짧지만 개념에 강하다

정답과 해설

I	도형의 기초	2쪽
II	작도와 합동	6쪽
Ш	평면도형의 성질 ·····	9쪽
IV	입체도형의 성질	13쪽
V	다른이 저리이 웹서 ·····	10 ₹

중학 수학

1-2

도형의 기초

꼭 **알이**야 할 기초 내용 (Feedback

p.6~p.7

- **1** (1) 직선 ㄱㄴ (2) 선분 ㄱㄴ
- 2 (1) 예각 (2) 둔각 (3) 직각
- 3 (1) 직선(대) (2) 직선(개와 직선(내) (3) 직선(대
- 4 (다)

11 강점, 선, 면

p.8~p.11

- **1-1** (1) 8개 (2) 12개 🖉 꼭짓점. 모서리
- **1-2** (1) 4 (2) 5 (3) 4, 6 (4) 6, 9
- **2-1** 13 **Ø** 5, 5, 8, 8
- 2-2 (1) 5개 (2) 6개 (3) 9개
- **3-1** (1) \neq (2) = (3) \neq (4) = (5) = (6) \neq
- **3-2** (1) \overrightarrow{AB} (= \overrightarrow{BA}) (2) \overrightarrow{AB} (3) \overrightarrow{BA} (4) \overrightarrow{AB} (= \overrightarrow{BA})
- 4-1 (1) ① (2) ② (3) ② 생시작점
- **4-2** (1) (2) (3) (5)
- **5-1** (1) 8 cm (2) 7 cm (3) 4 cm (4) 6 cm
- **5-2** (1) 5 cm (2) 13 cm (3) 7 cm (4) 12 cm
- **6-1** (1) 8 (2) $\frac{1}{2}$, 4 (3) 4
- **6-2** (1) 10 cm (2) 5 cm (3) 5 cm
- **7-1** (1) 7 (2) 2, 14
- **7-2** (1) 10 cm (2) 20 cm
- **8-1** (1) $\frac{1}{2}$, 8 (2) 8, 4 (3) 12 **②** 8, 4
- **8-2** (1) 6 cm (2) 3 cm (3) 9 cm
- **6-2** (2) $\overline{AM} = \frac{1}{2} \overline{AB} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$
 - (3) $\overline{BM} = \overline{AM} = 5 \text{ cm}$
- **7-2** (1) $\overline{AM} = \overline{BM} = 10 \text{ cm}$
 - (2) $\overline{AB} = 2\overline{BM} = 2 \times 10 = 20 \text{ (cm)}$
- **8-2** (1) $\overline{AM} = \frac{1}{2} \overline{AB} = \frac{1}{2} \times 12 = 6$ (cm)
 - (2) $\overline{MB} = \overline{AM} = 6 \text{ cm}$ 이므로 $\overline{MN} = \frac{1}{2}\overline{MB} = \frac{1}{2} \times 6 = 3 \text{ (cm)}$
 - (3) $\overline{AN} = \overline{AM} + \overline{MN}$ = 6+3=9 (cm)

02강 각

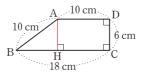
p.12~p.14

- **1-1** (1) DBA (2) DOC
- 1-2 ①, ②, ②, ④
- **2-1** (1) 55° (2) 180, 55 (2) 25° (2) 180, 25
- **2-2** (1) 108° (2) 56° (3) 80° (4) 60°
- **3-1** (1) 52° (2) 130°, 160°, 40°
- **3-2** (1) 25° (2) 100° (3) 20° (4) 30°
- **4-1** 45°, 45°, 75°, 105°
- **4-2** (1) 93° (2) 60°
- **5-1** (1) ⊥ (2) H (3) $\overline{\rm DH}$
- **5-2** (1) 수선 (2) 수선의 발 (3) $\overline{\mathrm{AM}}$
- 6-1 (1) AB, CD (2) 점C (3) 6 cm
- **6-2** (1) $\overline{\text{CD}}$ (2) 점D (3) 18 cm (4) 6 cm
- **2-2** (1) $\angle x + 72^{\circ} = 180^{\circ}$

$$\therefore \angle x = 108^{\circ}$$

- (2) $\angle x + 34^{\circ} = 90^{\circ}$
 - $\therefore \angle x = 56^{\circ}$
- (3) $40^{\circ} + \angle x + 60^{\circ} = 180^{\circ}$
 - $\therefore \angle x = 80^{\circ}$
- (4) $30^{\circ} + 3 \angle x 30^{\circ} = 180^{\circ}$
 - $3 \angle x = 180^{\circ}$
 - $\therefore \angle x = 60^{\circ}$
- **3-2** (2) 110°=∠x+10°이므로

$$\angle x = 100^{\circ}$$


- (3) 3∠x+10°=∠x+50°이므로
 - $2 \angle x = 40^{\circ}$
 - $\therefore \angle x = 20^{\circ}$
- (4) 2∠x-15°=5∠x-105°이므로

$$3 \angle x = 90^{\circ}$$

- $\therefore \angle x = 30^{\circ}$
- **4-2** (1) 35°+∠x+52°=180°이므로

$$\angle x + 87^{\circ} = 180^{\circ}$$
 $\therefore \angle x = 93^{\circ}$

- (2) ∠x+30°+90°=180°이므로
 - $\angle x + 120^{\circ} = 180^{\circ}$ $\therefore \angle x = 60^{\circ}$
- 6-2 (4) 다음 그림과 같이 점 A에서 \overline{BC} 에 내린 수선의 발을 H라 하면 점 A와 \overline{BC} 사이의 거리는 \overline{AH} 의 길이와 같다.

 $\therefore \overline{AH} = \overline{DC} = 6 \text{ cm}$

집중 연습

p.15~p.16

- 1 (1) 9 cm (2) 9 cm
- 2 (1) 12 cm (2) 6 cm (3) 18 cm
- 3 (1) 18 cm (2) 9 cm (3) 27 cm
- **4** (1) 110° (2) 30° (3) 64° (4) 40° (5) 42°
- **5** (1) 28° (2) 90° (3) 90° (4) 30° (5) 12°
- **6** (1) 45° (2) 105° (3) 54° (4) 18° (5) 30°
- **2** (1) $\overline{AM} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 24 = 12$ (cm)
 - (2) $\overline{NM} = \frac{1}{2} \overline{AM} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$
 - (3) $\overline{\text{MB}} = \overline{\text{AM}} = 12 \text{ cm이므로}$ $\overline{NB} = \overline{NM} + \overline{MB}$
 - =6+12=18 (cm)
- **3** (1) $\overline{AM} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 36 = 18$ (cm)
 - (2) MB=AM=18 cm이므로

$$\overline{MN} = \frac{1}{2}\overline{MB} = \frac{1}{2} \times 18 = 9 \text{ (cm)}$$

- (3) $\overline{AN} = \overline{AM} + \overline{MN}$ =18+9=27 (cm)
- **4** (2) $\angle x = 180^{\circ} (120^{\circ} + 30^{\circ}) = 30^{\circ}$
 - (3) $\angle x = 180^{\circ} (60^{\circ} + 56^{\circ}) = 64^{\circ}$
 - (4) $\angle x = 180^{\circ} (50^{\circ} + 90^{\circ}) = 40^{\circ}$
 - (5) $\angle x = 180^{\circ} (90^{\circ} + 48^{\circ}) = 42^{\circ}$
- **5** (4) ∠x+20°=3∠x-40°이므로

$$2 \angle x = 60^{\circ}$$
 $\therefore \angle x = 30^{\circ}$

- (5) 90°+(3∠x-10°)=116°이므로 $3 \angle x + 80^{\circ} = 116^{\circ}, 3 \angle x = 36^{\circ}$
 - $\therefore \angle x = 12^{\circ}$
- **6** (1) ∠x+105°+30°=180°이므로

$$\angle x + 135^{\circ} = 180^{\circ}$$
 $\therefore \angle x = 45^{\circ}$

(2) ∠x+40°+35°=180°○]므로

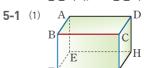
$$\angle x + 75^{\circ} = 180^{\circ}$$
 $\therefore \angle x = 105^{\circ}$

(3) 36°+∠x+90°=180°이므로

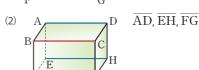
$$\angle x + 126^{\circ} = 180^{\circ}$$
 $\therefore \angle x = 54^{\circ}$

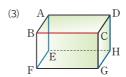
(4) 64°+90°+(2∠x-10°)=180°이므로

$$2 \angle x + 144^{\circ} = 180^{\circ}, 2 \angle x = 36^{\circ}$$


- $\therefore \angle x = 18^{\circ}$
- (5) $(2 \angle x 15^{\circ}) + (\angle x + 45^{\circ}) + 2 \angle x = 180^{\circ}$ 이旦로 $5 \angle x + 30^{\circ} = 180^{\circ}, 5 \angle x = 150^{\circ}$

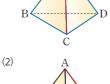
$$\therefore \angle x = 30^{\circ}$$

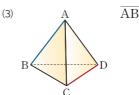

03강 직선의 위치 관계


p.17~p.20

- **1-1** (1) 점A, 점C (2) 점B, 점D
- **1-2** (1) × (2) × (3) (4) (
- 2-1 (1) 점B, 점C, 점D (2) 점A, 점E
- **2-2** (1) \bigcirc (2) \times (3) \bigcirc (4) \times
- **3-1** (1) 변 AD, 변 BC (2) \overline{AB} // \overline{DC}
- **3-2** (1) 변 AD, 변 BC (2) AD // BC
- 4-1 (1) 변 AB, 변 DC (2) 변 AD, 변 BC (3) 평행하다.
- **4-2** (1) 변BE, 변CD (2) 변AF, 변BE, 변CD
 - (3) 평행하다. (4) 평행하다.

 \overline{AB} , \overline{BF} , \overline{DC} , \overline{CG}


 \overline{AE} , \overline{DH} , \overline{EF} , \overline{HG}

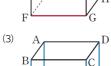

- **5-2** (1) \overline{BE} , \overline{CF} (2) \overline{AB} , \overline{AC} , \overline{DE} , \overline{DF} (3) \overline{BC} , \overline{EF}
- **5-3** (1) \overline{DC} , \overline{EF} , \overline{HG} (2) \overline{AD} , \overline{BC} , \overline{CG} , \overline{DH}
 - (3) \overline{AD} , \overline{BC} , \overline{CG} , \overline{DH}

6-1 (1)

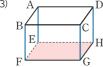
BC

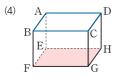
 \overline{AB} , \overline{AD} , \overline{BC} , \overline{CD}

- **6-2** (1) \overline{AC} , \overline{AD} , \overline{AE} , \overline{BC} , \overline{BE} (2) \overline{ED}
 - (3) \overline{AB} , \overline{AC} (4) \overline{BC} , \overline{CD}
- **7-1** (1) \overline{FG} (2) \overline{CH} , \overline{DI} (3) \overline{AB} , \overline{BC} , \overline{CD} , \overline{FG} , \overline{GH} , \overline{HI}
- **7-2** (1) \overline{BH} , \overline{CI} , \overline{DJ} , \overline{EK} , \overline{FL}
 - (2) <u>CI</u>. <u>DI</u>
 - (3) $\overline{\text{CI}}, \overline{\text{DJ}}, \overline{\text{EK}}, \overline{\text{FL}}, \overline{\text{HI}}, \overline{\text{IJ}}, \overline{\text{LK}}, \overline{\text{GL}}$


■4 강 직선과 평면의 위치 관계

p.21~p.23




면 ABFE, 면 BFGC

면 ABCD, 면 AEHD

 \overline{AE} , \overline{BF} , \overline{CG} , \overline{DH}

 $\overline{AB}, \overline{BC}, \overline{CD}, \overline{AD}$

- 1-2 (1) $\overline{\text{CD}}$, $\overline{\text{CG}}$, $\overline{\text{GH}}$, $\overline{\text{DH}}$ (2) 면 AEHD, 면 EFGH
 - (3) 면 BFGC, 면 AEHD (4) 면 ABCD, 면 EFGH
 - (5) \overline{AE} , \overline{BF} , \overline{CG} , \overline{DH}

2-1 (1)

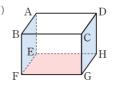
 \overline{AD} , \overline{DE} , \overline{BE} , \overline{AB}

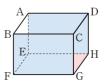
(2)

 \overline{AD} , \overline{BE} , \overline{CF}

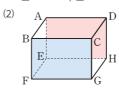
 \overline{DE} , \overline{EF} , \overline{DF}

면 ADEB




면 ABC, 면 DEF

- **2-2** (1) \overline{AB} , \overline{BC} , \overline{AC} (2) \overline{AD} , \overline{BE} , \overline{CF}
 - (3) \overline{AB} , \overline{AC} , \overline{DE} , \overline{DF} (4) \overline{CE} (4) \overline{CE} (5) \overline{DE} (6) \overline{DE}

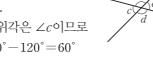

- **2-3** (1) \overline{GH} , \overline{HI} , \overline{II} , \overline{IK} , \overline{KL} , \overline{GL}
 - (2) \overline{AG} , \overline{BH} , \overline{EK} , \overline{FL} , \overline{AF} , \overline{GL}
 - (3) 면 ABCDEF, 면 BHIC
 - (4) 면 GHIJKL, 면 FLKE

3-1 (1)

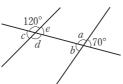
면 ABFE, 면 BFGC, 면 CGHD, 면 AEHD

면 BFGC

- (3) 없다.
- 3-2 (1) 면 ABFE, 면 BFGC, 면 CGHD, 면 AEHD
 - (2) 면 EFGH
 - (3) 면 ABFE
 - (4) 면 ABCD, 면 BFGC, 면 EFGH, 면 AEHD
- 3-3 (1) 면 EFGH
 - (2) 면 ABCD, 면 ABFE, 면 EFGH, 면 DCGH
 - (3) 면 AEHD

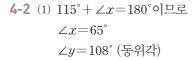

p.24~p.25

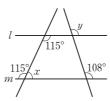
- 1 (1) $\overline{\mathrm{DE}}$ (2) $\overline{\mathrm{CF}}$, $\overline{\mathrm{DF}}$, $\overline{\mathrm{EF}}$ (3) 면 ABC, 면 DEF
 - (4) 면 BEFC (5) \overline{BE} , \overline{EF} , \overline{FC} , \overline{BC} (6) \overline{AB} , \overline{DE}
 - (7) 면 ABC (8) 면 ADEB, 면 BEFC, 면 ADFC
- **2** (1) \overline{AD} , \overline{CG} (2) \overline{AC} , \overline{DG} , \overline{FG} , \overline{CF}
 - (3) AC, AD, CG, DE, DG (4) 면 ADGC, 면 BEF
 - (5) 면 ABC, 면 ABED (6) AD, BE, CG
 - (7) \overline{DE} , \overline{EF} , \overline{FG} , \overline{DG} (8) 면 DEFG
- $\mathbf{3}$ (1) $\overline{\mathrm{FG}}$ (2) $\overline{\mathrm{BC}},\overline{\mathrm{CD}},\overline{\mathrm{DE}},\overline{\mathrm{GH}},\overline{\mathrm{HI}},\overline{\mathrm{IJ}}$
 - (3) 면 ABCDE, 면 FGHIJ (4) 면 FGHIJ
 - (5) FG, GH, HI, IJ, FJ (6) CH, DI, EJ (7) 면 FGHIJ
 - (8) 면 AFGB, 면 BGHC, 면 CHID, 면 EJID, 면 AFJE
- 4 (1) \overline{GH} , \overline{KJ} , \overline{ED} (2) \overline{CI} , \overline{DJ} , \overline{EK} , \overline{FL} , \overline{HI} , \overline{IJ} , \overline{LK} , \overline{GL}
 - (3) \overline{BH} , \overline{CI} , \overline{DJ} , \overline{EK} , \overline{FL}
 - (4) 면 BHIC, 면 CIJD, 면 EKJD, 면 FLKE
 - (5) \overline{GH} , \overline{HI} , \overline{IJ} , \overline{KJ} , \overline{LK} , \overline{GL}
 - (6) \overline{AG} , \overline{BH} , \overline{CI} , \overline{DJ} , \overline{EK} , \overline{FL} (7) \overline{CI}
 - (8) 면GHIJKL


05강 평행선의 성질

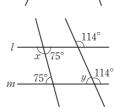
p.26~p.29

- **1-1** (1) $\angle e$ (2) $\angle f$ (3) $\angle g$ (4) $\angle h$ (5) $\angle h$ (6) $\angle e$ 종위각. 엇각
- **1-2** (1) $\angle g$ (2) $\angle a$ (3) $\angle c$ (4) $\angle b$
- **1-3** (1) 120° (2) 60° (3) 120° (4) 60°
- **2-1** (1) 동위각 80°(2) 엇각 100°
- **2-2** (1) 43° (2) 118°
- **3-1** (1) $\angle x = 66^{\circ}$, $\angle y = 114^{\circ}$ 66°, 66°, 114° (2) $\angle x = 50^{\circ}, \angle y = 130^{\circ} \& 50^{\circ}, 50^{\circ}, 130^{\circ}$
- **3-2** (1) $\angle x = 72^{\circ}$, $\angle y = 108^{\circ}$ (2) $\angle x = 124^{\circ} . \angle y = 56^{\circ}$
- **4-1** (1) $\angle x = 82^{\circ}, \angle y = 55^{\circ}$ **6** 125°, 82°, 125°, 55° (2) $\angle x = 85^{\circ}, \angle y = 45^{\circ} \otimes 45^{\circ}, 45^{\circ}, 85^{\circ}$
- **4-2** (1) $\angle x = 65^{\circ}$, $\angle y = 108^{\circ}$ (2) $\angle x = 105^{\circ}$, $\angle y = 66^{\circ}$ (3) $\angle x = 75^{\circ}$, $\angle y = 130^{\circ}$ (4) $\angle x = 78^{\circ}$, $\angle y = 135^{\circ}$
- **5-1** 그림: 45°, 30° / 45°, 75°
- **5-2** (1) 62° (2) 106°
- 6-1 (1) 평행하다 (2) 평행하지 않다 (3) 평행하다 (4) 평행하지 않다
- **6-2** (1) (2) × (3) × (4) (5) (6) ×
- **1-3** (1) ∠a의 동위각의 크기는 120°이다

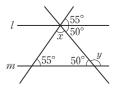

- (2) $\angle b$ 의 동위각은 $\angle c$ 이므로 $\angle c = 180^{\circ} - 120^{\circ} = 60^{\circ}$
- (3) $\angle a$ 의 엇각은 $\angle d$ 이므로 ∠d=120° (맞꼭지각)
- (4) $\angle b$ 의 엇각은 $\angle e$ 이므로 $\angle e = 180^{\circ} - 120^{\circ} = 60^{\circ}$

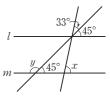


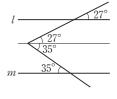
3-2 (1) *l* // m이면 동위각의 크기가 같으므로 $\angle x = 72^{\circ}$


$$\angle y = 180^{\circ} - 72^{\circ} = 108^{\circ}$$

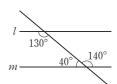
(2) *l* // m이면 엇각의 크기가 같으므로 $\angle x = 124^{\circ}$ $\angle y = 180^{\circ} - 124^{\circ} = 56^{\circ}$

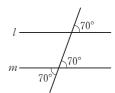


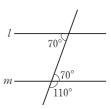

(2) ∠x+75°=180°이므로 $\angle x = 105^{\circ}$ ∠y+114°=180°이므로 $\angle y = 66^{\circ}$

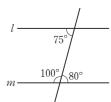

(3) $55^{\circ} + 50^{\circ} + \angle x = 180^{\circ}$ 이므로 $\angle x = 75^{\circ}$ 50°+∠y=180°이므로 $\angle y = 130^{\circ}$

(4) $\angle x = 33^{\circ} + 45^{\circ} = 78^{\circ}$ ∠y+45°=180°이므로 $\angle y = 135^{\circ}$


5-2 (1) 오른쪽 그림과 같이 꺾인 점 을 지나면서 두 직선 l.m과 평행한 직선을 그으면 $\angle x = 27^{\circ} + 35^{\circ}$ $=62^{\circ}$


(2) 오른쪽 그림과 같이 꺾인 점 을 지나면서 두 직선 l. m과 평행한 직선을 그으면 $\angle x = 62^{\circ} + 44^{\circ}$ $=106^{\circ}$


- **6-2** (1) 엇각의 크기가 같으므로 두 직선 l, m은 서로 평행하다.
 - (2) 동위각의 크기가 다르므로 두 직선 l. m은 서로 평행 하지 않다.
 - (3) 엇각의 크기가 다르므로 두 직 선 l, m은 서로 평행하지 않 다.

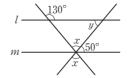

(4) 동위각의 크기가 같으므로 두 직선 l, m은 서로 평행하다.

(5) 엇각의크기가같으므로두직 선 l, m은 서로 평행하다.

(6) 엇각의 크기가 다르므로 두 직선 l, m은 서로 평행하지 않다.

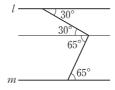
기초 개념 평가

p.30~p.31


- **05** AB AB 01 교점 02 교선 $\overline{\text{AB}}$ 04 중점
- **06** \overrightarrow{AB} **07** \overline{AB} **08** ∠AOB 09 맞꼭지각
- **10** 직각, AB ⊥CD 11 평행 12 꼬인 위치
- 13 포함 14 동위각 15 엇각 16 엇각, 동위각
- 17 평행하다

기초 문제 평가

p.32~p.33


- **01** (1) 47H (2) 67H
- 02 (), (2), (0)
- **03** 14 cm

- **04** $\angle x = 135^{\circ}, \angle y = 45^{\circ}$
- **05** 14°
- **06** (1) AB LCD (2) 점H (3) 3 cm
- **07** (1) (2) (3) × (4) (5) ×
- **08** (1) \overline{AD} , \overline{EH} , \overline{FG} (2) \overline{AB} , \overline{AD} , \overline{EF} , \overline{EH}
 - (3) AE, BF, CG, DH (4) 면 ABFE
- **09** (1) 60° (2) 110° **10** $\angle x = 80^{\circ}$, $\angle y = 50^{\circ}$
- **11** 95°
- **12** (5)
- $\overline{MN} = \overline{MB} + \overline{BN} = \frac{1}{2}\overline{AB} + \frac{1}{2}\overline{BC}$ $=\frac{1}{2}(\overline{AB}+\overline{BC})=\frac{1}{2}\overline{AC}$ $=\frac{1}{2} \times 28 = 14 \text{ (cm)}$
- **05** 52°-∠x=2∠x+10°이므로 $3 \angle x = 42^{\circ}$ $\therefore \angle x = 14^{\circ}$
- **10** ∠x+50°=130° (동위각)이므로 $\angle x = 80^{\circ}$ ∠y=50° (엇각)

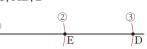
11 오른쪽 그림과 같이 꺾인 점을 지 나면서 두 직선 l, m과 평행한 직 선을 그으면 $\angle x = 30^{\circ} + 65^{\circ}$

 $=95^{\circ}$

12 ⑤ 동위각의 크기가 다르므로 두 직 선 l. m은 서로 평행하지 않다.

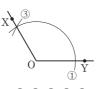
작도와 합동

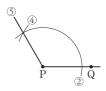
꼭 **알아**야 할 기초 내용 Feedback


p.36~p.37

- **1** (1) 점 ロ (2) 변 ㄹㅁ (3) 각 ㅁㅂㄹ
- **2** (1) 7 cm (2) 70°
- $3 \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$
- 2 (1) 합동인 도형에서 대응변의 길이는 서로 같고 변 ㄱㄴ의 대응변은 변 ㅇㅅ이므로 변 ㄱㄴ의 길이는 7 cm이다.
 - (2) 합동인 도형에서 대응각의 크기는 서로 같고 각 ㅇㅅㅂ의 대응각은 각 ㄱㄴㄷ이므로 각 ㅇㅅㅂ의 크기는 70°이다.
- **3** © 길이가 7 cm인 선분을 긋는다.
 - 컴퍼스를 사용하여 선분의 한 끝점을 중심으로 반지름 의 길이가 7 cm인 원의 일부분을 그린다.
 - ① 컴퍼스를 사용하여 선분의 다른 한 끝점을 중심으로 반 지름의 길이가 4 cm인 원의 일부분을 그린다.
 - ② 두 원이 만나는 점을 찾아 그 점과 선분의 양 끝점을 각 각 잇는다.

06강 기본 작도

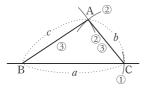

p.38~p.40


- **1-1** (1) \bigcirc (2) \bigcirc (3) \bigcirc
- 1-2 ①. ©
- **2-1** \overline{AB} , C, \overline{AB} , D
- 2-2

- **3-1** (1) ©, ©, ©, ©
 - (2) \overline{OB} , \overline{PC} , \overline{PD}
 - (3) CD (4) CPD

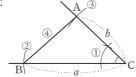
3-2

- **4-1** (1) ①, ⑦, 🖽, ©, ②
 - (2) 동위각
- **4-2** (1) \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc
 - (2) 엇각, 평행

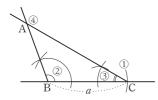

- **2-2** ① 눈금 없는 자로 직선 *l*을 긋고 그 위에 점 C를 잡는다.
 - ② 컴퍼스로 \overline{AB} 의 길이를 \overline{AB} 의 길이를 \overline{AB} 이 원을 그려 직선 \overline{AB} 이 원을 가 한다.
 - ③ 점 E를 중심으로 하고 반지름의 길이가 \overline{AB} 인 원을 그려 직선 l과의 교점을 \overline{D} 라 하면 \overline{AB} 의 길이의 2배인 \overline{CD} 가 작도된다.
- **2-2** (1) 9<5+6이므로 삼각형을 만들 수 있다.
 - (2) 15=7+8이므로 삼각형을 만들 수 없다.
 - (3) 6<3+4이므로 삼각형을 만들 수 있다.

7 강 삼각형의 작도

p.41~p.45


- **1-1** (1) \overline{AC} (2) $\angle C \otimes (1) \angle B$ (2) \overline{AB}
- **1-2** (1) $\overline{\rm EF}$ (2) ∠E
- **2-1** (1) > \times (2) < \bigcirc (3) = \times
- **2-2** (1) \bigcirc (2) \times (3) \bigcirc
- **3-1** C, c, b, A, \overline{AC}

3-2


- **4-1** *a, c,* A, C
- **4-2** 잘못된 부분: ∠C를 길이가 *a*, *b*인 두 변의 끼인각이 아닌 각으로 작도하였다.

바른 작도 :

5-1 PBQ, *a*, RCB, A

5-2

- 6-1 (1) \times Ø = (2) \times (3) \bigcirc Ø 까인각 (4) \times
- **6-2** (1) \bigcirc , 10 < 6 + 70 으로 \triangle ABC가 하나로 정해진다.
 - (2) \bigcirc , $\angle C = 180^{\circ} (60^{\circ} + 50^{\circ}) = 70^{\circ}$

즉 한 변의 길이와 그 양 끝각의 크기가 주어졌으므로 \triangle ABC가 하나로 정해진다.

- (3) \times , \angle B는 \overline{AB} , \overline{AC} 의 끼인각이 아니므로 \triangle ABC가 하나로 정해지지 않는다.
- (4) \times , 모양은 같고 크기가 다른 삼각형이 무수히 많이 만들어 지므로 \triangle ABC가 하나로 정해지지 않는다.
- (5) \bigcirc , 두 변의 길이와 그 끼인각의 크기가 주어졌으므로 \triangle ABC가 하나로 정해진다.
- (6) \times , 12=4+80 므로 \triangle ABC가 만들어지지 않는다.

18강 삼각형의 합동

p.46~p.49

- **1-1** (1) \equiv (2) E (3) \overline{DE} (4) $\angle D$
- **1-2** (1) 점D (2) 점C (3) $\overline{\text{EF}}$ (4) $\overline{\text{AB}}$ (5) ∠F (6) ∠A
- **2-1** (1) 5 cm (2) 80° (3) 40° (4) 40° (80°, 40°
- **2-2** (1) 92° (2) 35° (3) 4 cm (4) 7 cm
- **3-1** (1) 2 cm (2) 100° (3) 5 cm (4) 53° (2) 100°, 100°, 53°, 53°
- **3-2** (1) 80° (2) 5 cm (3) 6 cm (4) 118°
- 4-1 ①, ②, ② ② 합동
- 4-2 ①. 🗅
- **5-1** (1) \overline{DE} , \overline{EF} , \overline{AC} , SSS (2) \overline{DE} , $\angle D$, \overline{AC} , SAS
- **5-2** (1) 65° , $\angle E$, \overline{EF} , $\angle C$, ASA (2) \overline{DE} , $\angle B$, \overline{EF} , SAS
- 6-1 (1) \triangle OMN, ASA 합동 (2) \triangle RPQ, SSS 합동
 - (3) △JLK, SAS 합동
- 6-2 (1) ©, SSS 합동
 - (2) ©, ASA 합동
 - (3) ③, SAS 합동
- **7-1** (1) \bigcirc (2) \bigcirc (3) \times
- **7-2** (1) × (2) (3) (
- **4-2** ⓒ 다음 그림과 같은 두 직사각형은 넓이는 같지만 합동이 아니다.

② 다음 그림과 같은 두 마름모는 한 변의 길이는 같지만 합동이 아니다.

- **7-2** (2) 두 변의 길이가 각각 같고, 그 끼인각의 크기가 같으므로 SAS 합동이다.
 - (3) $\angle B = \angle E$, $\angle A = \angle D$ 이면 $\angle C = \angle F$ 이므로 한 변의 길이가 같고, 그 양 끝각의 크기가 같다. 즉 ASA 합동 이다

기초 개념 평가 p.50~p.51 01 작도 02 △ABC 03 대각 04 대변 05 컴퍼스 06 눈금 없는 자 07 작아야 08 있다 09 없다 10 있다 11 합동 12 = 13 SSS 14 SAS 15 ASA 16 같다 17 같다 18 이다 19 이 아닐 수도 있다 20 이다

09 두 변의 끼인각이 아닌 다른 각일 수도 있으므로 하나로 작 도할 수 없다.

기초문제 평가 p.52~p.53 01 ②,③ 02 ⓒ → ⓒ → 句 03 ③,⑤ 04 ⑤ 05 (1) × (2) ○ (3) ○ (4) × (5) ○ 06 ⓒ → 句 → ⓒ → ❷ 07 (1) ○ (2) × (3) × (4) ○ (5) ○ 08 (1) 6 cm (2) 7 cm (3) 90° (4) 60° 09 SSS 합동 10 ②,③

- 01 ① 눈금 없는 자와 컴퍼스만을 사용하여 도형을 그리는 것을 작도라 한다.
 - ④ 크기가 같은 각을 작도할 때에는 눈금 없는 자와 컴퍼스를 사용한다.
 - ⑤ 두 선분의 길이를 비교할 때에는 컴퍼스를 사용한다.
- 03 $\overline{OC} = \overline{OD} = \overline{AE} = \overline{AF}$ $\overline{CD} = \overline{EF}$, $\angle XOY = \angle EAF$
- 04 ⑤ '엇각의 크기가 같으면 두 직선은 평행하다.'는 평행선 의 성질을 이용하였다.
- **05** (1) 5=1+4이므로 삼각형의 세 변의 길이가 될 수 없다.
 - (2) 3<3+3이므로 삼각형의 세 변의 길이가 될 수 있다.
 - (3) 7<2+6이므로 삼각형의 세 변의 길이가 될 수 있다.
 - (4) 12>4+7이므로 삼각형의 세 변의 길이가 될 수 없다.
 - (5) 10<5+6이므로 삼각형의 세 변의 길이가 될 수 있다.

- **07** (2) ∠A가 AB와 BC의 끼인각이 아니므로 △ABC가 하 나로 정해지지 않는다.
 - (3) 세 각의 크기가 주어지면 모양은 같고 크기가 다른 삼 각형이 무수히 많이 만들어지므로 △ABC가 하나로 정해지지 않는다.
 - (4) ∠A=180°-(120°+35°)=25°
 즉 한 변의 길이와 그 양 끝각의 크기가 주어진 경우이
 므로 △ABC가 하나로 정해진다.
- 08 (4) ∠H=∠D=120°이므로 사각형 EFGH에서 ∠G=360°-(90°+90°+120°)=60°
- 09 △ABC와 △ADC에서 $\overline{AB} = \overline{AD}, \overline{BC} = \overline{DC}, \overline{AC} 는 공통이므로$ △ABC≡ △ADC (SSS 합동)
- 10 ①, ④ ASA 합동 ⑤ SAS 합동

평면도형의 성질

꼭 **알아**야 할 기초 내용 Feedback

p.56~p.57

- 1 (1) 다각형 (2) 대각선 (3) 정다각형
- 2 (1) 사각형, 꼭짓점의 개수: 4개, 변의 개수: 4개
 - (2) 육각형, 꼭짓점의 개수: 6개, 변의 개수: 6개
- **3** (1) 72 (2) 80
- **4** (1) ① 12 cm ② 12 cm² (2) ① 18 cm ② 27 cm²
- **5** 둘레의 길이 : 31.4 cm, 넓이 : 78.5 cm²
- **4** (1) ① (둘레의 길이)=4×3=12 (cm)
 - ② (넓이)= $2 \times 2 \times 3 = 12$ (cm²)
 - (2) ① (둘레의 길이)=6×3=18 (cm)
 - ② (넓이)= $3 \times 3 \times 3 = 27 \text{ (cm}^2\text{)}$
- **5** (둘레의 길이)=10×3.14=31.4 (cm) $(넓이)=5\times5\times3.14=78.5 \text{ (cm}^2)$

9강 다각형

p.58~p.61

- 1-1 ○, □ Ø 선분, 평면도형
- 1-2 ①
- **2-1** (1) ∠B (2) 50° **②** 180, 50
- **2-2** (1) 110° (2) 88° (3) 47° (4) 100° (5) 75°
- 3-1 ① ② Ø 변, 내각
- **3-2** (1) (2) (3) × (4) (
- 4-1 정오각형 ❷ 오각형, 정다각형
- 4-2 (1) 모든 변의 길이는 같지만 모든 내각의 크기가 같은 것은 아 니므로 정다각형이 아니다.
 - (2) 모든 각의 크기는 같지만 모든 변의 길이가 같은 것은 아니 므로 정다각형이 아니다.
- **5-1** (1) ① 4 ② 3.1 ③ 4.3.2.2 ④ 2.2
 - (2) ① 5 ② 3.2 ③ 5.3.2.5 ④ 2.3
- **5-2** (1) ① 67H ② 37H ③ 97H ④ 47H
 - (2) ① 87 ② 57 ③ 207 ④ 67
- **6-1** (1) 147# Ø 7, 7, 14 (2) 1707# Ø 20, 3, 2, 170
- **6-2** (1) 27개 (2) 65개 (3) 90개
- **7-1** (1) 십각형 Ø 70, 10 (2) 십일각형 Ø 44, 88, 11
- 7-2 (1) 팔각형 (2) 십이각형
- 8-1 (1) 십팔각형 💋 15, 18 (2) 135개 💋 18, 18, 135
- 8-2 (1) 십사각형 (2) 77개
- 3-2 (3) 모든 변의 길이가 같고, 모든 각의 크기가 같은 다각형 이 정다각형이다

6-2 (1)
$$\frac{9 \times (9-3)}{2} = 27(7)$$

(2)
$$\frac{13 \times (13 - 3)}{2} = 65(7)$$

(3)
$$\frac{15 \times (15 - 3)}{2} = 90(7)$$

7-2 (1) 구하는 다각형을 *n*각형이라 하면

$$\frac{n(n-3)}{2}$$
=20이므로 $n(n-3)$ =40

 $\therefore n=8$

따라서 팔각형이다.

(2) 구하는 다각형을 n각형이라 하면

$$\frac{n(n-3)}{2}$$
=54이므로 $n(n-3)$ =108

따라서 십이각형이다.

8-2 (1) 구하는 다각형을 *n* 각형이라 하면 n-3=11이므로 n=14따라서 십사각형이다.

(2)
$$\frac{14 \times (14 - 3)}{2} = 77(7)$$

10 강 다각형의 내각과 외각

p.62~p.67

- **1-1** (1) 55° (2) 35° (3) 180°, 80°, 40° (4) 90°, 180°, 90°, 30°
- **1-2** (1) 50° (2) 38° (3) 50° (4) 35°
- **2-1** (1) 30°, 105° (2) 95°, 40° (3) 60°, 30° (4) 35°
- **2-2** (1) 100° (2) 35° (3) 45° (4) 12°
- **3-1** (1) 6, 8, 1080° (2) 2, 8, 10, 1440°
- **3-2** (1) ① 57# ② 900° (2) ① 117# ② 1980°
- **4-1** 구각형 **Ø** 1260°, 9, 구각형
- 4-2 (1) 사각형 (2) 육각형
- **5-1** (1) 93° **2**, 360°, 360°, 93°
 - (2) 80° 5, 540°, 540°, 460°, 540°, 80°
- **5-2** (1) 120° (2) 125° (3) 80° (4) 50°
- **6-1** (1) 90° **3**60°, 360°, 90°
 - (2) 120° 6,720°,720°,120°
- **6-2** (1) 135° (2) 140° (3) 144° (4) 156°
- **7-1** 정십이각형 Ø 150°, 150°, 360°, 12, 정십이각형
- 7-2 정십팔각형

정답과 해설

8-1 62° **Ø** 360°, 360°, 62°

8-2 (1) 108° (2) 60°

9-1 (1) 55° **②** 105°, 55° (2) 86° **②** 120°, 86°

9-2 (1) 55° (2) 95°

10-1 (1) ① 360° ② 5,72° (2) ① 360° ② 20,18°

10-2(1) ① 360° ② 45° (2) ① 360° ② 36°

11-1 정십팔각형 **②** 20°, 18, 정십팔각형

11-2 정십오각형

12-1 60° **Ø** 720°, 6, 정육각형, 6, 60°

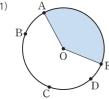
12-2 36°

- 1-2 (1) $60^{\circ} + 70^{\circ} + \angle x = 180^{\circ}$ 이므로 $130^{\circ} + \angle x = 180^{\circ}$ $\therefore \angle x = 50^{\circ}$
 - (2) $52^{\circ} + 90^{\circ} + \angle x = 180^{\circ}$ 이므로 $142^{\circ} + \angle x = 180^{\circ}$ $\therefore \angle x = 38^{\circ}$
 - (3) $(2 \angle x 30^{\circ}) + 60^{\circ} + \angle x = 180^{\circ}$ 이므로 $3 \angle x + 30^{\circ} = 180^{\circ}, 3 \angle x = 150^{\circ}$ $\therefore \angle x = 50^{\circ}$
 - (4) $(3 \angle x 10^{\circ}) + (\angle x + 10^{\circ}) + 40^{\circ} = 180^{\circ}$ 이旦로 $4 \angle x + 40^{\circ} = 180^{\circ}, 4 \angle x = 140^{\circ}$ $\therefore \angle x = 35^{\circ}$
- **2-2** (1) $\angle x = 45^{\circ} + 55^{\circ} = 100^{\circ}$
 - (2) $\angle x + 90^{\circ} = 125^{\circ}$ $\therefore \angle x = 35^{\circ}$
 - (3) $(\angle x + 40^{\circ}) + 50^{\circ} = 3 \angle x$ $2 \angle x = 90^{\circ} \quad \therefore \angle x = 45^{\circ}$
 - (4) $(4 \angle x 20^{\circ}) + 2 \angle x = 3 \angle x + 16^{\circ}$ $3 \angle x = 36^{\circ} \quad \therefore \angle x = 12^{\circ}$
- **3-2** (1) ① 7-2=5(개)
 - ② $180^{\circ} \times (7-2) = 900^{\circ}$
 - $(2) \ \widehat{(1)} \ 13 2 = 11(7)$
 - ② $180^{\circ} \times (13-2) = 1980^{\circ}$
- 4-2 (1) 구하는 다각형을 n각형이라 하면 $180^{\circ} \times (n-2) = 360^{\circ}$ n-2=2 $\therefore n=4$ 따라서 구하는 다각형은 사각형이다.
 - (2) 구하는 다각형을 n각형이라 하면
 180°×(n-2)=720°
 n-2=4 ∴ n=6
 따라서 구하는 다각형은 육각형이다.
- 5-2 (1) 사각형의 내각의 크기의 합은 180°×(4-2)=360°이므로 55°+∠x+100°+85°=360° ∠x+240°=360° ∴ ∠x=120°

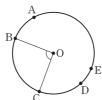
- (2) 오각형의 내각의 크기의 합은 180°×(5-2)=540°이므로 125°+85°+∠x+110°+95°=540° ∠x+415°=540° ∴ ∠x=125°
- (3) 사각형의 내각의 크기의 합은 360°이므로 78°+142°+∠x+(180°-120°)=360° ∠x+280°=360° ∴ ∠x=80°
- (4) 오각형의 내각의 크기의 합은 540°이므로 115°+75°+(180°-∠x)+(180°-80°)+120° =540° 590°-∠x=540° ∴ ∠x=50°
- 6-2 (1) 정팔각형의 내각의 크기의 합은 $180^{\circ} \times (8-2) = 1080^{\circ}$ 이므로 정팔각형의 한 내각의 크기는 $\frac{1080^{\circ}}{9} = 135^{\circ}$
 - (2) 정구각형의 내각의 크기의 합은 $180^{\circ} \times (9-2) = 1260^{\circ}$ 이므로 정구각형의 한 내각의 크기는 $\frac{1260^{\circ}}{9} = 140^{\circ}$
 - (3) 정십각형의 내각의 크기의 합은 $180^{\circ} \times (10-2) = 1440^{\circ}$ 이므로 정십각형의 한 내각의 크기는 $\frac{1440^{\circ}}{10} = 144^{\circ}$
 - (4) 정십오각형의 내각의 크기의 합은 $180^{\circ} \times (15-2) = 2340^{\circ}$ 이므로 정십오각형의 한 내각의 크기는 $\frac{2340^{\circ}}{15} = 156^{\circ}$
- 7-2 구하는 정다각형을 정n각형이라 하면 $\frac{180^{\circ} \times (n\!-\!2)}{n} \!=\! 160^{\circ}$ 이므로 $180^{\circ} \times (n\!-\!2) \!=\! 160^{\circ} \times n, 20^{\circ} \times n \!=\! 360^{\circ} \qquad \therefore n \!=\! 18$ 따라서 구하는 정다각형은 정십팔각형이다.
- 8-2 (1) $\angle x + 75^{\circ} + 85^{\circ} + 92^{\circ} = 360^{\circ}$ 이므로 $\angle x + 252^{\circ} = 360^{\circ}$ $\therefore \angle x = 108^{\circ}$ (2) $60^{\circ} + 70^{\circ} + \angle x + 90^{\circ} + 80^{\circ} = 360^{\circ}$ 이므로 $\angle x + 300^{\circ} = 360^{\circ}$ $\therefore \angle x = 60^{\circ}$
- 9-2 (1) $(180^{\circ}-115^{\circ})+\angle x+80^{\circ}+75^{\circ}+85^{\circ}=360^{\circ}$ 이므로 $305^{\circ}+\angle x=360^{\circ}$ \therefore $\angle x=55^{\circ}$ (2) $(180^{\circ}-125^{\circ})+70^{\circ}+40^{\circ}+30^{\circ}+80^{\circ}+(180^{\circ}-\angle x)$ $=360^{\circ}$ 이므로 $455^{\circ}-\angle x=360^{\circ}$ \therefore $\angle x=95^{\circ}$

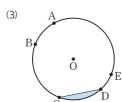
11-2 구하는 정다각형을 정*n*각형이라 하면

$$\frac{360^{\circ}}{n} = 24^{\circ}$$
 $\therefore n = 15$


따라서 구하는 정다각형은 정십오각형이다.

12-2 구하는 정다각형을 정n각형이라 하면 $180^{\circ} \times (n-2) = 1440^{\circ}$ $\therefore n = 10$ 따라서 구하는 정다각형은 정십각형이므로 한 외각의 크 기는 $\frac{360^{\circ}}{10} = 36^{\circ}$


11 강 원과 부채꼴(1)


p.68~p.70

1-1 (1)

(2)

- **1-2** (1) $\angle BOC$ (2) \widehat{AC} (3) \overline{BC}
- 2-1 (1) 원에서 호와 현으로 이루어진 도형을 활꼴이라 한다.
 - (2)
 - (3) 원 위의 두 점에 의해 나누어지는 원의 일부분을 호라 한다.
- **2-2** (1) (2) (
 - (3) 반원은 부채꼴인 동시에 활꼴이다.
- **3-1** (1) 6 **②** 135°, 6 (2) 160 **②** 3, 160
- **3-2** (1) 5 (2) 16 (3) 90 (4) 160
- **4-1** 5 cm² **6** 90°, 5
- **4-2** (1) 80 (2) 6
- **5-1** (1) 10 cm **②** 110°, 10
- **5-2** (1) 25 (2) 76
- **6-1** (1) = (2) = (3) = (4) \neq
- **6-2** (1) (2) × (3) (4) ×
- **3-2** (1) $45^{\circ}:45^{\circ}=5:x$ $\therefore x=5$
 - (2) $60^{\circ} : 120^{\circ} = 8 : x \quad \therefore x = 16$
 - (3) 30° : $x^{\circ} = 5$: 15 $\therefore x = 90$
 - (4) 40° : $x^{\circ} = 6:24$ $\therefore x = 160$
- **4-2** (1) 40° : $x^{\circ} = 16$: 32 $\therefore x = 80$
 - (2) $25^{\circ} : 100^{\circ} = x : 24$ $\therefore x = 6$

5-2 (1) AB=CD=4 cm이므로

$$\angle COD = \angle AOB = 25^{\circ}$$

- $\therefore x=25$
- (2) $\overline{AB} = \overline{CD} = \overline{DE}$ 이므로

$$\angle COD = \angle DOE = \angle AOB = 38^{\circ}$$

$$\therefore x=2\times38=76$$

- **6-2** 한 원에서 현의 길이, 삼각형의 넓이는 중심각의 크기에 정비례하지 않는다.
 - (2) $\overline{AB} \neq 2\overline{CD}$
 - (4) △AOB≠2△COD

12 강 원과 부채꼴(2)

p.71~p.73

- **1-1** (1) 10π cm **6** 5, 10π (2) 25π cm² **6** 5, 25π
- **1-2** (1) $l = 14\pi$ cm, $S = 49\pi$ cm² (2) $l = 6\pi$ cm, $S = 9\pi$ cm²
- **2-1** (1) 14π cm **6** 5, 2, 14π (2) 21π cm² **6** 5, 2, 21π
- **2-2** (1) $l=12\pi$ cm, $S=12\pi$ cm² (2) $l=18\pi$ cm, $S=27\pi$ cm²
- **3-1** (1) 3π cm **4**, 135, 3π
 - (2) $6\pi \text{ cm}^2$ **4**, 135, 6π
- **3-2** (1) $l=2\pi$ cm, $S=6\pi$ cm² (2) $l=4\pi$ cm, $S=6\pi$ cm²
- **4-1** (1) $(4\pi + 24)$ cm **6** 4, 12, $4\pi + 24$
 - (2) $24\pi \text{ cm}^2 \text{ } \text{ } \text{ } 4\pi \text{ } 24\pi$
- **4-2** (1) 둘레의 길이 : $(6\pi+18)$ cm, 넓이 : 27π cm²
 - (2) 둘레의 길이 : $(3\pi+12)$ cm, 넓이 : 9π cm²
- **5-1** (1) $(5\pi+8)$ cm **2** 12, 8, 4, $5\pi+8$
 - (2) $10\pi \text{ cm}^2$ **2** 12, 8, 10π
- **5-2** (1) $(6\pi+6)$ cm (2) 9π cm²
- **6-1** (1) 7π cm $\bigcirc \frac{7}{2}$, $2, \frac{3}{2}$, 7π
 - (2) $3\pi \text{ cm}^2 \bigcirc \frac{7}{2}, 2, \frac{3}{2}, 3\pi$
- **6-2** (1) $(8\pi + 8)$ cm (2) 8π cm²
- **1-2** (1) $l = 2\pi \times 7 = 14\pi$ (cm), $S = \pi \times 7^2 = 49\pi$ (cm²)
 - (2) $l = 2\pi \times 3 = 6\pi \text{ (cm)}$, $S = \pi \times 3^2 = 9\pi \text{ (cm}^2)$
- **2-2** (1) $l = 2\pi \times 4 + 2\pi \times 2 = 12\pi$ (cm)

$$S = \pi \times 4^2 - \pi \times 2^2 = 12\pi \text{ (cm}^2\text{)}$$

- (2) $l = 2\pi \times 6 + 2\pi \times 3 = 18\pi \text{ (cm)}$
 - $S = \pi \times 6^2 \pi \times 3^2 = 27\pi \text{ (cm}^2)$
- **3-2** (1) $l = 2\pi \times 6 \times \frac{60}{360} = 2\pi \text{ (cm)}$

$$S = \pi \times 6^2 \times \frac{60}{360} = 6\pi \text{ (cm}^2\text{)}$$

(2)
$$l = 2\pi \times 3 \times \frac{240}{360} = 4\pi \text{ (cm)}$$

$$S = \pi \times 3^2 \times \frac{240}{360} = 6\pi \text{ (cm}^2)$$

정답과 해설

- **4-2** (1) (둘레의 길이)= $6\pi+9\times2=6\pi+18$ (cm) (넓이)= $\frac{1}{2} \times 9 \times 6\pi = 27\pi \text{ (cm}^2)$
 - (2) (둘레의 길이)= $3\pi+6\times2=3\pi+12$ (cm) (넓이)= $\frac{1}{2}\times6\times3\pi=9\pi$ (cm²)
- **5-2** (1) $2\pi \times 6 \times \frac{120}{360} + 2\pi \times 3 \times \frac{120}{360} + 3 \times 2$ $=6\pi+6 \text{ (cm)}$
 - (2) $\pi \times 6^2 \times \frac{120}{360} \pi \times 3^2 \times \frac{120}{360}$
- **6-2** (1) $2\pi \times 8 \times \frac{1}{4} + 2\pi \times 4 \times \frac{1}{2} + 8$
 - (2) $\pi \times 8^2 \times \frac{1}{4} \pi \times 4^2 \times \frac{1}{2}$

기초 개념 평가

p.74~p.75

- 01 다각형 02 정다각형
- 03 대각선 04 내각
- **05** n-3 **06** $\frac{n(n-3)}{2}$
- **07** 180° **08** 한

- **09** $180^{\circ} \times (n-2)$ **10** 360° **11** $\frac{180^{\circ} \times (n-2)}{n}$

- 12 $\frac{360^{\circ}}{3}$ 13 원 14 부채꼴 15 현 16 할선
- 17 같다 18 같다 19 한다

- 20 하지 않는다

기초 문제 평가

p.76~p.77

- 01 🕒 🔘 02 정팔각형
- **03** 35개
- **04** 45°

08 (1) 정구각형 (2) 1260°

- **05** 30° **06** 20개 **07** 73°
- **09** (5) **10** 32° **11** 12 cm²
- **12** (1) $(4\pi + 20)$ cm (2) 20π cm²
- **13** (1) 10π cm (2) 6π cm²
- 02 (개) 모든 변의 길이가 같고, 모든 내각의 크기가 같은 다각 형은 정다각형이다.
 - (내) 8개의 선분으로 둘러싸인 다각형은 팔각형이다. 따라서 조건을 모두 만족하는 다각형은 정팔각형이다

- 03 구하는 다각형을 *n*각형이라 하면 n-3=7 : n=10즉 십각형이므로 대각선의 총 개수는 $\frac{10 \times (10 - 3)}{2} = 35(7)$
- $04 30^{\circ} + \angle x + (\angle x + 60^{\circ}) = 180^{\circ}$ 이므로 $2 \angle x = 90^{\circ}$ $\therefore \angle x = 45^{\circ}$
- **05** (∠x+18°)+52°=2∠x+40°이므로 $\angle x + 70^{\circ} = 2 \angle x + 40^{\circ}$ $\therefore \angle x = 30^{\circ}$
- 06 구하는 다각형을 n각형이라 하면 $180^{\circ} \times (n-2) = 1080^{\circ}$: n=8즉 팔각형이므로 대각선의 총 개수는 $\frac{8 \times (8-3)}{2} = 20(7)$
- 07 오각형의 내각의 크기의 합은 180°×(5-2)=540°이므로 $80^{\circ} + (180^{\circ} - 92^{\circ}) + (2 \angle x + 10^{\circ}) + \angle x + 143^{\circ} = 540^{\circ}$ $3 \angle x + 321^{\circ} = 540^{\circ}$ $\therefore \angle x = 73^{\circ}$
- (1) 구하는 정다각형을 정n각형이라 하면 $\frac{360^{\circ}}{n} = 40^{\circ}$ $\therefore n = 9$ 따라서 구하는 정다각형은 정구각형이다.
 - (2) $180^{\circ} \times (9-2) = 1260^{\circ}$
- 09 (5) 한 워에서 현의 길이는 중심각의 크기에 정비례하지 않 는다.
- **10** (∠x+40°): 120°=6: 10이므로 $(\angle x + 40^{\circ}) : 120^{\circ} = 3 : 5$ $5 \times (\angle x + 40^{\circ}) = 3 \times 120^{\circ}, 5 \angle x = 160^{\circ}$ $\therefore \angle x = 32^{\circ}$
- 11 30°: 130°=(부채꼴 AOB의 넓이): 52이므로 13×(부채꼴 AOB의 넓이)=156 ∴ (부채꼴 AOB의 넓이)=12 cm²
- **12** (1) $2\pi \times 10 \times \frac{72}{360} + 10 \times 2 = 4\pi + 20$ (cm) (2) $\pi \times 10^2 \times \frac{72}{360} = 20\pi \text{ (cm}^2\text{)}$
- **13** (1) $2\pi \times 5 \times \frac{1}{2} + 2\pi \times 2 \times \frac{1}{2} + 2\pi \times 3 \times \frac{1}{2}$ $=5\pi+2\pi+3\pi=10\pi$ (cm)
 - (2) $\pi \times 5^2 \times \frac{1}{2} \pi \times 2^2 \times \frac{1}{2} \pi \times 3^2 \times \frac{1}{2}$ $=\frac{25}{2}\pi-2\pi-\frac{9}{2}\pi=6\pi \text{ (cm}^2)$

입체도형의 성질

꼭 **알아**야 할 기초 내용 Feedback

p.80~p.81

- 1 (1) 각뿔 (2) 각기둥
- 2 (1) 사각기둥, 꼭짓점의 개수: 8개, 모서리의 개수: 12개,

면의 개수: 6개

(2) 오각뿔, 꼭짓점의 개수: 6개, 모서리의 개수: 10개,

면의 개수 : 6개

- 3 (1) 사각기둥 (2) 오각기둥
- **4** (1) 겉넓이 : 80 cm², 부피 : 48 cm³

(2) 겉넓이: 162 cm², 부피: 162 cm³

4 (1) (겉넓이)= $(4+4+4+4)\times 3+(4\times 4)\times 2$ $=48+32=80 \text{ (cm}^2)$

(부피)= $(4 \times 4) \times 3 = 48 \text{ (cm}^3)$

(2) (겉넓이)= $(2 \times 3 \times 3) \times 6 + (3 \times 3 \times 3) \times 2$

 $=108+54=162 \text{ (cm}^2)$

 $(\pm \mathbf{I}) = (3 \times 3 \times 3) \times 6 = 162 \text{ (cm}^3)$

13강 다면체

p.82~p.85

- 1-1 ①, ©, ② Ø 다각형
- 1-2 ①, ②, ①
- 2-1

꼭짓점의 개수(개)	6	7
모서리의 개수(개)	12	12
면의 개수(개)	8	7
몇 면체	팔면체	칠면체

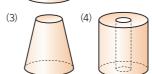
- 2-2 (1) 육각형 (2) 12개 (3) 18개 (4) 8개 (5) 팔면체
- 3-1

	오각기둥	팔각뿔	삼각뿔대
밑면의 모양	오각형	팔각형	삼각형
옆면의 모양	직사각형	삼각형	사다리꼴
면의 개수(개)	7	9	5
모서리의 개수(개)	15	16	9
꼭짓점의 개수(개)	10	9	6

3-2

	칠각기둥	오각뿔	육각뿔대
밑면의 모양	칠각형	오각형	육각형
옆면의 모양	직사각형	삼각형	사다리꼴
면의 개수(개)	9	6	8
모서리의 개수(개)	21	10	18
꼭짓점의 개수(개)	14	6	12

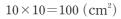
4-1

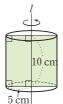

	n각기둥	n각뿔	n각뿔대
면의 개수(개)	n+2	n+1	n+2
모서리의 개수(개)	3 <i>n</i>	2n	3n
꼭짓점의 개수(개)	2n	n+1	2n

- 4-2 (1) (2) (3) 사다리꼴 (4) 14개
- 5 (1) 정사면체, 정육면체, 정팔면체, 정십이면체, 정이십면체
 - (2) 정사각형, 정삼각형, 정오각형, 정삼각형
 - (3) 3, 3, 5
 - (4) 4, 8
 - (5) 4, 8, 6, 20, 12
 - (6) 12, 12, 30
- **6-1** (1) **(**
 - (2) ①, ①, ②
 - (3)
 - (4) ② ①
- 6-2 (1) 정사면체, 정팔면체, 정이십면체
 - (2) 정이십면체
 - (3) 정팔면체
 - (4) 정십이면체
 - (5) 정육면체
- 7-1 각 꼭짓점에 모인 면의 개수가 다르므로 정다면체가 아니다.
 - ∅ 4개, 4개, 3개, 면
- **7-2** (1) (2) (
 - (3) 정다면체는 정사면체, 정육면체, 정팔면체, 정십이면체, 정 이십면체의 5가지뿐이다.
 - (4) 한 꼭짓점에 5개의 면이 모인 정다면체는 정이십면체이다.

14강 회전체

p.86~p.89

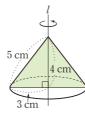

- 1-1 ①. ②. ②. ②. ②
- 1-2 (1) (2)

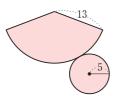


- **2-1** (1)
 - (2)

2-2 (1) (2)

- 3-1 (1) 원 (2) 원 (3) 원 (4) 원
- **3-2** (1) (2) (2) (3) (3) (4) (5)
- **4-1** 100 cm² ❷ 원기둥, 직사각형
- **4-2** 12 cm²
- **5-1** (1) × (2) × (3) (4) (
- **5-2** (1) \bigcirc (2) \times (3) \bigcirc (4) \bigcirc
- **6-1** (1) 3, 5 (2) 6, 2 (3) 2, 5, 4
- **6-2** (1) a=13, b=5 (2) a=2, b=5
- 4-1 회전체는 오른쪽 그림과 같은 원기둥이다. 이때 구하는 단면은 직사각형이므로 그 넓 이는

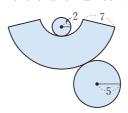



4-2 회전체는 오른쪽 그림과 같은 원뿔이 다

> 이때 구하는 단면은 이등변삼각형이 므로 그 넓이는

$$\frac{1}{2} \times 6 \times 4 = 12 \text{ (cm}^2)$$

- 5-1 (1) 회전체를 회전축에 수직인 평면으로 자른 단면은 항상 원이지만 합동은 아니다.
 - (2) 원뿔을 회전축을 포함하는 평면으로 자른 단면은 이동 변삼각형이다.
- 5-2 (2) 회전체를 회전축을 포함하는 평면으로 자른 단면은 모두 합동이고, 회전축을 대칭축으로 하는 선대칭도형이다.
- **6-2** (1) (개)를 직선 *l*을 축으로 하여 1회전시 키면 오른쪽 그림과 같은 원뿔이다. 따라서 전개도는 다음과 같다.

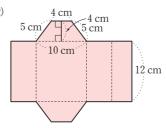


 $\therefore a=13, b=5$

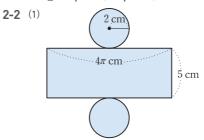
(2) (개)를 직선 *l*을 축으로 하여 1회전 시키면 오른쪽 그림과 같은 원뿔

따라서 전개도는 다음과 같다.

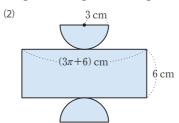
15 강 기둥의 겉넓이와 부피


 $\therefore a=2, b=5$

p.90~p.93


1-1 (1) 8, 10 ① 6, 24 ② 10, 8, 192 ③ 24, 192, 240 (2) 5, 16 ① 4, 16 ② 16, 80 ③ 16, 80, 112

1-2 (1) 5 cm 12 cm 13 cm 9 cm


① 30 cm^2 ② 270 cm^2 ③ 330 cm^2

- ① 28 cm² ② 288 cm² ③ 344 cm²
- **2-1** (1) 5, 10π ① 5, 25π ② 10π , 100π ③ 25π , 100π , 150π
 - (2) $4, 4\pi + 8$ ① $4, 8\pi$ ② $4\pi + 8, 32\pi + 64$
 - $38\pi, 32\pi + 64, 48\pi + 64$

① $4\pi \text{ cm}^2$ ② $20\pi \text{ cm}^2$ ③ $28\pi \text{ cm}^2$

① $\frac{9}{2}\pi \text{ cm}^2$ ② $(18\pi + 36) \text{ cm}^2$ ③ $(27\pi + 36) \text{ cm}^2$

3-1 (1) ① 5,
$$\frac{35}{2}$$
 ② 8 ③ $\frac{35}{2}$, 8, 140

3-2 (1) ①
$$24 \text{ cm}^2$$
 ② 5 cm ③ 120 cm^3

4-1 (1) ①
$$16\pi$$
 ② 9 ③ 16π , 9, 144π

(2) ①
$$\frac{1}{2}$$
, 2π ② 6 ③ 2π , 6, 12π

4-2 (1) ①
$$25\pi \text{ cm}^2$$
 ② 8 cm ③ $200\pi \text{ cm}^3$

(2) ①
$$9\pi \text{ cm}^2$$
 ② 10 cm ③ $90\pi \text{ cm}^3$

(3)
$$126\pi \text{ cm}^3$$
 2 150π , 24π , 126π

5-2 (1)
$$192\pi$$
 cm³ (2) 48π cm³ (3) 144π cm³

1-2 (1) ① (밀넓이)=
$$\frac{1}{2} \times 5 \times 12 = 30 \text{ (cm}^2)$$

② (옆넓이)=
$$(5+13+12)\times 9=270$$
 (cm²)

(2) ① (밑넓이)=
$$\frac{1}{2}$$
×(4+10)×4=28 (cm²)

2-2 (1) ① (밑넓이)=
$$\pi \times 2^2 = 4\pi$$
 (cm²)

② (옆넓이)=
$$(2\pi \times 2) \times 5 = 20\pi \text{ (cm}^2$$
)

③ (겉넓이)=
$$4\pi \times 2 + 20\pi = 28\pi$$
 (cm²)

(2) ① (밀넓이)=
$$\frac{1}{2} \times \pi \times 3^2 = \frac{9}{2} \pi \text{ (cm}^2)$$

② (옆덮이)=
$$\left(\frac{1}{2} \times 2\pi \times 3 + 6\right) \times 6$$

= $18\pi + 36 \text{ (cm}^2)$

③ (겉넓이)=
$$\frac{9}{2}\pi \times 2 + (18\pi + 36)$$

= $27\pi + 36$ (cm²)

③ (부피)=
$$24 \times 5 = 120 \text{ (cm}^3\text{)}$$

(2) ① (밑넓이)=
$$\frac{1}{2}$$
×(5+12)×4=34 (cm²)

③ (부피)=
$$34 \times 6 = 204 \text{ (cm}^3$$
)

4-2 (1) ① (밑넓이)
$$=\pi \times 5^2 = 25\pi$$
 (cm²)

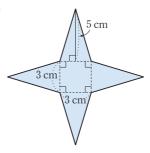
③ (부피)=
$$25\pi \times 8 = 200\pi$$
 (cm³)

(2) ① (밑넓이)=
$$\frac{1}{4} \times \pi \times 6^2 = 9\pi \text{ (cm}^2\text{)}$$

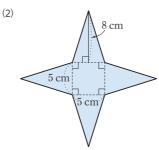
③ (부회)=
$$9\pi \times 10 = 90\pi \text{ (cm}^3\text{)}$$

5-2 (1)
$$\pi \times 4^2 \times 12 = 192\pi$$
 (cm³)

(2)
$$\pi \times 2^2 \times 12 = 48\pi \text{ (cm}^3\text{)}$$

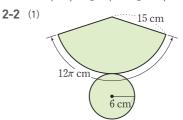

(3)
$$192\pi - 48\pi = 144\pi$$
 (cm³)

16 강 뿔의 겉넓이와 부피

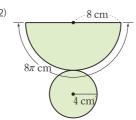

p.94~p.96

- **1-1** (1) 4, 3, 3 ① 9 ② 4, 24 ③ 9, 24, 33
 - (2) 10, 8, 8 ① 8, 8, 64 ② 8, 4, 160 ③ 64, 160, 224

1-2 (1)



① 9 cm² ② 30 cm² ③ 39 cm²



① 25 cm² ② 80 cm² ③ 105 cm²

- **2-1** (1) $10,8\pi,4$ (1) 16π (2) $10,40\pi$ (3) $16\pi,40\pi,56\pi$
 - (2) $5, 6\pi, 3$ ① $3, 9\pi$ ② $6\pi, 15\pi$ ③ $9\pi, 15\pi, 24\pi$

① $36\pi \text{ cm}^2$ ② $90\pi \text{ cm}^2$ ③ $126\pi \text{ cm}^2$

① $16\pi \text{ cm}^2$ ② $32\pi \text{ cm}^2$ ③ $48\pi \text{ cm}^2$

3-1 (1) ① 16 ② 6 ③ 16,6,32

(2) ① 2,
$$4\pi$$
 ② 6 ③ $\frac{1}{3}$, 4π , 6, 8π

3-2 (1) ① 20 cm^2 ② 9 cm ③ 60 cm^3

(3) ①
$$9\pi \text{ cm}^2$$
 ② 4 cm ③ $12\pi \text{ cm}^3$

1-2 (1) ① (밑넓이)=3×3=9 (cm²)

② (옆넓이)=
$$\left(\frac{1}{2}\times3\times5\right)\times4=30$$
 (cm²)

(2) ① (밑넓이)=5×5=25 (cm²)

② (옆넓이)=
$$\left(\frac{1}{2}\times5\times8\right)\times4=80$$
 (cm²)

2-2 (1) ① (밑넓이)= $\pi \times 6^2 = 36\pi$ (cm²)

② (옆넓이)=
$$\frac{1}{2} \times 15 \times (2\pi \times 6) = 90\pi \text{ (cm}^2)$$

③ (겉넓이)=
$$36\pi+90\pi=126\pi$$
 (cm²)

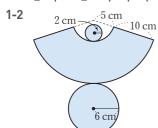
(2) ① (밑넓이)=π×4²=16π (cm²)

② (옆넓이)=
$$\frac{1}{2}$$
×8×(2π ×4)= 32π (cm²)

③ (겉넓이)=
$$16\pi+32\pi=48\pi$$
 (cm²)

3-2 (1) ① (밑넓이)= $\frac{1}{2} \times 5 \times 8 = 20$ (cm²)

③
$$(\frac{1}{7}) = \frac{1}{3} \times 20 \times 9 = 60 \text{ (cm}^3)$$


③
$$(\frac{\text{H}}{\text{J}}) = \frac{1}{3} \times 30 \times 8 = 80 \text{ (cm}^3)$$

③ (
$$+$$
되)= $\frac{1}{3} \times 9\pi \times 4 = 12\pi \text{ (cm}^3\text{)}$

17 강 뿔대와 구의 겉넓이와 부피

p.97~p.100

1-1 ① $2,5\pi$ ② $4\pi,2\pi,4\pi,2\pi,12\pi$ ③ $5\pi,12\pi,17\pi$

① $40\pi \text{ cm}^2$ ② $80\pi \text{ cm}^2$ ③ $120\pi \text{ cm}^2$

2-1 (1) ① 10, 10, 10,
$$\frac{1000}{3}$$
 ② 4, 4, 4, $\frac{64}{3}$ ③ $\frac{1000}{3}$, $\frac{64}{3}$, 312

(2) ①
$$6, 8, 96\pi$$
 ② $3, 4, 12\pi$ ③ $96\pi, 12\pi, 84\pi$

2-2 (1) ①
$$\frac{512}{3}$$
 cm³ ② $\frac{125}{3}$ cm³ ③ 129 cm³

(2) ①
$$\frac{512}{3}\pi \text{ cm}^3$$
 ② $\frac{8}{3}\pi \text{ cm}^3$ ③ $168\pi \text{ cm}^3$

3-1 (1) 5, 4, 5,
$$100\pi$$
 (2) 8, 4, 8, 256π

3-2 (1)
$$16\pi \text{ cm}^2$$
 (2) $64\pi \text{ cm}^2$

4-1 (1) 6,
$$36\pi$$
 (2) 6, 72π (3) 36π , 72π , 108π

4-2 (1)
$$9\pi \text{ cm}^2$$
 (2) $18\pi \text{ cm}^2$ (3) $27\pi \text{ cm}^2$

5-1 (1)
$$3, \frac{4}{3}, 3, 36\pi$$
 (2) $9, \frac{4}{3}, 9, 972\pi$

5-2 (1)
$$288\pi \text{ cm}^3$$
 (2) $\frac{500}{3}\pi \text{ cm}^3$

6-1
$$\frac{1}{2}$$
, 8, $\frac{1024}{3}$

6-2
$$\frac{128}{3}\pi$$
 cm³

$$=4\pi+36\pi=40\pi \text{ (cm}^2)$$

② (옆넓이)=
$$\frac{1}{2} \times 15 \times 12\pi - \frac{1}{2} \times 5 \times 4\pi$$

= $90\pi - 10\pi = 80\pi \text{ (cm}^2\text{)}$

③ (겉넓이)=
$$40\pi+80\pi=120\pi$$
 (cm²)

2-2 (1) ① (큰 각뿔의 부피)

$$=\frac{1}{3} \times (8 \times 8) \times 8 = \frac{512}{3} \text{ (cm}^3)$$

② (작은 각뿔의 부피)

$$=\frac{1}{3} \times (5 \times 5) \times 5 = \frac{125}{3} (\text{cm}^3)$$

③ (각뿔대의 부피)

$$=\frac{512}{3}-\frac{125}{3}=129 \text{ (cm}^3)$$

(2) ① (큰 원뿔의 부피)

$$= \frac{1}{3} \times (\pi \times 8^2) \times 8 = \frac{512}{3} \pi \text{ (cm}^3)$$

② (작은 워뿤의 부피)

$$=\frac{1}{3} \times (\pi \times 2^2) \times 2 = \frac{8}{3} \pi \text{ (cm}^3)$$

③ (원뿔대의 부피)

$$=\frac{512}{3}\pi-\frac{8}{3}\pi=168\pi \text{ (cm}^3)$$

3-2 (1) (겉넒이)= $4\pi \times 2^2 = 16\pi$ (cm²)

(2) 반지름의 길이가
$$\frac{1}{2} \times 8 = 4$$
 (cm)이므로 (겉넓이)= $4\pi \times 4^2 = 64\pi$ (cm²)

4-2 (1) (단면의 넓이)= $\pi \times 3^2 = 9\pi$ (cm²)

(2) (곡면의 넓이)=
$$\frac{1}{2} \times 4\pi \times 3^2 = 18\pi \text{ (cm}^2)$$

(3) (겉넒이)=
$$9\pi+18\pi=27\pi$$
 (cm²)

5-2 (1)
$$(\frac{\text{H}}{7} \text{J}) = \frac{4}{3} \pi \times 6^3 = 288 \pi \text{ (cm}^3)$$

(2) 반지름의 길이가
$$\frac{1}{2} \times 10 = 5$$
 (cm)이므로
(부피)= $\frac{4}{3}\pi \times 5^3 = \frac{500}{3}\pi$ (cm³)

6-2
$$(\stackrel{\text{H}}{\tau} \vec{\nu}) = \frac{1}{2} \times \frac{4}{3} \pi \times 4^3 = \frac{128}{3} \pi \text{ (cm}^3)$$

집중 연습

p.101~p.103

- **1** (1) 겉넓이 : 72 cm², 부피 : 30 cm³
- (2) 겉넓이 : 214 cm², 부피 : 210 cm³
- (3) 겉넓이 : 136 cm², 부피 : 84 cm³
- **2** (1) 겉넓이 : 66π cm², 부피 : 72π cm³
 - (2) 겉넓이: $(75\pi + 100)$ cm², 부피: 125π cm³
 - (3) 겉넓이 : $(42\pi + 96)$ cm², 부피 : 72π cm³
- **3** (1) 겉넓이 : 360 cm², 부피 : 400 cm³
 - (2) 겉넓이: 384 cm², 부피: 384 cm³
 - (3) 겉넓이: $200\pi \text{ cm}^2$, 부피: $320\pi \text{ cm}^3$
- **4** (1) 135 cm² (2) 85 cm²
- **5** (1) $7\pi \text{ cm}^3$ (2) $\frac{208}{3}\pi \text{ cm}^3$
- **6** (1) 겉넓이: 64π cm², 부피: $\frac{256}{3}\pi$ cm³
 - (2) 겉넓이: $196\pi \text{ cm}^2$, 부피: $\frac{1372}{3}\pi \text{ cm}^3$
 - (3) 겉넓이: 75π cm², 부피: $\frac{250}{3}\pi$ cm³

1 (1) (겉넓이)=
$$\left(\frac{1}{2} \times 3 \times 4\right) \times 2 + (3+4+5) \times 5$$

=12+60=72 (cm²)

$$("="되"] = (\frac{1}{2} \times 3 \times 4) \times 5 = 30 \text{ (cm}^3)$$

(2) (겉넓이)=
$$(7 \times 5) \times 2 + (7 + 5 + 7 + 5) \times 6$$

= $70 + 144 = 214 \text{ (cm}^2)$

$$(\stackrel{\square}{+}$$
피 $)=(7\times5)\times6=210 \text{ (cm}^3)$

(3) (겉넓이)=
$$\left\{\frac{1}{2} \times (2+6) \times 3\right\} \times 2 + (3+6+5+2) \times 7$$

=24+112=136 (cm²)

$$(\stackrel{\mathrm{H}}{-}$$
피 $) = \left\{ \frac{1}{2} \times (2+6) \times 3 \right\} \times 7 = 84 \text{ (cm}^3)$

2 (1) (겉넓이)
$$=(\pi \times 3^2) \times 2 + 2\pi \times 3 \times 8$$

$$=18\pi+48\pi=66\pi \text{ (cm}^2)$$

(2) (겉넓이)=
$$\left(\frac{1}{2} \times \pi \times 5^2\right) \times 2 + \left(2\pi \times 5 \times \frac{1}{2} + 10\right) \times 10$$

= $25\pi + 50\pi + 100 = 75\pi + 100 \text{ (cm}^2)$

$$-23\pi + 30\pi + 100 - 73\pi + 100$$
 (C

$$(\stackrel{
ightharpoonup}{=}\stackrel{}{=}\frac{1}{2}\times\pi\times5^2)\times10=125\pi\ (cm^3)$$

(3) (겉넓이)=
$$\left(\frac{1}{4} \times \pi \times 6^2\right) \times 2 + \left(2\pi \times 6 \times \frac{1}{4} + 12\right) \times 8$$

= $18\pi + 24\pi + 96$
= $42\pi + 96$ (cm²)
(부회)= $\left(\frac{1}{4} \times \pi \times 6^2\right) \times 8 = 72\pi$ (cm³)

3 (1) (겉넓이)=
$$10 \times 10 + \left(\frac{1}{2} \times 10 \times 13\right) \times 4$$

= $100 + 260 = 360 \text{ (cm}^2\text{)}$
(부피)= $\frac{1}{3} \times (10 \times 10) \times 12 = 400 \text{ (cm}^3\text{)}$

(2) (겉넒이)=
$$12 \times 12 + \left(\frac{1}{2} \times 12 \times 10\right) \times 4$$

= $144 + 240 = 384 \text{ (cm}^2)$

(부피)=
$$\frac{1}{3}$$
×(12×12)×8=384 (cm³)
(3) (겉넓이)= π ×8²+ $\frac{1}{2}$ ×17×16 π

$$(\stackrel{\square}{+}\stackrel{\square}{\rightarrow}) = \frac{1}{3} \times (\pi \times 8^2) \times 15 = 320\pi \text{ (cm}^3)$$

 $=64\pi+136\pi=200\pi \text{ (cm}^2)$

4 (1) (겉넓이)=
$$3 \times 3 + 6 \times 6 + \left\{ \frac{1}{2} \times (3+6) \times 5 \right\} \times 4$$

= $9 + 36 + 90 = 135 \text{ (cm}^2)$

(2) (겉넓이)=
$$2 \times 2 + 5 \times 5 + \left\{ \frac{1}{2} \times (2+5) \times 4 \right\} \times 4$$

= $4 + 25 + 56 = 85 \text{ (cm}^2)$

5 (1)
$$(\stackrel{\text{H}}{\tau} \vec{\lambda}) = \frac{1}{3} \times (\pi \times 2^2) \times 6 - \frac{1}{3} \times (\pi \times 1^2) \times 3$$

= $8\pi - \pi = 7\pi \text{ (cm}^3)$

(2) (부회)=
$$\frac{1}{3}$$
× $(\pi$ × 6^2)× 6 - $\frac{1}{3}$ × $(\pi$ × 2^2)× 2 = 72π - $\frac{8}{3}\pi$ = $\frac{208}{3}\pi$ (cm³)

$$(\stackrel{\square}{+}$$
되)= $\frac{4}{3}\pi \times 4^3 = \frac{256}{3}\pi \text{ (cm}^3)$

(2) 반지름의 길이가
$$\frac{1}{2} \times 14 = 7$$
 (cm)이므로

(겉넓이)=
$$4\pi \times 7^2 = 196\pi \text{ (cm}^2\text{)}$$

(3) (겉넓이)=
$$\frac{1}{2} \times 4\pi \times 5^2 + \pi \times 5^2$$

$$=50\pi+25\pi=75\pi \text{ (cm}^2)$$

$$(\exists \exists]) = \frac{1}{2} \times \frac{4}{3} \pi \times 5^3 = \frac{250}{3} \pi \text{ (cm}^3)$$

정답과 해설

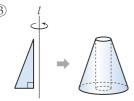
기초 개념 평가

p.104~p.105

16 (

- 01 다면체 02 각기둥 03 각뿔대 04 정다면체
- 05 가 아니다
- 06 삼각형 07 사다리꼴
- **08** 5
- **10** 30
- 11 회전체 12 원
- 13 합동, 선대칭
- 14 원
- 15 × 20 ○
- 17 × 18 ×

09 6


- 19 🔾
- 기초 문제 평가

p.106~p.107

4 cm / 2 cm

12 cm

- 01 ①, ①, 🗎
- **02** (1) ①, ①, ② (2) ② (3) ①, ⑤
- 03 육각뿔
- 04 (1) 정팔면체 (2) 4개 (3) 12개
- **05** ③
- 06 ②
- **07** (1) 겉넓이: 84 cm², 부피 : 36 cm³
 - (2) 겉넓이: $520\pi \text{ cm}^2$, 부피 : $1600\pi \text{ cm}^3$
- **08** $384\pi \text{ cm}^3$
- **09** (1) 겉넓이: 96 cm², 부피 : 48 cm³
 - (2) 겉넓이 : 96π cm², 부피 : 96π cm³
- 10 $\frac{112}{3}\pi \text{ cm}^3$
- 11 $288\pi \text{ cm}^3$
- **05** ③

- 06 ② 원기둥 직사각형
- 07 (1) (겉넓이)= $\left(\frac{1}{2} \times 3 \times 4\right) \times 2 + (3+4+5) \times 6$ =12+72=84 (cm²)

$$(\stackrel{\text{\tiny \square}}{=}\stackrel{\text{\tiny \square}}{=}) = \left(\frac{1}{2} \times 3 \times 4\right) \times 6 = 36 \text{ (cm}^3)$$

- (2) (겉넓이)= $\pi \times 10^2 \times 2 + 2\pi \times 10 \times 16$
 - $=200\pi+320\pi=520\pi \text{ (cm}^2)$
 - $(\ddot{+}$ 피 $)=\pi \times 10^2 \times 16=1600\pi \text{ (cm}^3)$
- 08 직선 l을 축으로 하여 1회전시킬 때 생기는 회전체는 오른쪽 그림 과 같으므로

$$($$
부피 $)=\pi \times 6^2 \times 12$

$$-\pi \times 2^2 \times 12$$

- $-\pi \wedge Z \nearrow$
- $=432\pi-48\pi$
- $=384\pi \, (\text{cm}^3)$

 $= 36 + 60 = 96 \text{ (cm}^2)$ $(\stackrel{\text{H}}{=} \stackrel{\text{I}}{=}) = \frac{1}{3} \times (6 \times 6) \times 4 = 48 \text{ (cm}^3)$

 $09 (1) (겉넓이) = 6 \times 6 + \left(\frac{1}{2} \times 6 \times 5\right) \times 4$

- (2) (겉넓이)= $\pi \times 6^2 + \frac{1}{2} \times 10 \times 12\pi$ = $36\pi + 60\pi = 96\pi \text{ (cm}^2\text{)}$ (부피)= $\frac{1}{3} \times (\pi \times 6^2) \times 8 = 96\pi \text{ (cm}^3\text{)}$
- 10 (부회) = $\frac{1}{3} \times (\pi \times 4^2) \times 8 \frac{1}{3} \times (\pi \times 2^2) \times 4$ = $\frac{128}{3} \pi - \frac{16}{3} \pi = \frac{112}{3} \pi \text{ (cm}^3\text{)}$
- 11 직선 l을 축으로 하여 1회전시킬 때 생기는 회전체는 오른쪽 그림과 같으므로 (부피 $)=\frac{4}{2}\pi \times 6^3=288\pi \text{ (cm}^3)$

자료의 정리와 해석

Peedback Peedback

p.110~p.111

- 1 (1) 귤 (2) 배
- **2** (1) 21 °C (2) 오후 1시와 오후 2시 사이
- 3 (1) 침엽수림 (2) 20 %
- **4** (1) 얼음 (2) 25% (3) $\frac{1}{9}$ 배

18 강 줄기와 잎 그림

p.112~p.113

- **1-1** 8, 2, 5, 9, 2, 8, 9, 0
- 1-2

(2 | 7은 27세)

줄기							잎			
2 3 4	7	8	9	9						
3	2	2	3	3	5	6				
4	1	2	4	6	6	7				
5	0	2	5							

- 2-1 (1) 2 (2) 20명 (3) 40점 (4) 5명
 - (5) 23점 💋 35, 12, 35, 12, 23
 - (6) 35 % **Ø** 7, 35
- **2-2** (1)

(13|6은 136 cm)

줄기							잎			
13 14 15	6	8								
14	0	2	5	5	6					
15	0	0	4	6	8	9	9			
16	1	6	6	8						
17	0	1								

- (2) 171 cm (3) 145 cm (4) 20명 (5) 6명 (6) 30 %
- **2-1** (2) 2+4+7+6+1=20(명)
 - (4) 수학 수행평가 점수가 30점보다 높은 학생은 4+1=5(명)
- 2-2 (4) 2+5+7+4+2=20(명)
 - (5) 키가 160 cm 이상인 학생은 4+2=6(명)
 - (6) $\frac{6}{20} \times 100 = 30 \ (\%)$

19강 도수분포표

p.114~p.116

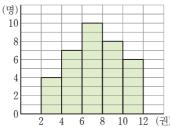
- **1-1** (1) 10분 (2) 4개
 - (3) 20분 이상 30분 미만 ❷ 12, 20, 30
 - (4) 10분 이상 20분 미만 (5) 6명
- 1-2 (1) 2회 (2) 5개 (3) 4회 이상 6회 미만
 - (4) 2회 이상 4회 미만 (5) 3명
- 2-1 (1) 30분 (2) 90분 이상 120분 미만 (3) 15명
 - (4) 3명 ② 2, 1, 2, 3
- 2-2 (1) 5세 (2) 5개 (3) 35세 이상 40세 미만 (4) 13명
- **3-1** (1) 7 **Ø** 6, 7 (2) 15명 (3) 50 **Ø** 15, 50
- **3-2** (1) 10 (2) 4명 (3) 12.5

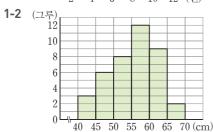
4-1	방문	자 수(명)	날수(일)				
	0이상	~ 4 ^{미만}	//	2			
	4	~ 8	////	4			
	8	~ 12	##	5			
	12	~ 16	###//	7			
	16	~ 20	//	2			
	;	합계	20				

3, 2, 5, 6, 4

4-2	나이(세)	회원 수(명)				
	10이상 ~ 15미만	H# /	6			
	15 ~ 20	## ##	10			
	20 ~ 25	////	4			
	25 ~ 30	///	3			
	30 ~ 35	////	4			
	합계	2	7			

2-2 (4) 나이가 30세 이상 35세 미만인 선생님이 4명, 35세 이 상 40세 미만인 선생님이 9명이므로 나이가 30대인 선 생님의 수는


4+9=13(명)


- **3-1** (2) 이용 시간이 0분 이상 30분 미만인 학생이 5명, 30분 이상 60분 미만인 학생이 3명, 60분 이상 90분 미만인 학생이 7명이므로 이용 시간이 90분 미만인 학생 수는 5+3+7=15(명)
- **3-2** (1) A = 32 (2+6+10+3+1) = 10
 - (2) 줄넘기 기록이 40회 이상 50회 미만인 학생이 3명, 줄넘기 기록이 50회 이상 60회 미만인 학생이 1명이 므로 줄넘기 기록이 40회 이상인 학생 수는 3+1=4(명)
 - (3) $\frac{4}{32} \times 100 = 12.5 \, (\%)$ $\therefore a = 12.5$

20 강 히스토그램

p.117~p.119

1-1 (명)

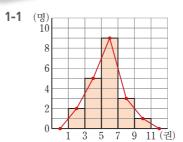
- 2-1 (1) 2개 (2) 5개 (3) 25명 ② 2, 6, 7, 25
 - (4) 16명 69, 7, 7, 16 (5) 64 616, 64
- 2-2 (1) 5 cm (2) 5개 (3) 20명 (4) 14명 (5) 70
- 3-1 (1) 1초 (2) 25명 (3) 25 💋 25, 25 (4) 13명
- **3-2** (1) 20 g (2) 357H (3) 700 (4) 217H
- **4-1** (1) 20회 이상 25회 미만
 - (2) 25회 이상 30회 미만 💋 1, 5, 6, 25, 30
 - (3) 20 **4** 20
- **4-2** (1) 20분 이상 30분 미만 (2) 10분 이상 20분 미만 (3) 70

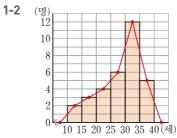
2-2 (3) 2+4+8+4+2=20(명)

(4) 앉은키가 80 cm 이상 85 cm 미만인 학생이 8명. 85 cm 이상 90 cm 미만인 학생이 4명, 90 cm 이상 95 cm 미만인 학생이 2명이므로 앉은키가 80 cm 이 상인 학생 수는

8+4+2=14(명)

- (5) $\frac{14}{20} \times 100 = 70 \ (\%)$ $\therefore a = 70$
- **3-1** (2) 1+5+8+6+4+1=25(명)
 - (4) 달리기 기록이 16초 이상 17초 미만인 학생이 5명. 17초 이상 18초 미만인 학생이 8명이므로 달리기 기록 이 16초 이상 18초 미만인 학생 수는 5+8=13(명)
- **3-2** (2) 3+8+12+9+3=35(7)
 - (3) $20 \times 35 = 700$
 - (4) 참외 한 개의 무게가 90 g 이상 110 g 미만인 참외는 12 개, 110 g 이상 130 g 미만인 참외는 9개이므로 참외 한 개의 무게가 90 g 이상 130 g 미만인 참외의 개수는 12+9=21(71)


- **4-2** (2) 통학 시간이 10분 미만인 학생은 6명, 20분 미만인 학 생은 6+9=15(명)이므로 통학 시간이 짧은 쪽에서 10번째인 학생이 속하는 계급은 10분 이상 20분 미만 이다.
 - (3) (통학 시간이 30분 이상 40분 미만인 계급의 직사각형 의 넓이)
 - =(계급의 크기)


×(통학 시간이 30분 이상 40분 미만인 계급의 도수)

 $=10 \times 7 = 70$

21 강 도수분포다각형

p.120~p.122

2-1 (1) 6개 (2) 35명 (3) 4명

(4) 60 Ø 7, 3, 21, 21, 60

- 2-2 (1) 5초 (2) 30명 (3) 15초 이상 20초 미만 (4) 30
- 3-1 (1) 10점 (2) 50명 (3) 500 50, 500
- 3-2 (1) 1시간 (2) 100명 (3) 100
- **4-1** (1) 5개 (2) 10 kg (3) 30명

(4) 40 kg 이상 50 kg 미만 **3**, 9, 12, 40 kg, 50 kg

4-2 (1) 5개 (2) 4권 (3) 12권 이상 16권 미만 (4) 12명

2-1 (2) 5+8+11+7+3+1=35(명)

(3) 국어 성적이 80점 이상 90점 미만인 학생은 3명, 90점 이상 100점 미만인 학생은 1명이므로 국어 성적이 80 점 이상인 학생 수는

3+1=4(명)

- **2-2** (2) 2+4+7+8+5+4=30(명)
 - (4) 매달리기 기록이 25초 이상인 학생은 5+4=9(명)이므로

 $\frac{9}{30} \times 100 = 30 \ (\%)$ ∴ a=30

- **3-1** (2) 7+9+12+15+7=50(명)
- **3-2** (2) 10+40+30+15+5=100(명)
 - (3) 구하는 넓이는 (계급의 크기)×(도수의 총합) =1×100=100
- 4-1 (3) 3+9+13+4+1=30(명)
- 4-2 (4) 읽은 책의 수가 20권 이상인 학생은 2명,
 16권 이상인 학생은 2+4=6(명),
 12권 이상인 학생은 2+4+12=18(명)
 이므로 책을 10번째로 많이 읽은 학생이 속하는 계급은 12권 이상 16권 미만이고 그 도수는 12명이다.

집중 연습	p.123~p.124

1 (1)	줄기								잎				
	6 7 8 9	3	5	8	9								
	7	0	0	0	5	5	7	7	8				
	8	0	2	2	3	4	4	4	4	5	8		
	9	0	0	1	2	2	2	6	8				

- (2) 8 (3) 8명 (4) 70점 (5) 35점 (6) 18명 (7) 60 %
- 2 (1)
 줄넘기 기록(회)
 학생 수(명)

 0 아당 ~ 10 미만
 2

 10 ~ 20
 4

 20 ~ 30
 10

 30 ~ 40
 8

 40 ~ 50
 6

 합계
 30
 - (2) 10회 (3) 5개 (4) 20회 이상 30회 미만
 - (5) 30회 이상 40회 미만 (6) 20 %
- **3** (1) 1시간 (2) 6개 (3) 40명 (4) 6시간 이상 7시간 미만
 - (5) 70 % (6) 6 (7) 40
- **4** (1) 5초 (2) 5개 (3) 40명 (4) 20초 이상 25초 미만
 - (5) 12명 (6) 30 % (7) 200

- 1 (5) 음악 실기 점수가 가장 낮은 학생의 점수는 63점, 가장 높은 학생의 점수는 98점이므로 점수의 차는 98-63=35(점)
 - (6) 음악 실기 점수가 80점 이상인 학생 수는 10+8=18(명)
 - (7) $\frac{18}{30} \times 100 = 60 \ (\%)$
- (5) 줄넘기 기록이 40회 이상인 학생은 6명, 30회 이상인 학생은 6+8=14(명)이므로 줄넘기 기록이 좋은 쪽에서 10번째인 학생이 속하는 계급은 30회 이상 40회 미만이다
 - (6) 줄넘기 기록이 40회 이상 50회 미만인 학생은 6명이므로 $\frac{6}{30} \times 100 = 20 \ (\%)$
- **3** (3) 4+10+14+6+4+2=40(명)
 - (5) 봉사 활동 시간이 4시간 미만인 학생 수는 4+10+14=28(명)이므로 $\frac{28}{40} \times 100=70~(\%)$
 - (6) (4시간 이상 5시간 미만인 계급의 직사각형의 넓이) =(계급의 크기)

×(4시간 이상 5시간 미만인 계급의 도수)

 $=1 \times 6 = 6$

- (7) (전체 직사각형의 넓이의 합)
 - =(계급의 크기)×(도수의 총합)
 - $=1 \times 40 = 40$
- **4** (3) 4+8+14+7+7=40(명)
 - (4) 매달리기 기록이 25초 이상인 학생은 7명, 20초 이상인 학생은 7+7=14(명)이므로 매달리기 기록이 좋은 쪽 에서 8번째인 학생이 속하는 계급은 20초 이상 25초 미 만이다.
 - (5) 매달리기 기록이 5초 이상 10초 미만인 학생은 4명, 10 초 이상 15초 미만인 학생은 8명이므로 매달리기 기록이 15초 미만인 학생 수는

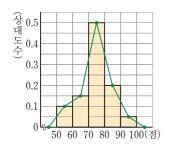
4+8=12(명)

- (6) $\frac{12}{40} \times 100 = 30 \ (\%)$
- (7) (도수분포다각형과 가로축으로 둘러싸인 부분의 넓이) =(계급의 크기)×(도수의 총합)
 - $=5 \times 40 = 200$

22 강 상대도수

p.125~p.130

1-1	보폭(cm)	학생 수(명)	상대도수
	40 이상 ~ 44 미만	2	$\frac{2}{20} = 0.1$
	44 ~ 48	4	$\frac{4}{20} = 0.2$
	48 ~ 52	8	$\frac{8}{20} = 0.4$
	52 ~ 56	5	$\frac{5}{20}$ = 0.25
	56 ~ 60	1	$\frac{1}{20}$ = 0.05
	합계	20	1


❷ 그 계급의 도수

1-2	책의 수(권)	학생 수(명)	상대도수
	0이상 ~ 2미만	6	$\frac{6}{50} = 0.12$
	2 ~ 4	14	$\frac{14}{50}$ = 0.28
	4 ~ 6	16	$\frac{16}{50}$ = 0.32
	6 ~ 8	10	$\frac{10}{50} = 0.2$
	8 ~ 10	4	$\frac{4}{50} = 0.08$
	합계	50	1

- 2-1 (1) 10 🛭 도수의 총합, 40, 10 (2) 18 (3) 60 💋 그 계급의 도수, 12, 60 (4) 70
- **2-2** (1) 8 (2) 9 (3) 60 (4) 64
- **3-1** A=2, B=12, C=0.4, D=0.12, E=3, F=50**2** 0.14, 50, 50, 2, 50, 0.4
- **3-2** A=0.2, B=5, C=0.05, D=20, E=1

/	4
4.	

수학 성적(점)	학생 수(명)	상대도수
50 이상 \sim 60 미만	2	$\frac{2}{20} = 0.1$
60 ~ 70	3	$\frac{3}{20}$ = 0.15
70 ~ 80	10	$\frac{10}{20}$ = 0.5
80 ~ 90	4	$\frac{4}{20} = 0.2$
90 ~ 100	1	$\frac{1}{20} = 0.05$
합계	20	1

4-2

접속 횟수(회)	상대도수	학생 수(명)
5 이상 ~ 10 미만	0.1	$40 \times 0.1 = 4$
10 ~ 15	0.2	$40 \times 0.2 = 8$
15 ~ 20	0.4	$40 \times 0.4 = 16$
20 ~ 25	0,25	$40 \times 0.25 = 10$
25 ~ 30	0.05	$40 \times 0.05 = 2$
합계	1	40

- **5-1** (1) 0.3 (2) 15명 **②** 0.3, 15 (3) 28 % **②** 0.28, 28
- **5-2** (1) 0.05 (2) 2명 (3) 35 %
- **6-1** (1) 40명 (2) 50명 (3) 45 % **②** 0,25, 0,45, 0,45, 45
- 6-2 (1) 14명 (2) 8명 (3) 18%

(.)						
(1)	통학 거리(km)		1학년		2학년	
			학생 수(명)	상대도수	학생 수(명)	상대도수
	0.5°	항 ~ 1.0만	20	0.2	30	0.15
	1.0	~ 1.5	35	0.35	40	0.2
	1.5	~ 2.0	30	0.3	80	0.4
	2.0	~ 2.5	10	0.1	30	0.15
	2,5	~ 3.0	5	0.05	20	0.1
		합계	100	1	200	1

- (2) 1학년 💋 0.35, 0.2, 1, 2 (3) 2학년 (4) 2학년 💋 2, 1, 2, 1
- **8-1** (1) × **Ø** 없다 (2) × (3)
 - (4) (5) × **②** 2, 1, 같다
- **8-2** (1) \times (2) \bigcirc (3) \times (4) \times (5) \bigcirc

2-1 (2) $30 \times 0.6 = 18$

(4)
$$\frac{28}{0.4}$$
 = 70

- **2-2** (1) $20 \times 0.4 = 8$
 - (2) $60 \times 0.15 = 9$
 - (3) $\frac{18}{0.3}$ = 60
 - (4) $\frac{32}{0.5}$ = 64

3-1
$$B = 50 \times 0.24 = 12$$

$$D = \frac{6}{50} = 0.12$$

$$E = 50 \times 0.06 = 3$$

3-2
$$D = \frac{2}{0.1} = 20$$

 $A = \frac{4}{20} = 0.2$
 $B = 20 \times 0.25 = 5$

$$C = \frac{1}{20} = 0.05$$

- **5-2** (2) 40×0.05=2(명)
 - (3) $0.35 \times 100 = 35 (\%)$
- **6-1** (1) 0.20×200=40(명)
 - (2) 시력이 0.2 이상 0.4 미만, 0.4 이상 0.6 미만인 계급의 상대도수의 합은 0.05+0.20=0.25따라서 시력이 0.6 미만인 학생 수는

 $200 \times 0.25 = 50(명)$

6-2 (1) 상대도수가 가장 큰 계급의 상대도수는 0.28이므로 이 계급의 도수는

 $50 \times 0.28 = 14(명)$

- (2) 몸무게가 55 kg 이상 60 kg 미만, 60 kg 이상 65 kg 미만인 계급의 상대도수의 합은 0.10+0.06=0.16따라서 몸무게가 55 kg 이상인 학생 수는 $50 \times 0.16 = 8(명)$
- (3) 몸무게가 30 kg 이상 35 kg 미만, 35 kg 이상 40 kg 미만인 계급의 상대도수의 합은 0.04 + 0.14 = 0.18따라서 몸무게가 40 kg 미만인 학생은 전체의 $0.18 \times 100 = 18 (\%)$
- (3) 통학 거리가 2 km 이상 2.5 km 미만, 2.5 km 이상 3 km 미만인 계급의 상대도수의 합은 1학년 0.1+0.05=0.15. 2학년은 0.15+0.1=0.25 따라서 통학 거리가 2 km 이상인 학생의 비율은 2학 년이 1학년보다 더 높다.
- 8-1 (2) 관람한 공연의 수가 6개 이상 8개 미만인 남학생 수와 여학생 수는 알 수 없다.
 - (3) 10개 이상 12개 미만인 계급의 상대도수는 남학생은 0.05이고 여학생은 0.1이므로 관람한 공연의 수가 10 개 이상인 학생의 비율은 여학생이 남학생보다 높다.
 - (4) 여학생의 그래프가 남학생의 그래프보다 오른쪽으로 치우쳐 있으므로 여학생이 남학생보다 공연을 더 많이 본다고 할 수 있다.

- 8-2 (1) 계급의 크기는 1초이다.
 - (3) 달리기 기록이 7초 이상 8초 미만인 계급의 남학생 수 와 여학생 수는 알 수 없다.
 - (4) 여학생의 그래프가 남학생의 그래프보다 오른쪽으로 치우쳐 있으므로 남학생이 여학생보다 더 빠른 편이다.

				p.131
1	관람 횟수(회)	학생 수(명)	상대도수	
	0° [▷] 상 ∼ 3 [□] 만	1	$\frac{1}{50} = 0.02$	

1	관람 횟수(회)	학생 수(명)	상대도수
	0이상 ~ 3미만	1	$\frac{1}{50}$ = 0.02
	3 ~ 6	5	$\frac{5}{50} = 0.1$
	6 ~ 9	10	$\frac{10}{50}$ = 0.2
	9 ~ 12	12	$\frac{12}{50}$ = 0.24
	12 ~ 15	18	$\frac{18}{50}$ = 0.36
	15 ~ 18	4	$\frac{4}{50} = 0.08$
	합계	50	1

_					
2	₹ (cm)	학생 수(명)	상대도수		
	140 이상 ~ 145 미만	$20 \times 0.05 = 1$	0.05		
	145 ~ 150	$20 \times 0.25 = 5$	0.25		
	150 ~ 155	20×0.3=6	0.3		
	155 ~ 160	$20 \times 0.25 = 5$	0.25		
	160 ~ 165	20×0.1=2	0.1		
	165 ~ 170	$20 \times 0.05 = 1$	0.05		
	합계	20	1		

- 3 (1) 6개 (2) 90점 이상 100점 미만 (3) 8명
 - (4) 14명 (5) 0.7 (6) 25 %
- **3** (3) 40×0.2=8(명)
 - (4) 상대도수가 가장 큰 계급의 상대도수는 0.35이므로 이 계급의 도수는

 $40 \times 0.35 = 14(명)$

- (5) 0.15+0.35+0.2=0.7
- (6) 40점 이상 50점 미만, 50점 이상 60점 미만인 계급의 상 대도수의 합은

0.1+0.15=0.25따라서 수학 성적이 60점 미만인 학생은 전체의 $0.25 \times 100 = 25 (\%)$

정답과 해설

기초 개념 평가

p.132~p.133

- 01 변량
- **02** 줄기와 잎 그림 03 도수분포표
- 04 히스토그램
- 05 크기 06 도수
- **07** 없다 **08** 정비례 **09** 도수분포다각형
- 10 상대도수
- **11** 1
- 12 도수의 총합
- 13 같다
 - **14** 정비례 **15** 다른 **16** 2배
- 17 같다

기초 문제 평가

p.134~p.135

- **01** (1) 3 (2) 25 % **02** (1) 10회 (2) 5 (3) 6명
- 03 (1) 35명 (2) 80분 이상 100분 미만
- 04 (1) 7개 (2) 40명 (3) 25%
- **05** 225
- **06** 12
- **07** A = 0.1, B = 6, C = 40
- **08** (1) 40 % (2) 7명
- 09 (1) 1반 (2) 2반
- **01** (2) 총 선생님의 수는 2+7+4+3=16(명)이고 40대인 선생님의 수는 4명이므로 $\frac{4}{16} \times 100 = 25 \, (\%)$
- **02** (2) A = 20 (1 + 2 + 3 + 8 + 1) = 5
 - (3) 출전 경기 수가 40회 이상 50회 미만인 선수는 5명, 50 회 이상 60회 미만인 선수는 1명이므로 출전 경기 수가 40회 이상인 선수는 5+1=6(명)
- **03** (1) 2+5+10+9+6+3=35(명)
 - (2) 기타 연습 시간이 120분 이상인 학생은 3명, 100분 이 상인 학생은 3+6=9(명), 80분 이상인 학생은3+6+9=18(명)이므로 기타 연습 시간이 많은 쪽에서 10번째인 학생이 속하는 계급은 80분 이상 100분 미만 이다.

- 04 (2) 4+6+7+11+7+3+2=40(명)
 - (3) 저축액이 10만 원 미만인 학생은 4+6=10(명)이므로 $\frac{10}{40} \times 100 = 25 \, (\%)$
- 05 (도수분포다각형과 가로축으로 둘러싸인 도형의 넓이)
 - =(계급의 크기)×(도수의 총합)
 - $=5 \times (7+7+5+7+11+6+2)$
 - $=5 \times 45 = 225$
- $06 \quad 30 \times 0.4 = 12$
- **07** $C = \frac{10}{0.25} = 40$
 - $A = \frac{4}{40} = 0.1$
 - $B = 40 \times 0.15 = 6$
- 08 (1) 제자리멀리뛰기 기록이 180 cm 이상 200 cm 미만, 200 cm 이상 220 cm 미만인 계급의 상대도수의 합은 0.26 + 0.14 = 0.4따라서 제자리멀리뛰기 기록이 180 cm 이상 220 cm 미만인 학생은 전체의 $0.4 \times 100 = 40 (\%)$
 - (2) 50×0.14=7(명)
- 09 (1) 6권 이상 8권 미만인 계급의 상대도수는 1반은 0.35. 2반은 0.25이므로 구입한 책의 수가 6권 이상 8권 미만 인 학생의 비율은 1반이 2반보다 더 높다.
 - (2) 2반의 그래프가 1반의 그래프보다 오른쪽으로 치우쳐 있으므로 2반이 1반보다 책을 더 많이 구입했다고 할 수 있다.