱인 자연수와 제곱근의 대소 관계를 이용한다.

둘에 $\sqrt{144} < \sqrt{151} < \sqrt{169}$, 즉 $12 < \sqrt{151} < 13$ 이고, f(151) 은 $\sqrt{151}$ 보다 작은 자연수 중 가장 큰 수이므로

$$f(151)=12$$
 ... \bullet

 $\sqrt{49} < \sqrt{60} < \sqrt{64}$, 즉 $7 < \sqrt{60} < 8$ 이고, f(60)은 $\sqrt{60}$ 보다 작은 자연수 중 가장 큰 수이므로

$$f(60) = 7$$
 ... $g(60) = 7$... $g(60) = 12 - 7 = 5$... $g(60) = 7$... $g(6$

-12-1-5

3 5

채점 기준	점수
1 $f(151)$ 의 값을 구할 수 있다.	1점
② f(60)의 값을 구할 수 있다.	1점
③ $f(151)-f(60)$ 의 값을 구할 수 있다.	1점

23 전략 각 수의 정수 부분을 생각한다.

>풀이 3<\10<4이므로 4<\10+1<5

4=√16이므로 √15<4

$$5=\sqrt{25}$$
이고 $\sqrt{\frac{63}{2}}=\sqrt{31.5}$ 이므로 $\sqrt{\frac{63}{2}}>5$

5<√26<6이므로 3<√26-2<4

$$\frac{50}{3}$$
=16.×××이므로 $4<\sqrt{\frac{50}{3}}<5$

 $5 < \sqrt{32} < 6$ 이므로 $4 < \sqrt{32} - 1 < 5$

따라서 4와 5 사이에 있는 수는

$$\sqrt{10}+1$$
, $\sqrt{\frac{50}{3}}$, $\sqrt{32}-1$

의 3개이다.

■ 3개

24 전략 밑면인 원의 반지름의 길이를 구한다.

 $_{\overline{z}0}$ 밑면인 원의 반지름의 길이를 $r \, \mathrm{cm}$ 라 하면

$$2\pi r = 4\sqrt{2}\pi \qquad \therefore r = 2\sqrt{2}$$

따라서 원기둥의 부피는

 $\mathbb{P} 32\sqrt{3}\pi \text{ cm}^3$

채점 기준	점수
❶ 밑면인 원의 반지름의 길이를 구할 수 있다.	2점
② 원기둥의 부피를 구할 수 있다.	2점

25 x=5.7을 대입하여 계산한다.

둘이 구하는 속력은

$$\begin{split} \sqrt{2 \times 9.8(5.7 - 1.7)} &= \sqrt{2 \times 9.8 \times 4} = \sqrt{78.4} \\ &= \sqrt{\frac{2^4 \times 7^2}{10}} = \frac{28}{\sqrt{10}} \\ &= \frac{28\sqrt{10}}{10} = \frac{14\sqrt{10}}{5} \text{ (m/s)} \\ &\stackrel{\blacksquare}{=} \frac{14\sqrt{10}}{5} \text{ m/s} \end{split}$$

01 4	02 ③	03 ⑤	04 4	05 ②
06 ②	07 ③	08 ①	09 ①	10 ②
11 ①	12 ①	13 ③	14 ⑤	15 ②
16 ①	17 ③	18 ④	19 16	
20 M=	17, $m = -$	17	21 5 <i>x</i> –	9 22 $\frac{5}{36}$

23 4 **24** -6 **25** 81

01 전략 공통인수로 묶어 낸다.

 $\geq 3ax + 6ay = 3a(x+2y)$

따라서 3ax + 6ay의 인수는 (L), (리)이다.

4

02 전략 근호 안의 식을 인수분해한다.

 \ge 풀에 0<4x<1이므로 $0< x<\frac{1}{4}$

따라서 $x+\frac{1}{4}>0$, $x-\frac{1}{4}<0$ 이므로

$$\sqrt{x^{2} + \frac{1}{2}x + \frac{1}{16}} + \sqrt{x^{2} - \frac{1}{2}x + \frac{1}{16}}$$

$$= \sqrt{\left(x + \frac{1}{4}\right)^{2}} + \sqrt{\left(x - \frac{1}{4}\right)^{2}}$$

$$= x + \frac{1}{4} - \left(x - \frac{1}{4}\right) = \frac{1}{2}$$

3

03 전략 전개하여 완전제곱식이 될 조건을 이용한다.

 $\geq \equiv 0$ $(x+5)(x-3)+k=x^2+2x-15+k$

위의 식이 완전제곱식이 되려면

$$-15+k=\left(\frac{2}{2}\right)^2=1$$

∴ k=16

(5)

04 전략 각 다항식을 인수분해한다.

 $> \equiv 0$ (1) $x^2 - 4x - 5 = (x+1)(x-5)$

$$(2) x^2 - 2x - 15 = (x+3)(x-5)$$

$$3x^2+x-30=(x+6)(x-5)$$

$$4) x^2 + 2x - 15 = (x+5)(x-3)$$

$$(5)$$
 $x^2+3x-40=(x+8)(x-5)$

4

05 공통인수로 묶어 내거나 인수분해 공식을 이용하여 인수 분해하다.

$$> \equiv 0$$
 $(2) x^2 - 4x - 12 = (x+2)(x-6)$

06 전략 공통인수로 묶어 낸 후 인수분해 공식을 이용한다.

$$= x^3y - x^2y^2 - 2xy^3 = xy(x^2 - xy - 2y^2)$$

$$=xy(x+y)(x-2y)$$

따라서 $x^3y - x^2y^2 - 2xy^3$ 의 인수는 (¬), (□), (□)이다.

2

07 전략 두 다항식을 각각 인수분해한다.

 $> \equiv 0$ $3x^2 + 7x - 6 = (x+3)(3x-2)$

 $2x^2+2x-12=2(x^2+x-6)=2(x+3)(x-2)$

따라서 두 다항식의 공통인 인수는 x+3이다.

(3)

08 $x^2 - 2x + a$ 에 대한 등식을 세운다.

 \sum 풀이 $x^2-2x+a=(x+2)(x+m)$ (m은 상수)으로 놓으면

$$x^2 - 2x + a = x^2 + (m+2)x + 2m$$

따라서
$$-2=m+2$$
, $a=2m$ 이므로

m = -4, a = -8

09 전략 각 다항식을 x에 대한 일차식의 곱으로 나타낸다.

 \sum 물이 $x^2-4x+a=(x-5)(x-p)$ (p는 상수)로 놓으면

$$x^2-4x+a=x^2-(5+p)x+5p$$

따라서 4=5+p, a=5p이므로

$$p = -1, a = -5$$

 $2x^2+3x+b=(x-5)(2x-q)$ (q는 상수)로 놓으면

$$2x^2+3x+b=2x^2-(q+10)x+5q$$

따라서 3=-(q+10), b=5q이므로

$$q = -13, b = -65$$

 $\therefore a+b=-70$

1

10 전략 은혜와 진우가 인수분해한 식을 전개한다.

 \sum 풀이 은혜는 x^2 의 계수와 상수항을 제대로 보았으므로

$$(2x+1)(x-4)=2x^2-7x-4$$

에서 처음 이차식의 x^2 의 계수는 2, 상수항은 -4이다.

진우는 x의 계수와 상수항을 제대로 보았으므로

$$(x+1)(11x-4)=11x^2+7x-4$$

에서 처음 이차식의 x의 계수는 7, 상수항은 -4이다.

따라서 처음 이차식은 $2x^2 + 7x - 4$ 이므로 바르게 인수분해하면

$$2x^2+7x-4=(x+4)(2x-1)$$

2 (2)

11 전략》 완전제곱식으로 인수분해되는 세 항을 찾아서 $A^2 - B^2$ 꼴로 변형한다.

$$\begin{array}{l} \geq \stackrel{=}{\underline{=}0} \quad a^2 - b^2 - 4a + 4 = (a^2 - 4a + 4) - b^2 \\ &= (a - 2)^2 - b^2 \\ &= \{(a - 2) + b\}\{(a - 2) - b\} \\ &= (a + b - 2)(a - b - 2) \end{array}$$

따라서 두 일차식은 a+b-2, a-b-2이므로 두 일차식의 합은 (a+b-2)+(a-b-2)=2a-4

图(1)

12 전략 공통부분을 한 문자로 놓는다.

 \ge 풀에 x-3y=A로 놓으면

$$6(x-3y)^{2}-x+3y-1=6(x-3y)^{2}-(x-3y)-1$$

$$=6A^{2}-A-1$$

$$=(3A+1)(2A-1)$$

$$=\{3(x-3y)+1\}\{2(x-3y)-1\}$$

$$=(3x-9y+1)(2x-6y-1)$$

따라서 a=-9, b=1, c=2, d=1이므로

$$a+b+c+d=-5$$

(1)

13 전략 2016을 문자로 놓고 인수분해한다.

>풀에 2016=X로 놓으면

$$\frac{2016^{3} - 2016}{2015 \times 2017} = \frac{X^{3} - X}{(X - 1)(X + 1)} = \frac{X(X^{2} - 1)}{(X - 1)(X + 1)}$$
$$= \frac{X(X + 1)(X - 1)}{(X + 1)(X - 1)}$$
$$= X = 2016$$

(3)

14 전략 3⁴⁸-1을 인수분해한다.

$$\begin{array}{l} \geq \text{ with } 3^{48} - 1 = (3^{24} + 1)(3^{24} - 1) \\ = (3^{24} + 1)(3^{12} + 1)(3^{12} - 1) \\ = (3^{24} + 1)(3^{12} + 1)(3^{6} + 1)(3^{6} - 1) \\ = (3^{24} + 1)(3^{12} + 1)(3^{6} + 1)(3^{3} + 1)(3^{3} - 1) \end{array}$$

이때 3²⁴+1>30, 3¹²+1>30, 3⁶+1>30이고

20<3³+1<30, 20<3³-1<30이므로

$$a+b=(3^3+1)+(3^3-1)=28+26=54$$

5

15 전략 구하는 식을 인수분해한 후 주어진 식의 값을 대입한다.

$$=x^{2}-(3y-1)^{2}$$

$$=\{x+(3y-1)\}\{x-(3y-1)\}$$

$$=(x+3y-1)(x-3y+1)$$

$$=(2\sqrt{3}-1)\times\sqrt{3}$$

$$=6-\sqrt{3}$$

16 전략 a, b를 구하고, 주어진 식을 인수분해하여 대입한다. 물에 정사각형 ABCD의 넓이가 7이므로 한 변의 길이는 $\sqrt{7}$ 이다.

따라서
$$\overline{AP} = \overline{AB} = \sqrt{7}$$
, $\overline{AQ} = \overline{AD} = \sqrt{7}$ 이므로 $a = 2 + \sqrt{7}$, $b = 2 - \sqrt{7}$
 $\therefore a^3b - ab^3 = ab(a^2 - b^2)$
 $= ab(a + b)(a - b)$
 $= (2 + \sqrt{7}) \times (2 - \sqrt{7}) \times 4 \times 2\sqrt{7}$
 $= (-3) \times 4 \times 2\sqrt{7} = -24\sqrt{7}$

(1)

17 전략 직사각형의 넓이의 합을 인수분해한다.

>풀이 주어진 모든 직사각형의 넓이의 합은

$$x^2 + 6x + 9$$

이것을 인수분해하면

$$x^2+6x+9=(x+3)^2$$

따라서 구하는 정사각형의 한 변의 길이는 x+3이다.

3

18 전략 부피를 인수분해한다.

$$\begin{array}{c|c} & \overline{\sum_{\equiv 0}} & 8x^2 + 8x - 6 = 2(4x^2 + 4x - 3) \\ & = 2(2x + 3)(2x - 1) \\ & = \frac{1}{2} \times (2x + 3)(2x - 1) \times 4 \end{array}$$

따라서 밑면인 삼각형의 넓이는 $\frac{1}{2}(2x+3)(2x-1)$ cm²이고 삼각형의 밑변의 길이가 높이보다 4 cm만큼 더 길므로 구하는 밑변의 길이는 (2x+3) cm이다.

4

19 전략 오변을 전개하여 양변의 동류항의 계수를 비교한다.

$$\geq$$
풀이 $ax^2-12x+b=(2x-c)^2$ 에서

$$ax^2 - 12x + b = 4x^2 - 4cx + c^2$$

따라서 a=4, 12=4c, $b=c^2$ 이므로

$$a=4, c=3, b=9$$

 $\therefore a+b+c=16$

16

20 전략 등식을 세우고 양변의 동류항의 계수를 비교한다.

 $_{2}$ 물이 $x^{2}+px+16=(x+a)(x+b)$ 에서

$$x^{2}+px+16=x^{2}+(a+b)x+ab$$

$$\therefore b=a+b, 16=ab$$

ab=16에서 정수 a, b의 순서쌍 (a,b)는

$$(-1, -16), (-2, -8), (-4, -4), (-8, -2),$$

 $(-16, -1), (1, 16), (2, 8), (4, 4), (8, 2), (16, 1)$

따라서 p는 a=1, b=16 또는 a=16, b=1인 경우에 최대이고 a=-1, b=-16 또는 a=-16, b=-1인 경우에 최소이므로 M=17, m=-17 **및** M=17, m=-17

21 절략 넓이를 인수분해한다.

 $> \equiv 0$ $3x^2 - 13x + 4 = (3x - 1)(x - 4)$

이므로 텃밭의 세로의 길이는 x-4

따라서 울타리의 길이는

$$2(x-4)+(3x-1)=2x-8+3x-1$$

=5x-9

22 전략 주어진 식을 인수분해하여 조건을 만족시키는 a, b의 순 서쌍 (a,b)를 구한다.

>플이 한 개의 주사위를 두 번 던질 때 나올 수 있는 모든 경우의 수는 6×6=36 ... ●

ab+a-b-1=a(b+1)-(b+1)=(a-1)(b+1)이 제곱인 자연수가 되어야 한다.

(i)
$$(a-1)(b+1)=4$$
일 때, a , b 의 순서쌍 (a, b) 는 $(2, 3), (3, 1)$

(ii)
$$(a-1)(b+1)=9$$
일 때, a , b 의 순서쌍 (a,b) 는 $(4,2)$

(iii)
$$(a-1)(b+1)=16$$
일 때, a, b 의 순서쌍 (a, b) 는 $(5, 3)$

(iv)
$$(a-1)(b+1)=25$$
일 때, a , b 의 순서쌍 (a,b) 는 $(6,4)$

이상에서 구하는 확률은
$$\frac{5}{36}$$

 $rac{5}{36}$

... 2

채점 기준	점수
 모든 경우의 수를 구할 수 있다. 	1점
② 조건을 만족시키는 순서쌍 (a,b) 를 구할 수 있다.	3점
❸ 답을 구할 수 있다.	1점

23 전략 좌변을 인수분해한다.

= p(q+3) - q - 3 = p(q+3) - (q+3)

$$=(p-1)(q+3)$$

이므로
$$(p-1)(q+3)=2$$

... ●

이때 p, q가 정수이므로

$$p-1=-1, q+3=-2$$
 또는 $p-1=-2, q+3=-1$

또는 p-1=1, q+3=2 또는 p-1=2, q+3=1 ··· ② 따라서 순서쌍 (p,q)는

$$(0, -5), (-1, -4), (2, -1), (3, -2)$$

의 4개이다.

... ❸

채점 기준	점수
● 주어진 식의 좌변을 인수분해할 수 있다.	2점
$\ensuremath{ arrho}$ p,q 가 정수임을 이용하여 $p-1,q+3$ 의 값을 구할 수 있다.	2점
lacktriangle 순서쌍 (p,q) 의 개수를 구할 수 있다.	1점

24 전략 인수분해 공식을 이용한다.

$$\geq 3.25^2 - 0.75^2 = (3.25 + 0.75)(3.25 - 0.75)$$

$$=4 \times 2.5 = 10$$

$$Q=1.3^2+2\times1.3\times2.7+2.7^2=(1.3+2.7)^2$$

$$=4^2=16$$

이므로
$$P-Q=-6$$

... **③ ∃** −6

··· •

... 2

채점 기준	점수
❶ P의 값을 구할 수 있다.	2점
② <i>Q</i> 의 값을 구할 수 있다.	2점
$oldsymbol{@} P - Q$ 의 값을 구할 수 있다.	1점

25 전략 완전제곱식으로 인수분해한 후 x, y의 값을 대입한다.

∑
$$\equiv$$
0] $4x^2-4xy+y^2=(2x-y)^2$
= $\{2(\sqrt{3}-5)-(2\sqrt{3}-1)\}^2$
= $(2\sqrt{3}-10-2\sqrt{3}+1)^2$
= $(-9)^2=81$

3 81

◎ Ⅲ. 이차방정식

01 (4) 02 4 03 4 04 ② **05** ③ **07 (2)** 06 (5) 08 (2) 09 (4) 10 (5) **11** (5) **12 4 13** (5) **14** ③ **15** (5) 16 (4) 17 ③. ⑤ 18 ④ 19 7 **20** 3 22 $\frac{5}{2}$ **21** 25 23 x = -1

24 $x = -2 \pm \sqrt{10}$ **25** 8, 9, 10

$oldsymbol{01}$ 전략 외변으로 이항하여 (x에 대한 이차식) =0 꼴인 것을 찾는다.

돌아 (c)
$$4=x(1-x)$$
에서
$$4=x-x^2 \qquad \therefore \ x^2-x+4=0$$

(a)
$$(2-x)(1+x)=5-x^2$$
에서 $2+x-x^2=5-x^2$ $\therefore x-3=0$

(1)
$$(x-1)^2 = (2x+1)^2$$
 에서
$$x^2 - 2x + 1 = 4x^2 + 4x + 1$$

$$3x^2+6x=0$$

이상에서 x에 대한 이차방정식은 (L), (E), (D)이다.

(4)

02 전략 x^2 의 계수가 0이 아님을 이용한다.

>풀이
$$ax^2+x(x-3)=(2x+1)(x-1)$$
에서

$$ax^2 + x^2 - 3x = 2x^2 - x - 1$$

$$(a-1)x^2-2x+1=0$$

이차방정식이 되려면

$$a-1\neq 0$$
 $\therefore a\neq 1$

(4)

$oldsymbol{03}$ $oldsymbol{x}$ 대신 $[\]$ 안의 수를 대입하여 등식이 성립하는지 확인 하다

$$_{\frac{5}{2}}$$
 ④ $x=-3$ 을 $x^2-5x+6=0$ 에 대입하면

$$(-3)^2 - 5 \times (-3) + 6 = 30 \neq 0$$

따라서 x = -3은 이차방정식 $x^2 - 5x + 6 = 0$ 의 해가 아니다.

(4)

04 전략 주어진 방정식에 x=k를 대입한다.

$$_{=}$$
 5 $= 4x^2 - (k+5)x - 2k - 6 = 0$ 의 한 근이 $x=k$ 이므로

$$4k^{2}-(k+5)k-2k-6=0$$

$$3k^{2}-7k-6=0, (3k+2)(k-3)=0$$

$$\therefore k=3 (: k>0)$$

2 (2)

05 전략 주어진 방정식에 x=a를 대입한 후 등식을 변형한다.

둘에 이차방정식 $x^2 - 4x + 1 = 0$ 의 한 근이 x = a이므로

$$a^2 - 4a + 1 = 0$$

이때 $a \neq 0$ 이므로 위의 식의 양변을 a로 나누면

$$a-4+\frac{1}{a}=0$$
 : $a+\frac{1}{a}=4$

$$\therefore a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2$$
$$= 4^2 - 2 = 14$$

(3)

06 전략 좌변을 인수분해하여 a의 값을 구한다.

 $_{5}$ 물이 $x^{2}-3x-4=0$ 에서

$$(x+1)(x-4)=0$$
 : $x=-1$ $\pm \pm x=4$

따라서 a=-1이므로

$$3a^2-2a+5=3\times(-1)^2-2\times(-1)+5=10$$

(5)

07 전략 인수분해를 이용하여 각 이치방정식의 해를 구한다.

>풀이 ① (2x+1)(x-3)=0에서

$$x = -\frac{1}{2} + \frac{1}{2} = 3$$

②
$$x^2+x-6=0$$
에서 $(x+3)(x-2)=0$
∴ $x=-3$ 또는 $x=2$

③
$$x(4x-13)+3=0$$
에서 $4x^2-13x+3=0$ $(4x-1)(x-3)=0$ $\therefore x=\frac{1}{4}$ 또는 $x=3$

④
$$3x^2 - 11x + 6 = 0$$
에서 $(3x - 2)(x - 3) = 0$
 $\therefore x = \frac{2}{3}$ 또는 $x = 3$

⑤
$$2x^2 - 7x + 3 = 0$$
에서 $(2x - 1)(x - 3) = 0$
 $\therefore x = \frac{1}{2}$ 또는 $x = 3$

이상에서 ①, ③, ④, ⑤는 x=3을 공통인 해로 가지므로 공통인 해를 갖지 않는 것은 ②이다.

(2)

08 전략 (완전제곱식)=0 꼴인 것을 찾는다.

>풀이
$$(\neg)$$
 $9x^2 = 6x - 1$ 에서 $9x^2 - 6x + 1 = 0$, $(3x - 1)^2 = 0$ $\therefore x = \frac{1}{3}$ (중간)

(L)
$$x^2-3x=0$$
에서
$$x(x-3)=0 \qquad \therefore x=0 \,\, \mbox{또는} \,\, x=3$$

(E)
$$x^2 = 6x + 16$$
에서
 $x^2 - 6x - 16 = 0, \quad (x+2)(x-8) = 0$
 $\therefore x = -2$ 또는 $x = 8$

(로)
$$x^2 - 8x + 1 = 2(x - 12)$$
에서
$$x^2 - 8x + 1 = 2x - 24, \qquad x^2 - 10x + 25 = 0$$
$$(x - 5)^2 = 0 \qquad \therefore x = 5(\frac{3}{5} - \frac{1}{5})$$

이상에서 중근을 갖는 것은 (ㅋ). (ㄹ)이다.

2

09 전략 중근을 가질 조건을 이용한다.

$$\sum$$
플이 $k+4=\left(\frac{-5}{2}\right)^2=\frac{25}{4}$ 이므로 $k=\frac{9}{4}$

4

(5)

다른풀이
$$x^2-5x+k+4=0$$
이 중단을 가지므로 $(-5)^2-4\times1\times(k+4)=0, 9-4k=0$ $\therefore k=\frac{9}{4}$

10 전략 제곱근을 이용하여 해를 구한다.

$$x-5=\pm\sqrt{3}$$
 $\therefore x=5\pm\sqrt{3}$

따라서 p=5, q=3이므로 p-q=2

11 전략 근의 공식을 이용하여 해를 구한다.

$$\sum_{x=0}^{\infty} x^2 - 3x + 1 = 0$$
에서

$$x=rac{3\pm\sqrt{5}}{2}$$
 $\alpha=rac{3+\sqrt{5}}{2}$, $\beta=rac{3-\sqrt{5}}{2}$ 라 하면

$$\alpha+\beta=3$$
, $\alpha\beta=1$

$$\therefore \alpha^2 + \alpha\beta + \beta^2 = (\alpha + \beta)^2 - \alpha\beta$$
$$= 3^2 - 1 = 8$$

(5)

다른풀이 < 근과 계수의 관계에 의하여

$$\alpha + \beta = -\frac{-3}{1} = 3, \ \alpha\beta = 1$$

$$\therefore \alpha^2 + \alpha\beta + \beta^2 = (\alpha + \beta)^2 - \alpha\beta$$

$$= 3^2 - 1 = 8$$

12 정략 양변에 적당한 수를 곱하여 계수를 정수로 만든다.

둘에 주어진 이차방정식의 양변에 10을 곱하면

$$4x^{2}-8=2(x+1)(x-3)$$

$$x^{2}+2x-1=0 \therefore x=-1\pm\sqrt{2}$$

$$\therefore a-\beta=(-1+\sqrt{2})-(-1-\sqrt{2})=2\sqrt{2}$$

4

13 전략 공통부분을 한 문자로 놓고 해를 구한다.

$$>$$
둘이 $x-\frac{1}{2}=X$ 로 놓으면

$$3X^2 + 2X = 1$$
, $3X^2 + 2X - 1 = 0$

$$(X+1)(3X-1)=0$$
 $\therefore X=-1 \pm \frac{1}{3}$

즉
$$x - \frac{1}{2} = -1$$
 또는 $x - \frac{1}{2} = \frac{1}{3}$ 이므로

$$x = -\frac{1}{2}$$
 또는 $x = \frac{5}{6}$

이때
$$p > q$$
이므로 $p = \frac{5}{6}, q = -\frac{1}{2}$

$$\therefore 3p+q=3\times\frac{5}{6}+\left(-\frac{1}{2}\right)=2$$

(5)

14 전략 $b^2 - 4ac < 0$ 인 이치방정식을 찾는다.

>풀이 ③
$$x^2 - 5x + 7 = 0$$
에서 $(-5)^2 - 4 \times 1 \times 7 = -3 < 0$ 이므로 근을 갖지 않는다.

(3)

15 전략 $b^2 - 4ac > 0$ 이 되도록 하는 m의 값의 범위를 구한다.

>풀이
$$(-4)^2 - 4 \times 2 \times m > 0$$
이므로 $16 - 8m > 0$

$$\therefore m < 2$$

따라서 m의 값이 될 수 없는 것은 (5)이다.

3 (5)

16 전략 먼저 $b^2 - 4ac = 0$ 이 되도록 하는 k의 값을 구한다.

돌에 $(-2)^2 - 4 \times 3 \times k = 0$ 이므로 $k = \frac{1}{3}$

따라서 3k=1, $\frac{1}{k}=3$ 이므로 1, 3을 두 근으로 하고 x^2 의 계수 가 1인 이차방정식은

$$(x-1)(x-3)=0$$
 $\therefore x^2-4x+3=0$

17 전략 A에 대한 이차방정식을 세운다.

 \geq 풀이 $(2A)^2 = (A+2)^2$ 이므로

$$4A^2 = A^2 + 4A + 4$$
, $3A^2 - 4A - 4 = 0$

$$(3A+2)(A-2)=0$$
 $\therefore A=-\frac{2}{3} \, \text{ } \pm \text{ } \pm A=2$

3, **5**

18 전략 정사각형의 한 변의 길이를 x cm로 놓고 이차방정식을 세운다.

 $\overline{BP} = x \text{ cm}$ 라 하면 $\overline{AP} = (6-x) \text{ cm}$

$$\frac{1}{2}(6-x)^2 = x^2 + 4$$
이므로

$$x^2+12x-28=0$$
, $(x+14)(x-2)=0$

$$\therefore x=2 (\because 0 < x < 6)$$

따라서 정사각형의 한 변의 길이는 2 cm이다.

(4)

3 7

19 전략 이처방정식의 근을 대입하여 등식이 성립함을 이용한다.

>풀이 x=2를 $x^2-5ax+6=0$ 에 대입하면

$$2^2 - 5a \times 2 + 6 = 0$$
, $10a = 10$

x=-3을 $x^2+(2b+1)x+5b=0$ 에 대입하면

$$(-3)^2 - 3(2b+1) + 5b = 0$$
 $\therefore b = 6$ \cdots

$$\therefore a+b=7$$
 ··· 3

채점 기준	점수
1 <i>a</i> 의 값을 구할 수 있다.	1점
② b 의 값을 구할 수 있다.	1점
③ a+b의 값을 구할 수 있다	1전

20 전략 제곱근을 이용하여 해를 k에 대한 식으로 나타낸다.

>풀이 $(x-1)^2=7k$ 에서 $x-1=\pm\sqrt{7k}$

$$\therefore x=1+\sqrt{7k}$$
 ...

이때 $x=1\pm\sqrt{7k}$ 가 서로 다른 두 정수이려면 $k=7\times($ 자연수 $)^2$ 꼴이어야 하므로

$$k=7\times1^2$$
, 7×2^2 , 7×3^2 , 7×4^2 , ...

따라서 100보다 작은 자연수 k는 7, 28, 63의 3개이다. ··· ③

3

채점 기준	점수
lacktriangle 주어진 방정식의 근을 k 에 대한 식으로 나타낼 수 있다.	1점
${f 2}$ 조건을 만족시키는 k 의 값을 구할 수 있다.	3점
③ 100 보다 작은 자연수 k 의 개수를 구할 수 있다.	1점

21 전략 곱셈 공식을 이용하여 좌변을 정리한다.

>풀이 $(2x+1)^2-3(x-3)(x+2)-7=0$ 에서

$$4x^2+4x+1-3(x^2-x-6)-7=0$$

$$x^2+7x+12=0$$
, $(x+4)(x+3)=0$

$$\therefore x = -4 \, \text{E} = -3$$

$$\alpha^2 + \beta^2 = (-4)^2 + (-3)^2 = 25$$

다른풀이 $x^2+7x+12=0$ 에서 이차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = -7$$
, $\alpha \beta = 12$

$$\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-7)^2 - 2 \times 12 = 25$$

22 전략 근의 공식을 이용하여 두 근을 구한다.

>물이 $x^2-5x-3=0$ 에서

$$x = \frac{5 \pm \sqrt{37}}{2}$$

따라서 두 근의 합은

$$\frac{5+\sqrt{37}}{2} + \frac{5-\sqrt{37}}{2} = 5$$

즉 x=5가 $x^2-(2a+1)x+5=0$ 의 한 근이므로

$$5^2 - 5(2a+1) + 5 = 0$$
. $10a = 25$

$$\therefore a = \frac{5}{2}$$

 $\blacksquare \frac{5}{2}$

P 25

다른풀이 $x^2-5x-3=0$ 에서 이차방정식의 근과 계수의 관계에 의하여 두 근의 합은

$$-\frac{-5}{1}=5$$

즉 x=5가 $x^2-(2a+1)x+5=0$ 의 한 근이므로

$$10a = 25 \qquad \therefore a = \frac{5}{2}$$

23 전략 $b^2 - 4ac = 0$ 을 이용하여 k의 값을 구한다.

$$12=2\times\sqrt{k}\times2$$
 $\therefore k=9$ $\cdots \bullet$

 $x^2 - 7x - 8 = 0$ 에서

$$(x+1)(x-8)=0$$
 ∴ $x=-1$ $\exists \exists x=8$ ··· ②

 $x^2 - 3x - 4 = 0$ 에서

$$(x+1)(x-4) = 0 \qquad \therefore x = -1 \ \pm \frac{1}{6} x = 4 \qquad \cdots \ \bullet$$

따라서 주어진 두 이차방정식의 공통인 근은

$$x=-1$$
 ··· •

채점 기준	점수
lacksquare k 의 값을 구할 수 있다.	2점
② $x^2 - (k-2)x - 8 = 0$ 의 두 근을 구할 수 있다.	1점
③ $x^2 + (6-k)x + 5 - k = 0$ 의 두 근을 구할 수 있다.	1점
₫ 두 이차방정식의 공통인 근을 구할 수 있다.	1점

24 전략 두 사람이 푼 이처방정식을 각각 구한다.

물이 정미가 잘못 본 이차방정식은

(x+2)(x-3)=0 $\therefore x^2-x-6=0$ 따라서 주어진 이차방정식의 상수항은 -6이다. 수일이가 잘못 본 이차방정식은

(x+5)(x-1)=0 $\therefore x^2+4x-5=0$ 따라서 주어진 이차방정식의 x의 계수는 4이다. 이상에서 주어진 이차방정식은 $x^2+4x-6=0$ 이므로 $x=-2\pm\sqrt{10}$

 $||x|| = -2 + \sqrt{10}$

25 전략 연속하는 세 자연수를 x를 이용하여 나타낸다.

) 연속하는 세 자연수를 x-1, x, x+1이라 하면 $(x-1)^2+x^2+(x+1)^2=9(x-1+x+x+1)+2 \cdots \bullet$ $3x^2-27x=0, 3x(x-9)=0$

∴ x=9 (∵ x는 자연수)
 따라서 연속하는 세 자연수는 8, 9, 10이다.

2 8, 9, 10

... ❸

채점 기준	점수
① 연속하는 세 자연수를 $x-1, x, x+1$ 로 놓고 식을 세울 수 있다.	2점
② x 의 값을 구할 수 있다.	2점
❸ 연속하는 세 자연수를 구할 수 있다.	1점

N. 이차함수

01 ②	02 4	03 ⑤	04 ⑤	05 ⑤
06 ③	07 ⑤	08 ①	09 ③	10 ④
11 ③	12 ⑤	13 ②	14 ⑤	15 4
16 ③	17 ③	18 ③	19 $-\frac{3}{2}$	20 $\sqrt{2}$
21 3	22 27	23 $\frac{25}{8}$	24 -2,	2 25 2

01 전략 y = x에 대한 식으로 나타낸다.

 $\text{Toll } y = \frac{1}{2} \times (x-1) \times x = \frac{1}{2} x^2 - \frac{1}{2} x$

- $(\mathrel{\llcorner}) y = 3x$
- $(\Box) y = 4\pi x^2$

(a)
$$y = \frac{x(x-3)}{2} = \frac{1}{2}x^2 - \frac{3}{2}x$$

- $(\Box) y = 700x$
- 이상에서 y가 x에 대한 이차함수인 것은 (기, (리)이다.

(2)

- (L) (거리)=(시간)×(속력)
- (E) 반지름의 길이가 r인 구의 겉넓이는 $4\pi r^2$
- (리) n각형의 대각선의 개수는 $\frac{n(n-3)}{2}$

02 전략 $y=ax^2+bx+c$ 꼴로 정리한 후 $a\neq 0$ 일 조건을 구한다.

 $y=2(1-x)^2-(a+1)x^2+5$ $=2(x^2-2x+1)-(a+1)x^2+5$ $=(1-a)x^2-4x+7$

y가 x에 대한 이차함수이므로

 $1-a\neq 0$ $\therefore a\neq 1$

03 전략 이처함수의 식에 주어진 점의 좌표를 대입한다.

 $_{5}$ 5 x=1을 $y=-(x+2)^2+3$ 에 대입하면

$$y = -3^2 + 3 = -6 \neq -7$$

따라서 점 (1, -7)은 주어진 이차함수의 그래프 위의 점이 아니다.

(5)

$\mathbf{04}$ 전략 $y=ax^2$ 에서 a의 절댓값이 작을수록 그래프의 폭이 넓다.

출 그래프의 폭이 가장 넓은 것은 (¬)이다.

3 (5)

05 전략 평행이동한 그래프의 식을 구한다.

>풀이 평행이동한 그래프의 식을 구하면

$$y = -2(x-m-1)^2 + 4m - 7$$

이 그래프가 점 (2, -1)을 지나므로

$$-1=-2(2-m-1)^2+4m-7$$
, $2m^2-8m+8=0$
 $2(m-2)^2=0$ $\therefore m=2$

06 전략 $y=a(x-p)^2+q$ 꼴로 변형하여 꼭짓점의 좌표를 구한다. 둘이 각 이차함수의 그래프의 꼭짓점의 좌표를 구하면

① (2, 1) ⇒ 제1사분면

② (3, -2) ⇒ 제4사분면

③
$$y=x^2+x-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{1}{2}$$
이므로
$$\left(-\frac{1}{2}\,,\,-\frac{1}{2}\right)\Longrightarrow$$
 제3사분면

④
$$y = -x^2 - 3x + 1 = -\left(x + \frac{3}{2}\right)^2 + \frac{13}{4}$$
이므로
$$\left(-\frac{3}{2}, \frac{13}{4}\right) \Rightarrow \text{제 2 사분면}$$

⑤
$$y = -x^2 + 10x - 26 = -(x - 5)^2 - 1$$
이므로
(5. -1) ⇒ 제4사분면

3

07 전략 적당한 상수를 더하고 빼서 (완전제곱식)+(상수항)의 꼴로 변형한다.

>풀이
$$y=-3x^2-6x+4=-3(x+1)^2+7$$
이므로 $p=-1, q=7$ $\therefore p+q=6$

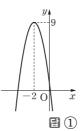
(5)

08 전략 $y=a(x-p)^2+q$ 꼴로 변형한다.

$$y=-2x^2-8x+1$$

=-2(x+2)²+9

이므로 그래프가 오른쪽 그림과 같다. 따라서 x < -2에서 x의 값이 증가하면 y의 값도 증가한다.

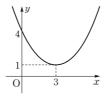


09 전략 $y=a(x-p)^2+q$ 꼴로 변형한 후 그래프를 그려 본다.

$$\sum \frac{1}{3} x^2 - 2x + 4 = \frac{1}{3} (x - 3)^2 + 1$$

이므로 그래프는 오른쪽 그림과 같다.

③ 꼭짓점의 좌표는 (3, 1)이다.



10 전략 y=0일 때 x의 값을 구하여 A, B의 좌표를 구한다.

(3)

 $y = -2x^2 + 4x + 6$ 에 y = 0을 대입하면

$$-2x^2+4x+6=0$$
, $x^2-2x-3=0$
 $(x+1)(x-3)=0$ $\therefore x=-1 \stackrel{\leftarrow}{=} x=3$

따라서 주어진 이차함수의 그래프가 x축과 만나는 두 점의 좌표

를 A(-1, 0), B(3, 0)이라 하면

$$\overline{AB} = 3 - (-1) = 4$$

 $y=-2x^2+4x+6=-2(x-1)^2+8$ 이므로 그래프의 꼭짓점의 좌표는 C(1,8)

$$\therefore \triangle ABC = \frac{1}{2} \times 4 \times 8 = 16$$

4

11 전략 일차함수의 그래프에서 a, b의 부호를 구한다.

물이 주어진 일차함수의 그래프에서

a > 0, b > 0

 $y=x^2-ax-b$ 에서 x^2 의 계수가 양수이므로 그래프는 아래로 볼록하고, -a<0이므로 축이 y축의 오른쪽에 있다.

또 -b < 0이므로 y축과의 교점이 원점의 아래쪽에 있다.

따라서 $y=x^2-ax-b$ 의 그래프로 옳은 것은 ③이다.

(3)

이차함수 $y=ax^2+bx+c$ 의 그래프와 a,b,c의 부호

(1) a의 부호: 그래프의 볼록한 방향을 결정

① a>0 ○ 아래로 볼록

② a<0 ○ 위로 볼록

(2) b의 부호: 축의 위치를 결정

① a와 같은 부호 ② 축이 y축의 왼쪽에 위치

② a와 다른 부호 ♥ 축이 y축의 오른쪽에 위치

(3) c의 부호: y축과의 교점의 위치를 결정

① c>0 ② y축과의 교점이 원점의 위쪽에 위치

② c < 0 ② y축과의 교점이 원점의 아래쪽에 위치

12 전략 그래프를 이용하여 a, b, c의 부호를 구한다.

 \ge 풀이 그래프가 위로 볼록하므로 a<

축이 y축의 왼쪽에 있으므로 ab>0

이때 a < 0이므로 b < 0

또 y축과의 교점이 원점의 위쪽에 있으므로 c>0

(7)(음수) + (음수) = (음수) 이므로 <math>a+b < 0

(L) (음수)-(양수)=(음수)이므로 b-c<0

(c) (양수)-(음수)=(양수)이므로 c-a>0

이상에서 (기, (니), (디) 모두 옳다.

(5)

따라서 x=-4일 때 최댓값 2를 갖는다.

2 (2)

14 전략 $y=a(x-p)^2+q$ 꼴로 변형한다.

>풀에 (1) x=0에서 최댓값 -1을 갖는다.

② *x*=1에서 최솟값 1을 갖는다.

③ $y=x^2-2x-1=(x-1)^2-2$ 이므로 x=1에서 최솟값 -2 를 갖는다

④ $y=-2x^2+4x-3=-2(x-1)^2-1$ 이므로 x=1에서 최댓 x=1을 갖는다.

⑤ $y=3x^2-6x+2=3(x-1)^2-1$ 이므로 x=1에서 최솟값 -1을 갖는다.

(5)

 $y=a(x-p)^2+q$ 꼴로 변형하여 꼭짓점의 좌표를 구한다.

돌에 $y=-x^2+4kx+k-1=-(x-2k)^2+4k^2+k-1$ 이므로 꼭짓점의 좌표는 $(2k, 4k^2+k-1)$

이 점이 직선 y=-3x+1 위에 있으므로

$$4k^2+k-1=-3\times 2k+1$$
, $4k^2+7k-2=0$
 $(k+2)(4k-1)=0$ $\therefore k=-2 \ (\because k<0)$

따라서 $y=-(x+4)^2+13$ 이므로 x=-4에서 최댓값 13을 갖는다.

(4)

16 전략 최댓값을 a에 대한 식으로 나타낸다.

돌에 $y=-x^2+4ax-4a+3=-(x-2a)^2+4a^2-4a+3$ 이므로 x=2a에서 최댓값 $4a^2-4a+3$ 을 갖는다.

$$f(a) = 4a^2 - 4a + 3 = 4\left(a - \frac{1}{2}\right)^2 + 2$$

따라서 f(a)는 $a=\frac{1}{2}$ 일 때 최솟값 2를 갖는다.

17 전략 반지름의 길이를 x cm, 넓이를 y cm 2 로 놓고 관계식을 세운다.

 \geq 풀에 부채꼴의 반지름의 길이를 x cm라 하면 호의 길이는 (40-2x)cm

부채꼴의 넓이를 $y \text{ cm}^2$ 라 하면

$$y = \frac{1}{2}x(40-2x) = -x^2 + 20x$$
$$= -(x-10)^2 + 100$$

이므로 y = x = 10일 때 최댓값 100을 갖는다.

따라서 부채꼴의 넓이가 최대일 때의 반지름의 길이는 10 cm 이다.

3

18 전략 신규 회원 수를 x, 매출액을 y원으로 놓고 관계식을 세운다.

 ≥ 3 전규 회원이 한 명 들어올 때마다 회비는 800원씩 할인되므로 이번 달 신규 회원이 x명이라 하면 회비는

(72000-800x)원이다.

신규 회원이 x명일 때의 매출액을 y원이라 하면

$$y=(30+x)(72000-800x)$$

$$=-800(x+30)(x-90)$$

$$=-800(x^2-60x-2700)$$

$$=-800(x-30)^2+2880000$$

이므로 y는 x=30일 때 최댓값 2880000을 갖는다.

따라서 신규 회원이 30명 들어왔을 때 한 달 최대 매출액은 288 만 원이 되므로

$$p=60, q=288$$

∴ $p+q=348$

19 전략 이 지하수 $y=ax^2$ 의 그래프는 $y=-ax^2$ 의 그래프와 x 축에 대하여 대칭임을 이용한다.

둘에 이차함수 $y=px^2$ 의 그래프가 점 (2, -3)을 지나므로

$$-3=p\times 2^2$$
 $\therefore p=-\frac{3}{4}$

 $y=qx^2$ 의 그래프가 $y=-\frac{3}{4}x^2$ 의 그래프와 x축에 대하여 대칭

이므로
$$q=\frac{3}{4}$$

$$\therefore p - q = -\frac{3}{2}$$

 $=\frac{3}{2}$

20 전략 꼭짓점의 좌표를 각각 구한다.

 \searrow 물이 $y=-(x-2)^2-a^2+1$ 의 그래프의 꼭짓점의 좌표는

$$(2, -a^2+1)$$
 ...

$$y=x^2-4x+3=(x-2)^2-1$$
의 그래프의 꼭짓점의 좌표는 $(2,-1)$

두 꼭짓점이 일치하므로

$$-a^2+1=-1$$
, $a^2=2$

$$\therefore a = \sqrt{2} (\because a > 0)$$

 \cdots 3 \blacksquare $\sqrt{2}$

채점 기준	점수
$y=-(x-2)^2-a^2+1$ 의 그래프의 꼭짓점의 좌표를 구할 수 있다.	1점
② $y=x^2-4x+3$ 의 그래프의 꼭짓점의 좌표를 구할 수 있다.	2점
❸ <i>a</i> 의 값을 구할 수 있다.	1점

21 전략 $y = -x^2 + 4$ 의 그래프가 x축과 만나는 점, 꼭짓점의 좌 표를 각각 구한다.

 \sum 풀에 $y=-x^2+4$ 의 그래프의 꼭짓점의 좌표는 (0,4) $y=-x^2+4$ 에 y=0을 대입하면

$$-x^2+4=0$$
, $x^2=4$

 $\therefore x = \pm 2$

따라서 $y=-x^2+4$ 의 그래프가 x축과 만나는 점의 좌표는 (-2,0),(2,0)

주어진 그림에서 $y=a(x+p)^2$ 의 그래프의 꼭짓점의 좌표가 (2,0)이므로 p=-2

또 $y=a(x-2)^2$ 의 그래프가 $y=-x^2+4$ 의 그래프의 꼭짓점 (0, 4)를 지나므로

$$4=4a$$
 $\therefore a=1$

$$\therefore a-p=3$$

22 전략 $y=a(x-p)^2+q$ 꼴로 변형한다.

 $> \equiv 0$ $y=x^2+4x+1=(x+2)^2-3$

이므로 평행이동한 그래프의 식은

$$y=(x+2+2)^2-3+5=(x+4)^2+2$$

= $x^2+8x+18$

따라서 a=1, b=8, c=18이므로

$$a+b+c=27$$

27

$$2 = -4a \qquad \therefore a = -\frac{1}{2}$$

$$\therefore y = -\frac{1}{2}(x+4)(x-1) \qquad \cdots$$

$$= -\frac{1}{2}x^2 - \frac{3}{2}x + 2$$

$$= -\frac{1}{2}(x+\frac{3}{2})^2 + \frac{25}{8}$$

따라서 $x=-\frac{3}{2}$ 에서 최댓값 $\frac{25}{8}$ 를 갖는다.

 $rac{25}{8}$

채점 기준	점수
1 이차함수의 식을 세울 수 있다.	1점
❷ 이차함수의 식을 구할 수 있다.	1점
❸ 최댓값을 구할 수 있다.	2점

24 전략 구하는 두 수를 x에 대한 식으로 나타낸다.

>풀이 차가 4인 두 수를 x, x+4라 하고 이 두 수의 곱을 y라 하면 $y=x(x+4)=x^2+4x=(x+2)^2-4$

이므로 y는 x=-2일 때 최솟값 -4를 갖는다.

따라서 구하는 두 수는 -2, 2이다.

 $\blacksquare -2, 2$

25 직 꼭짓점이 x축 위에 있으면 꼭짓점의 y좌표가 0임을 이용한다.

$$\geq = -(x - \frac{a}{2})^2 + \frac{a^2}{4} - b$$

이므로 그래프의 꼭짓점의 좌표는 $\left(\frac{a}{2}, \frac{a^2}{4} - b\right)$... **1**

꼭짓점이 x축 위에 있으려면

$$\frac{a^2}{4} - b = 0 \qquad \therefore \ b = \frac{a^2}{4} \qquad \cdots$$

따라서 a, b의 순서쌍 (a, b)는

의 2개이다.

... ❸

채점 기준	점수
❶ 꼭짓점의 좌표를 구할 수 있다.	2점
② a, b 사이의 관계식을 구할 수 있다.	2점
❸ 경우의 수를 구할 수 있다.	1점