

◯ 】 제곱근의 뜻과 성질

P. 8

개념 확인 (1) 3, -3 (2) 0 (3) 없다.

- $(1) 3^2 = 9 (-3)^2 = 9$
- (3) 제곱하여 음수가 되는 수는 없다.

필수 에제 1 (1) 5. -5 (2) 0.8. -0.8 (3) 6. -6

- (1) 5²=25. (-5)²=25이므로 x²=25를 만족하는 x의 값은 5. -5이다.
- $(2) 0.8^2 = 0.64$. $(-0.8)^2 = 0.64$ 이므로 제곱하여 0.64가 되는 수는 0.8. -0.8이다.
- (3) $6^2 = 36$. $(-6)^2 = 36$ 이므로 36의 제곱근은 6. -6이다.

유제 1 ㅁ

- ㄱ. 0의 제곱근은 0이다.
- ㄴ. 제곱하여 음수가 되는 수는 없으므로 -9의 제곱근은 없
- $= 0.2^2 = 0.04$ $(-0.2)^2 = 0.04$ 이므로 제곱하여 0.04가 되 는 수는 0.2. -0.2이다.
- 리. 모든 수는 제곱하면 0 또는 양수가 된다.
- ㅁ. 49의 제곱근은 7, -7로 2개이고, 두 제곱근의 합은 7+(-7)=0이다.

필수 예제 2 (1) 4, -4 (2) 0.1, -0.1

(3)
$$\frac{3}{5}$$
, $-\frac{3}{5}$ (4) 3 , -3

- (1) $4^2=16$. $(-4)^2=16$ 이므로 16의 제곱근은 4, -4이다.
- (2) $0.1^2 = 0.01$, $(-0.1)^2 = 0.01$ 이므로 0.01의 제곱근은 0.1. -0.1이다.

(3)
$$\left(\frac{3}{5}\right)^2 = \frac{9}{25}$$
, $\left(-\frac{3}{5}\right)^2 = \frac{9}{25}$ 이므로 $\frac{9}{25}$ 의 제곱근은 $\frac{3}{5}$, $-\frac{3}{5}$ 이다.

 $(4)(-3)^2=9$ 이고, $3^2=9$, $(-3)^2=9$ 이므로 $(-3)^2$ 의 제곱 근은 3. -3이다.

유제 2 (1) 11, -11 (2) 2, -2 (3) 0.5, -0.5 (4) $\frac{1}{8}$, $-\frac{1}{8}$

- (1) $11^2 = 121$, $(-11)^2 = 121$ 이므로 121의 제곱근은 11. -11이다.
- (2) $2^2=4$ 이고, $2^2=4$, $(-2)^2=4$ 이므로 2^2 의 제곱근은 2,
- (3) $(-0.5)^2 = 0.25$ 이고, $0.5^2 = 0.25$, $(-0.5)^2 = 0.25$ 이므로 $(-0.5)^2$ 의 제곱근은 0.5, -0.5이다.

$$(4) \left(\frac{1}{8}\right)^2 = \frac{1}{64} \text{이코, } \left(\frac{1}{8}\right)^2 = \frac{1}{64}, \left(-\frac{1}{8}\right)^2 = \frac{1}{64} \text{이므로}$$

$$\left(\frac{1}{8}\right)^2 \text{의 제곱근은 } \frac{1}{8}, -\frac{1}{8} \text{이다.}$$

P. 9

개념 확인

a	1	2	3	4	5
<i>a</i> 의 양의 제 곱 근	$\sqrt{1}=1$	$\sqrt{2}$	√3	$\sqrt{4}=2$	√5
<i>a</i> 의 음의 제 곱 근	$-\sqrt{1} = -1$	$-\sqrt{2}$	$-\sqrt{3}$	$\boxed{-\sqrt{4} = -2}$	$-\sqrt{5}$
<i>a</i> 의 제 곱근	±1	$\pm\sqrt{2}$	$\pm\sqrt{3}$	±2	±√5

а	6	7	8	9	10
<i>a</i> 의 양의 제 곱 근	$\sqrt{6}$	$\sqrt{7}$	√8	$\sqrt{9}=3$	√10
<i>a</i> 의 음의 제 곱근	$-\sqrt{6}$	$-\sqrt{7}$	$-\sqrt{8}$	$-\sqrt{9} = -3$	$-\sqrt{10}$
<i>a</i> 의 제 곱근	±√6	$\pm\sqrt{7}$	±√8	±3	±√10

필수 예제 3 (1)
$$\sqrt{11}$$
 (2) $-\sqrt{\frac{5}{2}}$ (3) $\pm\sqrt{13}$ (4) $\sqrt{13}$

유제 3 (1)
$$\sqrt{0.5}$$
 (2) $-\sqrt{17}$ (3) $\pm\sqrt{21}$ (4) $\sqrt{\frac{3}{2}}$

유제 4 (1) 5 (2)
$$-0.3$$
 (3) ± 8 (4) $\frac{1}{9}$

- $(1)\sqrt{25}$ 는 25의 양의 제곱근이므로 5이다
- (2) $-\sqrt{0.09}$ 는 0.09의 음의 제곱근이므로 -0.3이다.
- (3) $\pm \sqrt{64}$ 는 64의 제곱근이므로 ± 8 이다.
- (4) $\sqrt{\frac{1}{81}}$ 은 $\frac{1}{81}$ 의 양의 제곱근이므로 $\frac{1}{9}$ 이다.

유제 5 2, $-\sqrt{2}$, 9, 3

 $\sqrt{4}$ 의 음의 제곱근은 2의 음의 제곱근이므로 $-\sqrt{2}$ 이고. $(-3)^2$ 의 양의 제곱근은 9의 양의 제곱근이므로 3이다.

P. 10 개념 누르기 한판

- 1 ③
- 2 (1) ± 1 (2) $\pm \frac{1}{4}$ (3) ± 0.5
- $(4) \pm 10$
- (5) $\pm\sqrt{11}$ (6) $\pm\sqrt{\frac{1}{3}}$ (7) $\pm\sqrt{0.7}$ (8) 없다.
- (9) $\pm \sqrt{6}$ (10) $\pm \sqrt{\frac{1}{2}}$ (11) $\pm \sqrt{1.2}$
 - (12) $\pm \left| \frac{3}{7} \right|$
- **3** (1) × (2) × (3) (4) × (5) (6)
- **5** 7
- $a(a \ge 0)$ 의 제곱근은 제곱하여 a가 되는 수이므로 x가 a의 제곱근임을 나타내는 것은 ③ $x^2=a$ 이다.

참고
$$x$$
가 a 의 제곱근 $(a \ge 0) \Rightarrow x^2 = a$

$$\Rightarrow x = \pm \sqrt{a}$$

- 2 (9) $\sqrt{36} = 6$ 이므로 6의 제곱근은 $\pm \sqrt{6}$ 이다
 - (10) $\sqrt{\frac{1}{4}} = \frac{1}{2}$ 이므로 $\frac{1}{2}$ 의 제곱근은 $\pm \sqrt{\frac{1}{2}}$ 이다.
 - (11) $\sqrt{1.44}$ =1.2이므로 1.2의 제곱근은 $\pm \sqrt{1.2}$ 이다.
 - (12) $\sqrt{\frac{9}{49}} = \frac{3}{7}$ 이므로 $\frac{3}{7}$ 의 제곱근은 $\pm \sqrt{\frac{3}{7}}$ 이다.
- **3** (1) 10의 제곱근은 ±√10이다.
 - (2) √64는 8이다
 - (3) 0의 제곱근은 0의 1개뿐이다.
 - (4) 음수의 제곱근은 없다.
 - (5) 양수 a의 제곱근은 $\pm \sqrt{a}$ 이므로 절댓값이 같은 양수와 음수 2개이다.
 - $(6)(-5)^2=25$, $5^2=25$ 이므로 두 수의 제곱근은 ± 5 로 같다.
- 4 (4의 제곱근)=(x^2 =4를 만족하는 x의 값) =(2 또는 -2) =(제곱하여 4가 되는 수)

 $(제곱근 4) = \sqrt{4} = 2$

 $\therefore a+b=-2+9=7$

- 5 $\sqrt{16}$ =4이므로 4의 음의 제곱근 a= -2 $(-9)^2$ =81이므로 81의 양의 제곱근 b=9
- P. 11

필수 에제 4 (1) 7 (2) 0.8 (3) -5 (4) 3 (5) 11 (6) -2

유제 6 (1) -10 (2) $\frac{1}{3}$ (3) -13 (4) 0.4 (5) -9 (6) $-\frac{2}{5}$

필수 예제 5 (1) 5 (2) -2 (3) 24 (4) 3

- (1) (주어진 식)=2+3=5
- (2) (주어진 식)=3-5=-2
- (3) (주어진 식)=4×6=24
- (4) (주어진 식)= $2 \div \frac{2}{3} = 2 \times \frac{3}{2} = 3$

유제 7 (1) -2 (2) 4 (3) 3 (4) 0

- (1) (주어진 식)=5-7=-2
- (2) (주어진 식)=12÷3=4
- (3) (주어진 식)=6+7-10=3
- (4) (주어진 식)=8×0.5 $-3\div\frac{3}{4}$ =4 $-3\times\frac{4}{3}$ =4-4=0

P. 12

필수 예제 6 (1) a, -a (2) a, -a

(2)
$$a \ge 0$$
일 때, $-a \le 0$ 이므로 $\sqrt{(-a)^2} = -(-a) = a$ $a < 0$ 일 때, $-a > 0$ 이므로 $\sqrt{(-a)^2} = -a$

- 유제 8 (1) 2x (2) -2x (3) 2x (4) -2x
 - (1) x>0일 때, 2x>0이므로 $\sqrt{(2x)^2}=2x$
 - (2) x < 0일 때, 2x < 0이므로 $\sqrt{(2x)^2} = -2x$
 - (3) x>0일 때, -2x<0이므로 $\sqrt{(-2x)^2}=-(-2x)=2x$
 - (4) x < 0일 때, -2x > 0이므로 $\sqrt{(-2x)^2} = -2x$

필수 예제 7 (1) x-3, -x+3 (2) a-b, -a+b

(1) $x \ge 3$ 일 때, $x-3 \ge 0$ 이므로 $\sqrt{(x-3)^2} = x-3$ x < 3일 때, x-3 < 0이므로

$$\sqrt{(x-3)^2} = -(x-3) = -x+3$$

(2) $a \ge b$ 일 때, $a-b \ge 0$ 이므로 $\sqrt{(a-b)^2} = a-b$ a < b일 때, a-b < 0이므로

$$\sqrt{(a-b)^2} = -(a-b) = -a+b$$

- 유제 9 (1) x+1 (2) -x-1 (3) -x+5 (4) 5-x
 - (1) x > -1일 때, x+1 > 0이므로 $\sqrt{(x+1)^2} = x+1$
 - (2) x < -1일 때, x+1 < 0이므로 $\sqrt{(x+1)^2} = -(x+1) = -x-1$
 - (3) x < 5일 때, x 5 < 0이므로 $\sqrt{(x 5)^2} = -(x 5) = -x + 5$
 - (4) x < 5일 때, 5-x > 0이므로 $\sqrt{(5-x)^2} = 5-x$

유제 10 (1) 4 (2) 0

- (1) -2 < x < 2일 때, x+2 > 0이므로 $\sqrt{(x+2)^2} = x+2$ x-2 < 0이므로 $\sqrt{(x-2)^2} = -(x-2) = -x+2$ \therefore (주어진 식)=x+2+(-x+2)=4
 - 4 고 -2 < x < 2인 x의 값을 하나 택하여 x+2, x-2의 값이 각각 양수인지 음수인지 판단할 수도 있다. 예를 들어 x=1을 택하면

x+2=1+2>0이므로 x+2>0이고, x-2=1-2<0이므로 x-2<0이다.

(2) a > 0이므로 $\sqrt{a^2} = a$, b < 0이므로 $\sqrt{b^2} = -b$ a > 0, b < 0일 때, a - b > 0이므로 $\sqrt{(a - b)^2} = a - b$ \therefore (주어진 식)=a + (-b) - (a - b) = 0

P. 13

개념 확인 (1) 3, 16, 12, 169 (2) 3, 4, 25, 12, 13

필수 예제 8 3, 8, 11

 $\sqrt{12-x}$ 가 자연수가 되려면 12-x는 제곱수이어야 한다. 이때 x는 자연수이므로 12-x<12 12보다 작은 제곱수는 1, 4, 9이다. 따라서 12-x=1, 4, 9이어야 하므로 x=3, 8, 11

유제 11 6

 $\sqrt{10+x}$ 가 자연수가 되려면 10+x는 제곱수이어야 한다. 이때 x는 자연수이므로 10+x>10 10보다 큰 제곱수는 $16, 25, 36, \cdots$ 이다.

따라서 x의 값이 가장 작은 자연수가 되려면 10+x=16 $\therefore x=6$

필수 예제 9 32, 5, 5, 5(또는 5, 32, 5, 5)

유제 12 (1) 6 (2) 5

- (1) $\sqrt{24x} = \sqrt{2^3 \times 3 \times x}$ 가 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값 은 $x=2\times3=6$
- (2) $\sqrt{180x} = \sqrt{2^2 \times 3^2 \times 5 \times x}$ 가 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 5이다

유제 13 2

 $\sqrt{\frac{18}{x}} = \sqrt{\frac{2 \times 3^2}{x}}$ 이 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 2이다

P. 14

개념 확인 (1) $\sqrt{3}$, $\sqrt{5}$ (2) $\sqrt{3}$, $\sqrt{5}$

필수 예제 10 (1) < (2) < (3) > (4) <

(1) 0.7<0.8이므로 √0.7<√0.8

(3) $4=\sqrt{16}$ 이므로 $\sqrt{16}>\sqrt{15}$ 에서 $4>\sqrt{15}$

유제 14 (1)
$$\sqrt{5}$$
 $<$ $\sqrt{7}$ (2) -3 $<$ $-\sqrt{8}$ (3) 0.1 $<$ $\sqrt{0.1}$ (4) $-\sqrt{\frac{2}{3}}$ $>$ $-\sqrt{\frac{3}{4}}$

- (2) $3=\sqrt{9}$ 이므로 $\sqrt{9}>\sqrt{8}$ 에서 $3>\sqrt{8}$ $\therefore -3<-\sqrt{8}$
- (3) $0.1 = \sqrt{0.01}$ 이므로 $\sqrt{0.01} < \sqrt{0.1}$ 에서 $0.1 < \sqrt{0.1}$

$$\begin{array}{c} (4) \ \frac{2}{3} \! = \! \frac{8}{12}, \ \frac{3}{4} \! = \! \frac{9}{12} \text{이므로} \\ \\ \frac{2}{3} \! < \! \frac{3}{4} \text{에서} \sqrt{\frac{2}{3}} \! < \! \sqrt{\frac{3}{4}} \qquad \therefore -\sqrt{\frac{2}{3}} \! > \! -\sqrt{\frac{3}{4}} \end{array}$$

필수 예제 11 (1) 1, 2, 3 (2) 4, 5, 6, 7, 8

(1) $1 \le \sqrt{x} < 2$ 에서 $\sqrt{1} \le \sqrt{x} < \sqrt{4}$ 이므로 $1 \le x < 4$ 이때 x는 자연수이므로 x = 1, 2, 3

다른 풀이

 $1 \le \sqrt{x} < 2$ 에서 $1^2 \le (\sqrt{x})^2 < 2^2$ $\therefore 1 \le x < 4$ 이때 x는 자연수이므로 x = 1, 2, 3

(2) 3< $\sqrt{3x}$ <5에서 $\sqrt{9}$ < $\sqrt{3x}$ < $\sqrt{25}$ 이므로

9<3
$$x$$
<25 \therefore 3< x < $\frac{25}{3}$ (=8 $\frac{1}{3}$)
이때 x 는 자연수이므로 x =4, 5, 6, 7, 8

유제 15 (1) 6, 7, 8, 9, 10 (2) 4, 5, 6, 7, 8, 9

- (1) $2 < \sqrt{x-1} \le 3$ 에서 $\sqrt{4} < \sqrt{x-1} \le \sqrt{9}$ 이므로 $4 < x-1 \le 9$ $\therefore 5 < x \le 10$ 이때 x는 자연수이므로 x = 6, 7, 8, 9, 10
- (2) $-3\!\le\!-\sqrt{x}\!\le\!-2$ 에서 $2\!\le\!\sqrt{x}\!\le\!3$, $\sqrt{4}\!\le\!\sqrt{x}\!\le\!\sqrt{9}$ 이므로 $4\!\le\!x\!\le\!9$
 - 이때 x는 자연수이므로 x=4, 5, 6, 7, 8, 9

P. 15 개념 누르기 한판

- 1 (1) 3 (2) 5 (3) -14 (4) 0.5 (5) 7 (6) 13 (7) -11 (8) $-\frac{3}{4}$
- **2** (1) 0 (2) -4 (3) 1 (4) 7
- 3 (1) -6a (2) 2a-2 (3) -2a+2
- **4** (1) 1 (2) 9 (3) 15 (4) 3
- 5 $-\sqrt{5}$, $-\sqrt{2}$, -1, 0, $\sqrt{12}$, 4, $\sqrt{17}$
- (1) 7개 (2) 9개
- **2** (1) (주어진 식)= $\frac{3}{2}$ - $\frac{3}{2}$ =0
 - (2) (주어진 식)= $-14 \times \frac{2}{7} = -4$
 - (3) (주어진 식)= $0.6 \times 10 \div 6 = 6 \times \frac{1}{6} = 1$
 - (4) (주어진 식)=7-4×<u>3</u>+3=7-3+3=7
- **3** (1) a<0일 때, -5a>0이므로 (주어진 식)=-a+(-5a)=-6a
 - (2) a>1일 때, a-1>0, 1-a<0이므로 (주어진 식)= $a-1+\{-(1-a)\}=2a-2$
 - (3) -1 < a < 3일 때, a 3 < 0, a + 1 > 0이므로 (주어진 식)=-(a - 3) - (a + 1) = -2a + 2
- 4 (1) √50-x가 자연수가 되려면 50-x는 제곱수이어야 한다. 이때 x는 자연수이므로 50-x<50
 즉, 50-x=1, 4, 9, 16, 25, 36, 49이어야 하므로 x=1, 14, 25, 34, 41, 46, 49
 따라서 구하는 가장 작은 자연수 x의 값은 1이다.
 - (2) $\sqrt{16+x}$ 가 자연수가 되려면 16+x는 제곱수이어야 한다. 이때 x는 자연수이므로 16+x>16 16보다 큰 제곱수는 25, 36, 49, …이다. 따라서 x의 값이 가장 작은 자연수가 되려면 16+x=25 $\therefore x=9$
 - (3) $\sqrt{240x} = \sqrt{2^4 \times 3 \times 5 \times x}$ 가 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 $x=3\times5=15$
 - (4) $\sqrt{\frac{27}{x}} = \sqrt{\frac{3^3}{x}}$ 이 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 3이다.

- 5 (음수)<0<(양수)이고 $4=\sqrt{16}$. $-1=-\sqrt{1}$ 이므로 $-\sqrt{5} < -\sqrt{2} < -\sqrt{1} < 0 < \sqrt{12} < \sqrt{16} < \sqrt{17}$ 에서 $-\sqrt{5} < -\sqrt{2} < -1 < 0 < \sqrt{12} < 4 < \sqrt{17}$
 - 참고 (1) (음수)<0<(양수)
 - (2) 두 양수에서는 절댓값이 큰 수가 크다.
 - (3) 두 음수에서는 절댓값이 큰 수가 작다.
 - ⇒ 먼저 수를 양수와 음수로 나눈 후 양수는 양수끼리. 음수는 음수끼리 대소를 비교한다.
- 6 (1) $3 < \sqrt{x+1} < 4$ 에서 $\sqrt{9} < \sqrt{x+1} < \sqrt{16}$ 이므로 $9 \le x + 1 < 16$: $8 \le x < 15$ 따라서 구하는 자연수 x의 개수는 15-8=7(개)이다.
 - (2) $4 < \sqrt{2x} < 6$ 에서 $\sqrt{16} < \sqrt{2x} < \sqrt{36}$ 이므로 16 < 2x < 36 : 8 < x < 18따라서 구하는 자연수 x의 개수는 18-8-1=9(개)이다
 - 참고 부등식을 만족하는 자연수의 개수

m, n (m < n)이 자연수일 때, x의 값의 범위에 따른 자연수 x의 개수는 다음과 같다.

- ① m < x < n이면 (n-m-1)개
- ② $m \le x < n$ 또는 $m < x \le n$ 이면 (n-m)개
- ③ $m \le x \le n$ 이면 (n-m+1)개

2 무리수와 실수

P. 16~17

필수 예제 1 그, ㅂ

- ㄴ. √9=3 ⇨ 유리수
- ㄹ. 0.i=<u>1</u> ⇒ 유리수
- ㅁ. √0.49 = 0.7 ⇒ 유리수
- ㅂ. $\sqrt{25} = 5$ 이므로 5의 제곱근은 $\pm \sqrt{5}$ \Rightarrow 무리수
- 유제 1 유리수: -2, $\sqrt{1.44}$, 0, $\frac{1}{3}$, $\sqrt{0.4}$

무리수 :
$$\sqrt{\frac{1}{5}}$$
, π , $-\sqrt{15}$

√1.44 = 1.2 ⇒ 유리수

$$\sqrt{0.4} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$
 > 유리수

- 필수 예제 2 (1) × (2) (3) × (4) (5) (6) ×
 - $(1)\sqrt{4}$ 는 근호를 사용하여 나타낸 수이지만 $\sqrt{4}$ = 2이므로 유 리수이다
 - $(2)\sqrt{0.01} = 0.1$ 이므로 유리수이다.
 - (3) 0.1은 무한소수이지만 $0.1 = \frac{1}{9}$ 이므로 유리수이다.
 - (6) 무리수는 순환하지 않는 무한소수로 나타내어지므로 순 환소수로 나타낼 수 없다.

유제 2 ③

- 그, 순화소수는 모두 유리수이다.
- ∟ 양수 4의 제곱근은 ±2이고 이 수는 유리수이다
- 필수 예제 3 (1) 5

(2) 5,
$$-3$$
, $-\sqrt{4}$

(3) **5. 1.3. 0.3**
$$\dot{4}$$
. -3 . $-\sqrt{4}$

(4)
$$-\sqrt{7}$$
, $1+\sqrt{3}$

(5) 5.
$$-\sqrt{7}$$
. 1.3. 0.3 $\dot{4}$. -3 . $-\sqrt{4}$. $1+\sqrt{3}$

유제 3 ③, ⑤

- □ 안의 수에 해당하는 것은 무리수이다.
- ① $\sqrt{\frac{9}{16}} = \frac{3}{4}$ \Rightarrow 유리수
- ② -1.5 ⇒ 유리수
- ③ $\sqrt{4}$ = 2이므로 2의 양의 제곱근은 $\sqrt{2}$ \Rightarrow 무리수
- ④ 2.4= $\frac{24-2}{9}$ = $\frac{22}{9}$ 다 유리수
- ⑤ 3-√2 ➡ 무리수
 - 장고 (유리수)±(무리수)는 무리수이다.

P. 18 개념 누르기 한판

- **)** 나 ㄹ **3** ③ ④
- **4** 3개
- 5 (1) $\sqrt{4} + 3$ (2) $\sqrt{3} 1$, $\sqrt{5} + 1$, $\sqrt{0.9} + 1$
 - (3) $\sqrt{3}-1$, $\sqrt{4}+3$, $\sqrt{5}+1$, $\sqrt{0.9}+1$
- 1 소수로 나타내었을 때 순환하지 않는 무한소수가 되는 수는 무리수이다.

 $0.\dot{3}\dot{4} = \frac{34}{99}$, $\sqrt{196} = 14$ 이므로 무리수인 것은

- $\sqrt{10}$. $-\sqrt{3}$ 의 2개이다.
- 2 정사각형의 한 변의 길이를 각각 구하면

 - \Box , $\sqrt{9} = 3 \Rightarrow$ 유리수 \Box , $\sqrt{15} \Rightarrow 무리수$
- **3** √3 은 무리수이므로
 - ③ 근호를 사용하지 않고 나타낼 수 없다.
 - ④ (정수) (0이 아닌 전수) 의 꼴로 나타낼 수 없다.
- 4 기, 무한소수 중 순환소수는 유리수이다.
 - ㄴ. $0 \stackrel{\circ}{=} 0 = \frac{0}{1} = \frac{0}{2} = \frac{0}{3} = \cdots$ 과 같이 나타낼 수 있으므로 유리수이다.

유리수이면서 무리수인 수는 없다.

리. 유리수와 무리수의 합은 무리수이다. 따라서 옳은 것은 그 ㄷ ㅁ의 3개이다

5 $\sqrt{3}-1$ \Rightarrow (무리수) - (유리수) \Rightarrow 무리수 $\sqrt{4}+3=2+3=5$ \Rightarrow 유리수 $\sqrt{5}+1$ \Rightarrow (무리수) + (유리수) \Rightarrow 무리수 $\sqrt{0.9}+1$ \Rightarrow (무리수) + (유리수) \Rightarrow 무리수

P. 20

개념 확인 $5.\sqrt{5}.\sqrt{5}.\sqrt{5}.-\sqrt{5}$

필수 예제 4 (1) 2 (2) $\sqrt{2}$ (3) $A(1+\sqrt{2})$ (4) $B(1-\sqrt{2})$

- (1) $\square PQRS = 2 \times 2 4 \times \left(\frac{1}{2} \times 1 \times 1\right) = 2$
- (2) $\square PQRS$ 의 넓이가 2이므로 한 변의 길이는 $\sqrt{2}$ 이다. $\therefore \overline{PA} = \overline{PQ} = \sqrt{2}$
- (3) 점 A는 1에 대응하는 점에서 오른쪽으로 $\overline{PA} = \sqrt{2}$ 만큼 떨어진 점이므로 $A(1+\sqrt{2})$
- (4) 점 B는 1에 대응하는 점에서 왼쪽으로 $\overline{PB} = \overline{PS} = \sqrt{2}$ 만큼 떨어진 점이므로 B $(1-\sqrt{2})$

유제 4 (1) P의 넓이 : 5, Q의 넓이 : 10

(2) A: $-4-\sqrt{5}$, B: $-\sqrt{10}$, C: $-4+\sqrt{5}$, D: $\sqrt{10}$

- (1) (P의 넓이)= $3\times3-4 imes\left(\frac{1}{2}\times2\times1\right)=5$ (Q의 넓이)= $4\times4-4 imes\left(\frac{1}{2}\times3\times1\right)=10$

P. 21

필수 예제 5 (1) 〇 (2) × (3) × (4) 〇 (5) × (6) 〇

- (2) $\sqrt{2}$ 와 $\sqrt{3}$ 사이에는 무수히 많은 무리수가 있다.
- $(3)\sqrt{3}$ 과 $\sqrt{7}$ 사이에는 무수히 많은 유리수가 있다.
- (5) 실수는 유리수와 무리수로 이루어져 있고, 수직선은 실수에 대응하는 점들로 완전히 메울 수 있으므로 유리수와 무리수에 대응하는 점들로 수직선을 완전히 메울 수 있다.

유제 5 ⑤

- ㄱ, ㄴ. 서로 다른 두 실수 사이에는 무수히 많은 유리수와 무리수가 있다.
- 다. $1 < \sqrt{2} < 2 < \sqrt{5} < 3$ 이므로 $\sqrt{2}$ 와 $\sqrt{5}$ 사이에는 1개의 정수 2가 있다.
- ㄹ. 수직선 위의 모든 점은 그 좌표를 실수로 나타낼 수 있다.
- □. 수직선은 유리수와 무리수에 대응하는 점들로 완전히 메울수 있다.

P. 22

필수 예제 6 (1) > (2) < (3) < (4) <

- (1) $(\sqrt{6}+1)-3=\sqrt{6}-2=\sqrt{6}-\sqrt{4}>0$ $\therefore \sqrt{6}+1>3$
- (2) $(5-\sqrt{2})-4=1-\sqrt{2}=\sqrt{1}-\sqrt{2}<0$ $\therefore 5-\sqrt{2}<4$
- (3) $(\sqrt{7}+3) (\sqrt{8}+3) = \sqrt{7} \sqrt{8} < 0$ $\therefore \sqrt{7}+3 < \sqrt{8}+3$
- (4) $3 < \sqrt{10}$ 이므로 양변에서 $\sqrt{3}$ 을 빼면 $3 \sqrt{3} < \sqrt{10} \sqrt{3}$

다른 풀이

$$(3-\sqrt{3})-(\sqrt{10}-\sqrt{3})=3-\sqrt{10}=\sqrt{9}-\sqrt{10}<0$$

 $\therefore 3-\sqrt{3}<\sqrt{10}-\sqrt{3}$

유제 6 (1) $\sqrt{7} - 5 > -3$ (2) $-2 - \sqrt{8} > -5$

(3)
$$-\sqrt{12}-2>-\sqrt{13}-2$$
 (4) $\sqrt{17}-4<\sqrt{17}-\sqrt{15}$

- (1) $(\sqrt{7}-5)-(-3)=\sqrt{7}-2=\sqrt{7}-\sqrt{4}>0$ $\therefore \sqrt{7}-5>-3$
- (2) $(-2-\sqrt{8})-(-5)=3-\sqrt{8}=\sqrt{9}-\sqrt{8}>0$ $\therefore -2-\sqrt{8}>-5$
- (3) $(-\sqrt{12}-2)-(-\sqrt{13}-2)=-\sqrt{12}+\sqrt{13}>0$ $\therefore -\sqrt{12}-2>-\sqrt{13}-2$
- (4) $4>\sqrt{15}$ 에서 $-4<-\sqrt{15}$ 이므로 양변에 $\sqrt{17}$ 을 더하면 $\sqrt{17}-4<\sqrt{17}-\sqrt{15}$

다른 풀이

$$(\sqrt{17} - 4) - (\sqrt{17} - \sqrt{15}) = -4 + \sqrt{15}$$

$$= -\sqrt{16} + \sqrt{15} < 0$$

$$\therefore \sqrt{17} - 4 < \sqrt{17} - \sqrt{15}$$

유제7 c < a < b

두 수씩 짝지어 대소를 비교한다. $a-b=(2-\sqrt{7})-(2-\sqrt{6})=-\sqrt{7}+\sqrt{6}<0$ $\therefore a< b$ $b-c=(2-\sqrt{6})-(-1)=3-\sqrt{6}=\sqrt{9}-\sqrt{6}>0$ $\therefore b>c$ $a-c=(2-\sqrt{7})-(-1)=3-\sqrt{7}=\sqrt{9}-\sqrt{7}>0$ $\therefore a>c$ 따라서 c< a< b이다.

P. 23

개념 확인 \bigcirc 4 \bigcirc 9 \bigcirc 2 \bigcirc $\sqrt{5}$ -2

필수 에제 7 (1) 정수 부분 : 2, 소수 부분 : √6 -2 (2) 정수 부분 : 3, 소수 부분 : √10 -3

(1) $2<\sqrt{6}<3$ 이므로 $\sqrt{6}$ 의 정수 부분은 2,

소수 부분은 $\sqrt{6}-2$

(2) $3 < \sqrt{10} < 4$ 이므로 $\sqrt{10}$ 의 정수 부분은 3, 소수 부분은 $\sqrt{10} - 3$

유제 8 √13-1

 $2<\sqrt{8}<3$ 이므로 $\sqrt{8}$ 의 정수 부분 a=2 $3<\sqrt{13}<4$ 이므로 $\sqrt{13}$ 의 정수 부분은 3, 2수 부분 $b=\sqrt{13}-3$ $\therefore a+b=2+(\sqrt{13}-3)=\sqrt{13}-1$

필수 예제 8 (1) 정수 부분 : 3, 소수 부분 : $\sqrt{3}-1$ (2) 정수 부분 : 3, 소수 부분 : $2-\sqrt{2}$

(1) 1<√3<2이므로 3<2+√3<4 따라서 2+√3의 정수 부분은 3, 소수 부분은 (2+√3)-3=√3-1

다른 풀이

 $\sqrt{3}=1.732\cdots$ 이므로 $2+\sqrt{3}=3.732\cdots$ 따라서 $2+\sqrt{3}$ 의 정수 부분은 3, 소수 부분은 $(2+\sqrt{3})-3=\sqrt{3}-1$

(2) 1<√2<2이므로 -2<-√2<-1에서
 3<5-√2<4
 따라서 5-√2의 정수 부분은 3,
 소수 부분은 (5-√2)-3=2-√2

다른 풀이

 $\sqrt{2}=1.414\cdots$ 이므로 $5-\sqrt{2}=3.\cdots$ 따라서 $5-\sqrt{2}$ 의 정수 부분은 3, 소수 부분은 $(5-\sqrt{2})-3=2-\sqrt{2}$

유제 9 (1) 정수 부분 : 2, 소수 부분 : √2 -1 (2) 정수 부분 : 1, 소수 부분 : 2-√3

(1) $1<\sqrt{2}<2$ 이므로 $2<1+\sqrt{2}<3$ 따라서 $1+\sqrt{2}$ 의 정수 부분은 2, 소수 부분은 $(1+\sqrt{2})-2=\sqrt{2}-1$

다른 풀이

 $\sqrt{2}=1.414\cdots$ 이므로 $1+\sqrt{2}=2.414\cdots$ 따라서 $1+\sqrt{2}$ 의 정수 부분은 2, 소수 부분은 $(1+\sqrt{2})-2=\sqrt{2}-1$

(2) $1<\sqrt{3}<2$ 이므로 $-2<-\sqrt{3}<-1$ 에서 $1<3-\sqrt{3}<2$ 따라서 $3-\sqrt{3}$ 의 정수 부분은 1, 소수 부분은 $(3-\sqrt{3})-1=2-\sqrt{3}$

다른 풀이

 $\sqrt{3}=1.732\cdots$ 이므로 $3-\sqrt{3}=1.\cdots$ 따라서 $3-\sqrt{3}$ 의 정수 부분은 1,소수 부분은 $(3-\sqrt{3})-1=2-\sqrt{3}$

P. 24 개념 누르기 한판

- 1 ① $-6-\sqrt{2}$ ② $-6+\sqrt{2}$ ③ 5 ④ $6-\sqrt{10}$ ⑤ $6+\sqrt{10}$
- **2** ③, ⑤ **3** ③ **4** c, a **5** $1+\sqrt{14}$ **6** $3-\sqrt{5}$

- 2 ③ 서로 다른 두 무리수 사이에는 무수히 많은 무리수가 있다.
 - ⑤ 수직선은 유리수와 무리수, 즉 실수에 대응하는 점으로 완전히 메울 수 있다.
- 3 ① $3-(\sqrt{3}+1)=2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ ∴ $3>\sqrt{3}+1$
 - ② $(\sqrt{6}-1)-2=\sqrt{6}-3=\sqrt{6}-\sqrt{9}<0$ $\therefore \sqrt{6}-1<2$
 - ③ $(-\sqrt{2}+4)-(-\sqrt{3}+4)=-\sqrt{2}+\sqrt{3}>0$ ∴ $-\sqrt{2}+4>-\sqrt{3}+4$
 - ④ $1<\sqrt{2}$ 이므로 양변에 $\sqrt{5}$ 를 더하면 $1+\sqrt{5}<\sqrt{2}+\sqrt{5}$

 - 참고 두 실수의 대소를 비교할 때, 두 수의 차 또는 부등식의 성질을 이용할 수 없는 경우 제곱근의 값을 이용하여 비교한다.
- 4 $a-b=(1+\sqrt{3})-2=\sqrt{3}-1>0$ $\therefore a>b$ $b-c=2-(\sqrt{5}-1)=3-\sqrt{5}=\sqrt{9}-\sqrt{5}>0$ $\therefore b>c$ $\therefore c< b< a$ 따라서 가장 작은 수는 c, 가장 큰 수는 a이다.
- 2<√7<3이므로 √7의 정수 부분 a=2
 3<√14<4이므로 √14의 정수 부분은 3,
 소수 부분 b=√14-3
 ∴ 2a+b=2×2+(√14-3)=1+√14
- 6 3<√10<4이므로 -4< -√10< -3에서 1<5-√10<2 즉, 5-√10의 정수 부분 a=12<√5<3에서 4<2+√5<5이므로 2+√5의 정수 부분은 4, 소수 부분 $b=(2+\sqrt{5})-4=\sqrt{5}-2$ ∴ $a-b=1-(\sqrt{5}-2)=3-\sqrt{5}$

P. 25~28 단원 마무리

1 ② ⑤ $\sqrt{35}$ m 3 (4) 4 (2) 7 11 **5 4**, **5** 6 5 8 4a+2b9 (2) 10 ② **11** ② **12** ① **14** ③ **13** ③ **15** ④ **16** ② 17 $-1-\sqrt{5}$, $2+\sqrt{2}$ **18** ②, ⑤ **19** ⑤ 22 $2+\sqrt{3}$ 20 ②, ⑤ 21 ③ 23 0. 과정은 풀이 참조 24 4. 과정은 풀이 참조 25 31. 과정은 풀이 참조

26 $2-\sqrt{7}$, $2-\sqrt{6}$, $3-\sqrt{6}$, 1, $3-\sqrt{2}$, 과정은 풀이 참조

- ② (-5)²=25의 제곱근은 ±5의 2개이다.
 ⑤ 제곱근 6은 √6이고. 36의 양의 제곱근은 6이다.
- 2 정사각형 모양의 화단의 한 변의 길이를 xm라 하면 $x^2 = \frac{1}{2} \times 10 \times 7 = 35$ 이때 x > 0이므로 $x = \sqrt{35}$ 따라서 정사각형 모양의 화단의 한 변의 길이는 $\sqrt{35}$ m이다.
- **3** $\sqrt{81}$ =9의 음의 제곱근은 -3이므로 a=-3 제곱근 100은 $\sqrt{100}$ =10이므로 b=10 $(-7)^2$ =49의 양의 제곱근은 7이므로 c=7 $\therefore a+b+c=-3+10+7=14$
- 4 어떤 수가 제곱인 수일 때, 그 제곱근을 근호를 사용하지 않고 나타낼 수 있다.

$$8=2^3$$
, $0.1=\frac{1}{10}$, $1.69=1.3^2$, $\frac{160}{25}=\frac{32}{5}=\frac{2^5}{5}$,

$$1000 = 10^3, \frac{64}{121} = \left(\frac{8}{11}\right)^2$$

이때 제곱인 수는 1.69, $\frac{64}{121}$ 이므로 근호를 사용하지 않고 제곱근을 나타낼 수 있는 것은 2개이다.

- 5 ① $\sqrt{a^2} = a$ ② $(-\sqrt{a})^2 = (\sqrt{a})^2 = a$ ③ $\sqrt{(-a)^2} = \sqrt{a^2} = a$ ④ $-\sqrt{a^2} = -a$
 - $(5) -\sqrt{(-a)^2} = -\sqrt{a^2} = -a$
- 6 ① $(\sqrt{2})^2 + (-\sqrt{5})^2 = 2 + 5 = 7$ ② $\sqrt{6^2} - \sqrt{(-4)^2} = 6 - 4 = 2$ ③ $\left(\sqrt{\frac{1}{2}}\right)^2 \times \sqrt{\left(-\frac{4}{3}\right)^2} = \frac{1}{2} \times \frac{4}{3} = \frac{2}{3}$ ④ $\left(\sqrt{\frac{3}{4}}\right)^2 \div \sqrt{(-3)^2} = \frac{3}{4} \div 3 = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$ ⑤ $(-\sqrt{7})^2 - (-\sqrt{2^2}) = 7 - (-2) = 7 + 2 = 9$
- **7** (주어진 식)= $\sqrt{81} \div 3 \frac{2}{3} \times \frac{3}{8} = 9 \div 3 \frac{1}{4}$ $= 3 \frac{1}{4} = \frac{11}{4}$
- 8 a>b, ab<0일 때, a>0, b<0이므로
 -a<0, 3a>0, 2b<0
 ∴ (주어진 식)=-(-a)+√(3a)²-√(2b)²
 =a+3a-(-2b)=4a+2b
- 9 -3<x<4일 때, -x-3<0, x-4<0이므로 (주어진 식)=-(-x-3)-{-(x-4)} =x+3+x-4=2x-1

- 10 $\sqrt{54x} = \sqrt{2 \times 3^3 \times x} = \sqrt{3^2 \times 6 \times x}$ 가 자연수가 되려면 소인수의 지수가 모두 짝수이어야 하므로 자연수 x는 $x=6 \times ($ 자연수)²의 꼴이어야 한다.
 - (1) $6 = 6 \times 1^2$
- ② $18 = 6 \times 3$
- ③ $24 = 6 \times 2^2$

- $96 = 6 \times 4^2$
- $5216=6\times6^2$
- 11 ① $5=\sqrt{25}$ 이므로 $\sqrt{25}>\sqrt{24}$ 에서 $5>\sqrt{24}$

②
$$\frac{5}{2} = \sqrt{\frac{25}{4}}$$
이고 $\sqrt{6} = \sqrt{\frac{24}{4}}$ 이므로 $\sqrt{\frac{24}{4}} < \sqrt{\frac{25}{4}}$ $\therefore \sqrt{6} < \frac{5}{2}$

- ③ $0.4 = \sqrt{0.16}$ 이므로 $\sqrt{0.16} < \sqrt{0.2}$ 에서 $0.4 < \sqrt{0.2}$ $\therefore -0.4 > -\sqrt{0.2}$
- $4 \frac{1}{3} = \sqrt{\frac{1}{9}} \circ | \text{므로} \sqrt{\frac{1}{9}} < \sqrt{\frac{1}{5}} \text{에서}$ $\frac{1}{3} < \sqrt{\frac{1}{5}} \qquad \therefore -\frac{1}{3} > -\sqrt{\frac{1}{5}}$
- ⑤ $\frac{3}{5} = \sqrt{\frac{9}{25}} = \sqrt{\frac{18}{50}}, \sqrt{\frac{3}{10}} = \sqrt{\frac{15}{50}}$ 이므로 $\sqrt{\frac{18}{50}} > \sqrt{\frac{15}{50}}$ 에서 $\frac{3}{5} > \sqrt{\frac{3}{10}}$
- 12 (음수)<0<(양수)이고 $\frac{1}{2} = \sqrt{\frac{1}{4}}$, $2 = \sqrt{4}$ 이므로 주어진 수를 작은 것부터 차례로 나열하면 $-\sqrt{7}$, $-\sqrt{2}$, $-\sqrt{\frac{1}{3}}$, 0, $\frac{1}{2}$, $\sqrt{3}$, 2 따라서 다섯 번째에 오는 수는 $\frac{1}{2}$ 이다.
- √5<x<√35 에서 √5<√x²<√35 이므로
 5<x²<35
 이때 x는 자연수이므로
 x²=9, 16, 25
 따라서 자연수 x의 값은 3, 4, 5이므로 구하는 합은
 3+4+5=12
- **14** $\sqrt{0.01} = 0.1 = \frac{1}{10}$ \Rightarrow 유리수 $0.4\dot{5} = \frac{41}{90}$ \Rightarrow 유리수 $\pi 1, \frac{\sqrt{2}}{3}, \frac{3}{\sqrt{5}}$ \Rightarrow 무리수
- 15 20 이하의 자연수 x 중 \sqrt{x} 가 유리수가 되도록 하는 x의 값 은 1^2 , 2^2 , 3^2 , 4^2 , 즉 1, 4, 9, 16의 4개이다. 따라서 \sqrt{x} 가 무리수가 되도록 하는 x의 개수는 20-4=16(개)
- BP=BD=√2이므로 점 P에 대응하는 수는 -2-√2이다.
 참고 한 변의 길이가 1인 정사각형의 대각선의 길이는 넓이가 2인 정사각형의 한 변의 길이와 같으므로 √2이다.

- 17 $\square ABCD = 3 \times 3 4 \times \left(\frac{1}{2} \times 2 \times 1\right) = 5$ 이므로 $\overline{AP} = \overline{AD} = \sqrt{5}$ 따라서 점 P에 대응하는 수는 $-1 \sqrt{5}$ $\square BEFG = 2 \times 2 4 \times \left(\frac{1}{2} \times 1 \times 1\right) = 2$ 이므로 $\overline{EQ} = \overline{EF} = \sqrt{2}$ 따라서 점 Q에 대응하는 수는 $2 + \sqrt{2}$
- 18 ② 무한소수 중 순환소수는 유리수이고, 순환하지 않는 무 한소수는 무리수이다.
 - ⑤ 서로 다른 두 실수 사이에는 무수히 많은 무리수가 있다.
- 19 ⑤ √3+2=1.732+2=3.732이므로 √3+2는 √10보다 큰 수이다.
- **20** ① $3 (\sqrt{3} + 1) = 2 \sqrt{3} > 0$ $\therefore 3 > \sqrt{3} + 1$ ② $1 (3 \sqrt{2}) = -2 + \sqrt{2} < 0$ $\therefore 1 < 3 \sqrt{2}$ ③ $(\sqrt{3} + 2) (\sqrt{2} + 2) = \sqrt{3} \sqrt{2} > 0$ $\therefore \sqrt{3} + 2 > \sqrt{2} + 2$ ④ $(\sqrt{5} 3) (\sqrt{7} 3) = \sqrt{5} \sqrt{7} < 0$ $\therefore \sqrt{5} 3 < \sqrt{7} 3$
 - ⑤ $\sqrt{5}>2$ 이므로 양변에서 $\sqrt{10}$ 을 빼면 $-\sqrt{10}+\sqrt{5}>2-\sqrt{10}$
- 21 9<√90<10이므로 7<√90−2<8 따라서 √90−2에 대응하는 점이 있는 곳은 ③이다.
- 22 $3<\sqrt{11}<4$ 이므로 $-4<-\sqrt{11}<-3$ 에서 $3<7-\sqrt{11}<4$ 즉, $7-\sqrt{11}$ 의 정수 부분 a=3 이때 $4+\sqrt{a}=4+\sqrt{3}$ 이고, $1<\sqrt{3}<2$ 에서 $5<4+\sqrt{3}<6$ 이므로 $4+\sqrt{3}$ 의 정수 부분은 5, 소수 부분 $b=(4+\sqrt{3})-5=\sqrt{3}-1$ $\therefore a+b=3+(\sqrt{3}-1)=2+\sqrt{3}$
- 23 0 < a < 1일 때, $\frac{1}{a} > 1$ 이므로 $a < \frac{1}{a}$ 따라서 $a + \frac{1}{a} > 0$, $a \frac{1}{a} < 0$, 2a > 0이므로 ··· (i) (주어진 식)= $\left(a + \frac{1}{a}\right) \left\{-\left(a \frac{1}{a}\right)\right\} 2a$ $= a + \frac{1}{a} + a \frac{1}{a} 2a = 0$ ··· (ii)

채점 기준	배점
${\rm (i)}\ a+\frac{1}{a},a-\frac{1}{a},2a$ 의 부호 판단하기	40 %
(ii) 주어진 식 간단히 하기	60%

24 $\sqrt{\frac{60}{a}} = \sqrt{\frac{2^2 \times 3 \times 5}{a}}$ 가 정수가 되려면 소인수의 지수가 모두 짝수이어야 하므로

 $a{=}3{ imes}5$ 또는 $a{=}2^2{ imes}3{ imes}5$ 이어야 한다. \cdots (i)

따라서 가장 작은 자연수 $a=3\times5=15$... (ii)

 $\sqrt{60-b}$ 가 정수가 되려면 60-b는 0 또는 60보다 작은 제 3 곱수이어야 하므로

60-b=0, 1², ···, 7²이어야 한다. ··· (iii)

따라서 가장 작은 자연수 $b=60-7^2=11$... (iv)

a-b=15-11=4 ... (v)

채점 기준	배점
(i) 자연수 a 에 대한 조건 설명하기	20 %
(ii) <i>a</i> 의 값 구하기	20 %
(iii) 60- <i>b</i> 에 대한 조건 설명하기	30 %
(iv) <i>b</i> 의 값 구하기	20 %
(v) a-b의 값 구하기	10 %

25 7≤√3x+5<12에서 √49≤√3x+5<√144이므로 49≤3x+5<144 44≤3x<139

$$\therefore \frac{44}{3} \left(= 14\frac{2}{3} \right) \le x < \frac{139}{3} \left(= 46\frac{1}{3} \right)$$
 ... (i)

따라서 자연수 x의 최댓값 M=46, 최솟값 m=15 ··· (ii)

M - m = 46 - 15 = 31 ... (iii)

채점 기준	배점
(i) x 의 값의 범위 구하기	40 %
(ii) <i>M</i> , <i>m</i> 의 값 구하기	40 %
(iii) <i>M - m</i> 의 값 구하기	20 %

26 주어진 수 중 음수는 $2-\sqrt{7}$, $2-\sqrt{6}$ $(2-\sqrt{7})-(2-\sqrt{6})=-\sqrt{7}+\sqrt{6}<0$ $\therefore 2-\sqrt{7}<2-\sqrt{6}$ \cdots (i) 양수는 1, $3-\sqrt{6}$, $3-\sqrt{2}$ $1-(3-\sqrt{6})=-2+\sqrt{6}>0$ $\therefore 1>3-\sqrt{6}$ $(3-\sqrt{6})-(3-\sqrt{2})=-\sqrt{6}+\sqrt{2}<0$ $\therefore 3-\sqrt{6}<3-\sqrt{2}$ $1-(3-\sqrt{2})=-2+\sqrt{2}<0$ $\therefore 1<3-\sqrt{2}$ \cdots (ii) 따라서 $2-\sqrt{7}<2-\sqrt{6}<3-\sqrt{6}<1<3-\sqrt{2}$ 이므로 수직선 위의 점에 대응시킬 때 왼쪽에 있는 것부터 차례로 나열하면 $2-\sqrt{7}$, $2-\sqrt{6}$, $3-\sqrt{6}$, 1, $3-\sqrt{2}$ \cdots (iii)

채점 기준	배점
(i) 음수끼리 대소 비교하기	30 %
(ii) 양수끼리 대소 비교하기	
(iii) 왼쪽에 있는 것부터 차례로 나열하기	40 %

근호를 포함한 식의 계산 (1)

P. 32

필수 예제 1 (1) $\sqrt{21}$ (2) 6 (3) $\sqrt{30}$ (4) $-\sqrt{2}$

$$(2)\sqrt{2}\sqrt{18} = \sqrt{2\times18} = \sqrt{36} = 6$$

(3)
$$\sqrt{2}\sqrt{3}\sqrt{5} = \sqrt{2 \times 3 \times 5} = \sqrt{30}$$

$$(4) - \sqrt{3} \times \sqrt{\frac{5}{3}} \times \sqrt{\frac{2}{5}} = -\sqrt{3 \times \frac{5}{3} \times \frac{2}{5}} = -\sqrt{2}$$

 $\frac{2}{3}$ 1 (1) 10 (2) $\sqrt{55}$ (3) $6\sqrt{14}$ (4) $6\sqrt{6}$

$$(1)\sqrt{2}\sqrt{5}\sqrt{10} = \sqrt{2\times5\times10} = \sqrt{100} = 10$$

(2)
$$(-\sqrt{11}) \times (-\sqrt{5}) = \sqrt{11 \times 5} = \sqrt{55}$$

(4)
$$2\sqrt{15} \times 3\sqrt{\frac{2}{5}} = 6\sqrt{15 \times \frac{2}{5}} = 6\sqrt{6}$$

필수 예제 2 (1) $\sqrt{3}$ (2) 3 (3) $-\sqrt{\frac{2}{3}}$ (4) $\frac{1}{5}$

(2)
$$\sqrt{18} \div \sqrt{2} = \frac{\sqrt{18}}{\sqrt{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3$$

(3)
$$\sqrt{14} \div (-\sqrt{21}) = -\frac{\sqrt{14}}{\sqrt{21}} = -\sqrt{\frac{14}{21}} = -\sqrt{\frac{2}{3}}$$

$$(4)\frac{\sqrt{3}}{\sqrt{5}} \div \sqrt{15} = \frac{\sqrt{3}}{\sqrt{5}} \times \frac{1}{\sqrt{15}} = \sqrt{\frac{3}{5}} \times \frac{1}{15} = \sqrt{\frac{1}{25}} = \frac{1}{5}$$

유제 2 (1) $\sqrt{11}$ (2) 2 (3) $2\sqrt{6}$ (4) $\sqrt{10}$

(2)
$$\sqrt{20} \div \sqrt{5} = \frac{\sqrt{20}}{\sqrt{5}} = \sqrt{\frac{20}{5}} = \sqrt{4} = 2$$

(3)
$$4\sqrt{42} \div 2\sqrt{7} = \frac{4\sqrt{42}}{2\sqrt{7}} = 2\sqrt{\frac{42}{7}} = 2\sqrt{6}$$

(4)
$$\sqrt{15} \div \sqrt{5} \div \sqrt{\frac{3}{10}} = \sqrt{15} \times \frac{1}{\sqrt{5}} \times \sqrt{\frac{10}{3}}$$
$$= \sqrt{15} \times \frac{1}{5} \times \frac{10}{3} = \sqrt{10}$$

P. 33

개념 확인 2^2 , 2^2 , 2, $2\sqrt{6}$

필수 예제 3 (1) $3\sqrt{3}$ (2) $-5\sqrt{2}$ (3) $\frac{\sqrt{3}}{7}$ (4) $\frac{\sqrt{10}}{9}$

(1)
$$\sqrt{27} = \sqrt{3^2 \times 3} = \sqrt{3^2} \sqrt{3} = 3\sqrt{3}$$

(2)
$$-\sqrt{50} = -\sqrt{5^2 \times 2} = -\sqrt{5^2}\sqrt{2} = -5\sqrt{2}$$

(3)
$$\sqrt{\frac{3}{49}} = \sqrt{\frac{3}{7^2}} = \frac{\sqrt{3}}{\sqrt{7^2}} = \frac{\sqrt{3}}{7}$$

(4)
$$\sqrt{\frac{10}{81}} = \sqrt{\frac{10}{9^2}} = \frac{\sqrt{10}}{\sqrt{0^2}} = \frac{\sqrt{10}}{9}$$

유제 3 (1) $3\sqrt{6}$ (2) $4\sqrt{5}$ (3) $-\frac{\sqrt{5}}{6}$ (4) $\frac{\sqrt{3}}{10}$

(1)
$$\sqrt{54} = \sqrt{3^2 \times 6} = \sqrt{3^2} \sqrt{6} = 3\sqrt{6}$$

(2)
$$\sqrt{80} = \sqrt{4^2 \times 5} = \sqrt{4^2} \sqrt{5} = 4\sqrt{5}$$

(3)
$$-\sqrt{\frac{5}{36}} = -\sqrt{\frac{5}{6^2}} = -\frac{\sqrt{5}}{\sqrt{6^2}} = -\frac{\sqrt{5}}{6}$$

$$(4)\sqrt{0.03} = \sqrt{\frac{3}{100}} = \sqrt{\frac{3}{10^2}} = \frac{\sqrt{3}}{\sqrt{10^2}} = \frac{\sqrt{3}}{10}$$

필수 에제 4 (1) $\sqrt{20}$ (2) $\sqrt{\frac{2}{25}}$ (3) $\sqrt{\frac{8}{3}}$ (4) $-\sqrt{24}$

(1)
$$2\sqrt{5} = \sqrt{2^2}\sqrt{5} = \sqrt{2^2 \times 5} = \sqrt{20}$$

$$(2) \frac{\sqrt{2}}{5} = \frac{\sqrt{2}}{\sqrt{5^2}} = \sqrt{\frac{2}{5^2}} = \sqrt{\frac{2}{25}}$$

(3)
$$2\sqrt{\frac{2}{3}} = \sqrt{2^2}\sqrt{\frac{2}{3}} = \sqrt{2^2 \times \frac{2}{3}} = \sqrt{\frac{8}{3}}$$

(4)
$$-2\sqrt{6} = -\sqrt{2^2}\sqrt{6} = -\sqrt{2^2 \times 6} = -\sqrt{24}$$

유제 4 (1) $\sqrt{18}$ (2) $\sqrt{\frac{3}{4}}$ (3) $\sqrt{\frac{18}{5}}$ (4) $-\sqrt{160}$

(1)
$$3\sqrt{2} = \sqrt{3^2}\sqrt{2} = \sqrt{3^2 \times 2} = \sqrt{18}$$

$$(2) \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{\sqrt{2^2}} = \sqrt{\frac{3}{2^2}} = \sqrt{\frac{3}{4}}$$

(3)
$$3\sqrt{\frac{2}{5}} = \sqrt{3^2}\sqrt{\frac{2}{5}} = \sqrt{3^2 \times \frac{2}{5}} = \sqrt{\frac{18}{5}}$$

$$(4) - 4\sqrt{10} = -\sqrt{4^2}\sqrt{10} = -\sqrt{4^2 \times 10} = -\sqrt{160}$$

유제 5 $4\sqrt{3}$, $3\sqrt{5}$, $2\sqrt{11}$

$$3\sqrt{5} = \sqrt{3^2 \times 5} = \sqrt{45}$$
, $2\sqrt{11} = \sqrt{2^2 \times 11} = \sqrt{44}$, $4\sqrt{3} = \sqrt{4^2 \times 3} = \sqrt{48}$ 이므로 큰 것부터 차례로 나열하면 $\sqrt{48}$, $\sqrt{45}$, $\sqrt{44}$, 즉 $4\sqrt{3}$, $3\sqrt{5}$, $2\sqrt{11}$ 이다.

P. 34

개념 확인 $(1)\sqrt{3},\sqrt{3},\frac{\sqrt{3}}{3}$ $(2)\sqrt{3},\sqrt{3},\frac{2\sqrt{3}}{3}$ $(3)\sqrt{3},\sqrt{3},\frac{\sqrt{6}}{3}$ $(4)\sqrt{3},\sqrt{3},\frac{\sqrt{6}}{6}$

필수 예제 5 (1) $\frac{\sqrt{5}}{5}$ (2) $\frac{\sqrt{21}}{7}$ (3) $\frac{\sqrt{3}}{9}$ (4) $-\frac{2\sqrt{6}}{3}$

$$(1) \frac{1}{\sqrt{5}} = \frac{1 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{5}}{5}$$

(2)
$$\frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{3} \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{21}}{7}$$

$$(3) \frac{\sqrt{5}}{3\sqrt{15}} = \frac{1}{3\sqrt{3}} = \frac{1 \times \sqrt{3}}{3\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{9}$$

$$(4) - \frac{4}{\sqrt{6}} = -\frac{4 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = -\frac{4\sqrt{6}}{6} = -\frac{2\sqrt{6}}{3}$$

유제 6 (1) $\frac{\sqrt{55}}{11}$ (2) $\sqrt{3}$ (3) $\frac{\sqrt{6}}{2}$ (4) $\sqrt{6}$ (5) $\frac{5\sqrt{6}}{6}$ (6) $\frac{\sqrt{6}}{2}$

$$(1) \frac{\sqrt{5}}{\sqrt{11}} = \frac{\sqrt{5} \times \sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{55}}{11}$$

$$(2) \frac{3}{\sqrt{3}} = \frac{3 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{3\sqrt{3}}{3} = \sqrt{3}$$

$$(3) \frac{6}{\sqrt{24}} = \frac{6}{2\sqrt{6}} = \frac{3}{\sqrt{6}} = \frac{3 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2}$$

$$(4) \ \frac{4\sqrt{3}}{\sqrt{8}} = \frac{4\sqrt{3}}{2\sqrt{2}} = \frac{2\sqrt{3}}{\sqrt{2}} = \frac{2\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{6}}{2} = \sqrt{6}$$

$$(5) \frac{5}{\sqrt{2}\sqrt{3}} = \frac{5}{\sqrt{6}} = \frac{5 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{5\sqrt{6}}{6}$$

(6)
$$\frac{\sqrt{21}}{\sqrt{2}\sqrt{7}} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$$

P. 35 한 번 더 연습

1 (1)
$$\sqrt{10}$$
 (2) 30

(3)
$$-\sqrt{42}$$
 (4) 2

2 (1)
$$\sqrt{5}$$
 (2) $2\sqrt{2}$ (3) $-\sqrt{3}$ (4) -7

(3)
$$-\sqrt{3}$$
 (4) -7

3 (1)
$$2\sqrt{2}$$
 (2) $3\sqrt{5}$ (3) $3\sqrt{2}$ (4) $2\sqrt{5}$ (5) $5\sqrt{3}$ (6) $4\sqrt{2}$

(7)
$$\sqrt{28}$$
 (8) $\sqrt{12}$ (9) $\sqrt{50}$ (10) $\sqrt{80}$ (11) $\sqrt{108}$ (12) $\sqrt{128}$

4 (1)
$$\frac{\sqrt{7}}{7}$$
 (2) $\frac{\sqrt{10}}{2}$ (3) $\frac{\sqrt{3}}{3}$ (4) $\frac{\sqrt{15}}{6}$

$$(4) \frac{\sqrt{1}}{6}$$

$$(4) \frac{\sqrt{15}}{6}$$

(5)
$$\frac{2\sqrt{21}}{3}$$
 (6) $\frac{\sqrt{42}}{6}$

5 (1)
$$12\sqrt{3}$$
 (2) $-2\sqrt{2}$ (3) $2\sqrt{3}$ (4) $\frac{9\sqrt{14}}{7}$

$$(4) \frac{9\sqrt{14}}{5}$$

(5)
$$-\frac{10\sqrt{3}}{3}$$

$$1 \qquad (4) \sqrt{\frac{6}{5}} \times \sqrt{\frac{10}{3}} = \sqrt{\frac{6}{5} \times \frac{10}{3}} = \sqrt{4} = 2$$

2 (1)
$$\frac{\sqrt{15}}{\sqrt{3}} = \sqrt{\frac{15}{3}} = \sqrt{5}$$

(2)
$$4\sqrt{6} \div 2\sqrt{3} = \frac{4\sqrt{6}}{2\sqrt{3}} = 2\sqrt{\frac{6}{3}} = 2\sqrt{2}$$

$$(3)\sqrt{39} \div (-\sqrt{13}) = -\frac{\sqrt{39}}{\sqrt{13}} = -\sqrt{\frac{39}{13}} = -\sqrt{3}$$

(4)
$$-\sqrt{21} \div \sqrt{\frac{3}{7}} = -\sqrt{21 \times \frac{7}{3}} = -\sqrt{49} = -7$$

4 (1)
$$\frac{1}{\sqrt{7}} = \frac{1 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{7}}{7}$$

(2)
$$\frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{5} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{10}}{2}$$

(3)
$$\frac{4}{\sqrt{48}} = \frac{4}{4\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$(4) \frac{\sqrt{5}}{\sqrt{12}} = \frac{\sqrt{5}}{2\sqrt{3}} = \frac{\sqrt{5} \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{15}}{6}$$

$$\text{(5)}\ \frac{14}{\sqrt{3}\sqrt{7}} = \frac{14}{\sqrt{21}} = \frac{14 \times \sqrt{21}}{\sqrt{21} \times \sqrt{21}} = \frac{14\sqrt{21}}{21} = \frac{2\sqrt{21}}{3}$$

(6)
$$\frac{\sqrt{35}}{\sqrt{5}\sqrt{6}} = \frac{\sqrt{7}}{\sqrt{6}} = \frac{\sqrt{7} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{\sqrt{42}}{6}$$

5 (1) (주어진 식)=
$$6\sqrt{12}=6\times2\sqrt{3}=12\sqrt{3}$$

(2) (주어진 식)=
$$-\frac{8\sqrt{5}}{2\sqrt{10}}$$
= $-\frac{4}{\sqrt{2}}$ = $-\frac{4\sqrt{2}}{2}$ = $-2\sqrt{2}$

(3) (주어진 식)=
$$\frac{6\sqrt{5}}{\sqrt{15}}=\frac{6}{\sqrt{3}}=\frac{6\sqrt{3}}{3}=2\sqrt{3}$$

(4) (주어진 식)=
$$3\sqrt{\frac{6}{5}\times\frac{15}{7}}$$
= $3\sqrt{\frac{18}{7}}$ = $\frac{3\times3\sqrt{2}}{\sqrt{7}}$ = $\frac{9\sqrt{14}}{7}$

(5) (주어진 식)=
$$-10\sqrt{\frac{1}{10}\times\frac{2}{3}\times5}=-10\sqrt{\frac{1}{3}}$$

$$=-\frac{10}{\sqrt{3}}=-\frac{10\sqrt{3}}{3}$$

(6) (주어진 식)=
$$\sqrt{2} \times \frac{1}{\sqrt{13}} \times \sqrt{78} = \sqrt{2 \times \frac{1}{13} \times 78}$$
$$=\sqrt{12} = 2\sqrt{3}$$

P. 36 개념 누르기 한판

1
$$\neg$$
, \vdash , \vdash **2** (1) $3\sqrt{10}$ (2) $\frac{\sqrt{14}}{2}$

3 (1) 2 (2)
$$\frac{1}{5}$$
 4 ③ **5** 12 **6** $\sqrt{6}$ cm

$$6 \sqrt{6} \text{ cm}$$

2 (1)
$$3\sqrt{15} \times \sqrt{2} \div \sqrt{3} = 3\sqrt{15} \times \sqrt{2} \times \frac{1}{\sqrt{3}}$$

$$=3\sqrt{15\times2\times\frac{1}{3}}=3\sqrt{10}$$

$$(2)\sqrt{\frac{5}{2}} \div \sqrt{\frac{10}{3}} \times \sqrt{\frac{14}{3}} = \sqrt{\frac{5}{2}} \times \sqrt{\frac{3}{10}} \times \sqrt{\frac{14}{3}} = \sqrt{\frac{7}{2}} = \frac{\sqrt{14}}{2}$$
$$= \sqrt{\frac{5}{2}} \times \frac{3}{10} \times \frac{14}{3} = \sqrt{\frac{7}{2}} = \frac{\sqrt{14}}{2}$$

3 (1)
$$\sqrt{60} = \sqrt{2^2 \times 15} = 2\sqrt{15}$$
에서 $2\sqrt{15} = a\sqrt{15}$ 이므로 $a = 2$

(2)
$$\sqrt{0.12} = \sqrt{\frac{12}{100}} = \sqrt{\frac{2^2 \times 3}{10^2}} = \frac{2\sqrt{3}}{10} = \frac{\sqrt{3}}{5}$$
에서 $\frac{\sqrt{3}}{5} = a\sqrt{3}$ 이므로 $a = \frac{1}{5}$

4
$$\sqrt{6} = \sqrt{2 \times 3} = \sqrt{2}\sqrt{3} = ab$$

5
$$\frac{10\sqrt{2}}{\sqrt{5}} = \frac{10\sqrt{10}}{5} = 2\sqrt{10}$$
에서 $2\sqrt{10} = a\sqrt{10}$ 이므로 $a = 2$

$$\frac{1}{\sqrt{18}} = \frac{1}{3\sqrt{2}} = \frac{\sqrt{2}}{6}$$
에서 $\frac{\sqrt{2}}{6} = b\sqrt{2}$ 이므로 $b = \frac{1}{6}$

$$\therefore \frac{a}{b} = 2 \div \frac{1}{6} = 2 \times 6 = 12$$

6 직육면체의 높이를 xcm라 하면

(직육면체의 부피)

=(밑면의 가로의 길이)×(밑면의 세로의 길이)×(높이) 이므로

$$\sqrt{21} \times 3\sqrt{2} \times x = 18\sqrt{7}$$

$$\therefore x = \frac{18\sqrt{7}}{\sqrt{21} \times 3\sqrt{2}} = \frac{6}{\sqrt{6}} = \frac{6\sqrt{6}}{6} = \sqrt{6}$$

따라서 직육면체의 높이는 $\sqrt{6}$ cm이다

P. 37

개념 확인 (1) **1.030** (2) 3

필수 예제 6 (1) 100, 10, 10, 14,14

(2) 100, 10, 10, 44,72

(3) 100, 10, 10, 0,1414

(4) 20, 20, 4,472, 0,4472

유제 7 (1) 70.71 (2) 22.36 (3) 0.7071 (4) 0.02236

$$(1)\sqrt{5000} = \sqrt{50 \times 100} = 10\sqrt{50}$$

$$=10\times7.071=70.71$$

(2)
$$\sqrt{500} = \sqrt{5 \times 100} = 10\sqrt{5}$$

$$=10 \times 2.236 = 22.36$$

(3)
$$\sqrt{0.5} = \sqrt{\frac{50}{100}} = \frac{\sqrt{50}}{10} = \frac{7.071}{10} = 0.7071$$

(4)
$$\sqrt{0.0005} = \sqrt{\frac{5}{10000}} = \frac{\sqrt{5}}{100} = \frac{2.236}{100} = 0.02236$$

P. 38 개념 누르기 한판

1 (1) 3.317 (2) 3.633 (3) 3.240

2 3009

3 口, 日

4 (1) 48,37 (2) 0.4593 **5** (1) 77,46 (2) 1,291

 $\sqrt{5.84} = 2.417$ 이므로 a = 2.417

 $\sqrt{5.92}$ =2.433이므로 b=5.92

 $\therefore 1000a + 100b = 1000 \times 2.417 + 100 \times 5.92$

=2417+592=3009

 $\sqrt{350} = \sqrt{3.5 \times 100} = 10\sqrt{3.5}$

 $\sqrt{35000} = \sqrt{3.5 \times 10000} = 100\sqrt{3.5}$

$$\Box$$
 $\sqrt{0.35} = \sqrt{\frac{35}{100}} = \frac{\sqrt{35}}{10} = \frac{5.916}{10} = 0.5916$

 $= \sqrt{3500000} = \sqrt{3.5 \times 1000000} = 1000\sqrt{3.5}$

$$\Box.\sqrt{0.00035} = \sqrt{\frac{3.5}{10000}} = \frac{\sqrt{3.5}}{100}$$

 $\exists \sqrt{350000} = \sqrt{35 \times 10000} = 100\sqrt{35}$

 $=100 \times 5.916 = 591.6$

따라서 그 값을 구할 수 있는 것은 ㄷ. ㅂ이다.

4 (1) $\sqrt{2340} = \sqrt{23.4 \times 100} = 10\sqrt{23.4}$

(2) $\sqrt{0.211} = \sqrt{\frac{21.1}{100}} = \frac{\sqrt{21.1}}{10} = \frac{4.593}{10} = 0.4593$

5 (1) $\sqrt{6000} = \sqrt{2^2 \times 3 \times 5 \times 10^2}$

 $=20\sqrt{15}$

 $=20 \times 3.873 = 77.46$

(2) $\frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{15}}{3} = \frac{3.873}{3} = 1.291$

○2 근호를 포함한 식의 계산 (2)

P. 39

개념 확인 2. 3. 5(또는 3. 2. 5)

필수 예제 1 (1) $10\sqrt{3}$ (2) $\sqrt{5} + 4\sqrt{6}$

(1) (주어진 식)= $(2+8)\sqrt{3}=10\sqrt{3}$

(2) (주어진 식)= $(2-1)\sqrt{5}+(-1+5)\sqrt{6}=\sqrt{5}+4\sqrt{6}$

 $\frac{1}{2}$ (1) $-3\sqrt{7}$ (2) $2\sqrt{2}$ (3) $2\sqrt{3}-2\sqrt{2}$ (4) $\frac{\sqrt{2}}{c}$

(1) (주어짓 실)= $(-1-2)\sqrt{7}=-3\sqrt{7}$

(2) (주어진 식)= $(3+1-2)\sqrt{2}=2\sqrt{2}$

(3) (주어진 식)= $(5-3)\sqrt{3}+(2-4)\sqrt{2}=2\sqrt{3}-2\sqrt{2}$

(4) (주어진 식) = $\left(\frac{2}{2} - \frac{1}{2}\right)\sqrt{2} = \left(\frac{4}{6} - \frac{3}{6}\right)\sqrt{2} = \frac{\sqrt{2}}{6}$

필수 예제 2 (1) 0 (2) √2

(1) (주어진 식)= $\sqrt{3}+2\sqrt{3}-3\sqrt{3}=0$

(2) (주어진 식)= $2\sqrt{2}-\sqrt{2}=\sqrt{2}$

유제 2 (1) $6\sqrt{2}$ (2) $3\sqrt{7} + 2\sqrt{2}$ (3) $\frac{5\sqrt{6}}{\alpha}$ (4) 0

(1) (주어짓 식)= $3\sqrt{2}-2\sqrt{2}+5\sqrt{2}=6\sqrt{2}$

(2) (주어짓 심)= $\sqrt{7}+2\sqrt{7}+4\sqrt{2}-2\sqrt{2}=3\sqrt{7}+2\sqrt{2}$

(3) (주어진 식) $=\frac{2\sqrt{6}}{3}-\frac{\sqrt{2}}{3\sqrt{3}}=\frac{6\sqrt{6}}{9}-\frac{\sqrt{6}}{9}=\frac{5\sqrt{6}}{9}$

(4) (주어진 식)= $3\sqrt{5}-\sqrt{5}-2\sqrt{5}=$

필수 예제 3 (1) $4\sqrt{2}$ (2) $2\sqrt{2}$ (3) $2\sqrt{3}+6$ (4) $-\frac{\sqrt{6}}{6}$

(1) (주어진 식)= $\sqrt{6}\sqrt{3} + \frac{\sqrt{10}}{\sqrt{5}} = \sqrt{18} + \sqrt{2}$ $=3\sqrt{2}+\sqrt{2}=4\sqrt{2}$

(2) (주어진 식)= $2\sqrt{2} \times 2 - \frac{2\sqrt{6}}{\sqrt{3}} = 4\sqrt{2} - 2\sqrt{2} = 2\sqrt{2}$

(3) (주어진 식)= $\sqrt{2}\sqrt{6}+\sqrt{2}\times3\sqrt{2}=\sqrt{12}+6=2\sqrt{3}+6$

(4) (주어진 식)= $\left(\frac{5}{\sqrt{2}} - \sqrt{12}\right) \times \frac{1}{\sqrt{2}}$ $=\frac{5}{\sqrt{3}\sqrt{2}}-\frac{\sqrt{12}}{\sqrt{2}}=\frac{5}{\sqrt{6}}-\sqrt{6}$ $=\frac{5\sqrt{6}}{6}-\sqrt{6}=-\frac{\sqrt{6}}{6}$

유제 3 (1) $3+\sqrt{3}$ (2) $\frac{\sqrt{5}}{3}$ (3) $3\sqrt{3}-2\sqrt{2}$ (4) $2\sqrt{2}+\sqrt{3}$

(1) (주어진 식)= $\frac{\sqrt{12}\sqrt{3}}{2}+\frac{6}{2\sqrt{3}}=\frac{\sqrt{36}}{2}+\frac{3}{\sqrt{3}}$ $=\frac{6}{2}+\frac{3\sqrt{3}}{3}=3+\sqrt{3}$

(2) (주어진 식)
$$=\frac{\sqrt{15}}{\sqrt{3}} - \sqrt{10} \times \frac{\sqrt{2}}{3} = \sqrt{5} - \frac{\sqrt{20}}{3}$$
 $=\sqrt{5} - \frac{2\sqrt{5}}{3} = \frac{\sqrt{5}}{3}$

(3) (주어진 식)=
$$5\sqrt{3}-2\sqrt{2}-\sqrt{2}\sqrt{6}=5\sqrt{3}-2\sqrt{2}-\sqrt{12}$$

= $5\sqrt{3}-2\sqrt{2}-2\sqrt{3}=3\sqrt{3}-2\sqrt{2}$

(4) (주어진 식)=
$$3\sqrt{2}-\frac{\sqrt{2}\sqrt{6}}{2}+2\sqrt{3}-\frac{\sqrt{3}\sqrt{6}}{3}$$
$$=3\sqrt{2}-\frac{\sqrt{12}}{2}+2\sqrt{3}-\frac{\sqrt{18}}{3}$$
$$=3\sqrt{2}-\sqrt{3}+2\sqrt{3}-\sqrt{2}=2\sqrt{2}+\sqrt{3}$$

필수 에제 4 (1)
$$\frac{2\sqrt{3}+3}{3}$$
 (2) $\frac{\sqrt{10}-\sqrt{15}}{5}$ (3) $\frac{2\sqrt{3}+\sqrt{2}}{2}$ (4) $\frac{4-\sqrt{6}}{2}$

$$(1) \frac{2+\sqrt{3}}{\sqrt{3}} = \frac{(2+\sqrt{3})\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{2\sqrt{3}+3}{3}$$

$$(2) \frac{\sqrt{2} - \sqrt{3}}{\sqrt{5}} = \frac{(\sqrt{2} - \sqrt{3})\sqrt{5}}{\sqrt{5}\sqrt{5}} = \frac{\sqrt{10} - \sqrt{15}}{5}$$

(3)
$$\frac{\sqrt{6}+1}{\sqrt{2}} = \frac{(\sqrt{6}+1)\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{\sqrt{12}+\sqrt{2}}{2} = \frac{2\sqrt{3}+\sqrt{2}}{2}$$

$$\text{(4) } \frac{\sqrt{8} - \sqrt{3}}{\sqrt{2}} = \frac{(\sqrt{8} - \sqrt{3})\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{\sqrt{16} - \sqrt{6}}{2} = \frac{4 - \sqrt{6}}{2}$$

유제 4 $\frac{\sqrt{3}}{2}$

(주어진 식)
$$= \frac{(\sqrt{6} - \sqrt{3})\sqrt{2}}{\sqrt{2}\sqrt{2}} - \frac{(\sqrt{8} - 3)\sqrt{6}}{\sqrt{6}\sqrt{6}}$$

$$= \frac{\sqrt{12} - \sqrt{6}}{2} - \frac{\sqrt{48} - 3\sqrt{6}}{6}$$

$$= \frac{2\sqrt{3} - \sqrt{6}}{2} - \frac{4\sqrt{3} - 3\sqrt{6}}{6}$$

$$= \sqrt{3} - \frac{\sqrt{6}}{2} - \frac{2}{3}\sqrt{3} + \frac{\sqrt{6}}{2} = \frac{\sqrt{3}}{3}$$

P. 41 한 번 더 연습

- 1 (1) $-6\sqrt{2}$ (2) $-\sqrt{5}$ (3) $\frac{\sqrt{3}}{4}$ (4) $-8\sqrt{11}+8\sqrt{6}$
- **2** (1) $9\sqrt{3}$ (2) $2\sqrt{2}$ (3) $3\sqrt{2}$ (4) $-\sqrt{3}+\sqrt{6}$
- 3 (1) $\sqrt{2}$ (2) $-\frac{2\sqrt{3}}{3}$
- **4** (1) $3\sqrt{5}$ (2) 6 (3) 5 (4) $\sqrt{6}+2$
- **5** (1) $6+2\sqrt{2}$ (2) $4\sqrt{5}+2\sqrt{7}$ (3) $\frac{11\sqrt{30}}{30}$
- **6** (1) $\frac{2\sqrt{10}-4\sqrt{5}}{5}$ (2) $\frac{2\sqrt{3}-6}{3}$ (3) $\frac{2\sqrt{3}-3\sqrt{2}}{18}$
- **1** (3) (주어진 식)= $\frac{3\sqrt{3}}{4} \frac{6\sqrt{3}}{4} + \frac{4\sqrt{3}}{4} = \frac{\sqrt{3}}{4}$
- 2 (1) (주어진 식)= $5\sqrt{3}+4\sqrt{3}=9\sqrt{3}$ (2) (주어진 식)= $6\sqrt{2}-4\sqrt{2}=2\sqrt{2}$

(3) (주어진 식)=
$$6\sqrt{2}+2\sqrt{2}-5\sqrt{2}=3\sqrt{2}$$

(4) (주어진 식)=
$$\sqrt{3}-5\sqrt{6}-2\sqrt{3}+6\sqrt{6}=-\sqrt{3}+\sqrt{6}$$

3 (1)
$$\frac{\sqrt{18}}{6} + \frac{\sqrt{6}}{\sqrt{12}} = \frac{3\sqrt{2}}{6} + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$$

$$(2) \frac{6}{\sqrt{27}} - \frac{4}{\sqrt{3}} = \frac{6}{3\sqrt{3}} - \frac{4}{\sqrt{3}} = \frac{6\sqrt{3}}{9} - \frac{4\sqrt{3}}{3}$$
$$= \frac{2\sqrt{3}}{3} - \frac{4\sqrt{3}}{3} = -\frac{2\sqrt{3}}{3}$$

4 (1) (주어진 식)=
$$\sqrt{2}\sqrt{10} + \frac{5}{\sqrt{5}} = 2\sqrt{5} + \sqrt{5} = 3\sqrt{5}$$

(2) (주어진 식)=
$$4\sqrt{2} \times \sqrt{2} - \frac{\sqrt{28}}{\sqrt{7}}$$
$$= 4 \times 2 - \sqrt{4} = 8 - 2 = 6$$

(4) (주어진 식)=
$$(3\sqrt{2}+\sqrt{12})\times\frac{1}{\sqrt{3}}=\frac{3\sqrt{2}}{\sqrt{3}}+\sqrt{4}$$

= $\sqrt{6}+2$

(2) (주어진 식)=
$$5\sqrt{5}+(2\sqrt{21}-\sqrt{15})\times\frac{1}{\sqrt{3}}$$

= $5\sqrt{5}+2\sqrt{7}-\sqrt{5}=4\sqrt{5}+2\sqrt{7}$

(3) (주어진 식)=
$$1+\frac{\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{5}}-1$$
$$=\frac{\sqrt{30}}{6}+\frac{\sqrt{30}}{5}=\frac{11\sqrt{30}}{30}$$

6 (1)
$$\frac{2\sqrt{2}-4}{\sqrt{5}} = \frac{(2\sqrt{2}-4)\sqrt{5}}{\sqrt{5}\sqrt{5}} = \frac{2\sqrt{10}-4\sqrt{5}}{5}$$

$$(2) \frac{2(1-\sqrt{3})}{\sqrt{3}} = \frac{2(1-\sqrt{3})\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{2\sqrt{3}-6}{3}$$

$$(3) \frac{\sqrt{2} - \sqrt{3}}{3\sqrt{6}} = \frac{(\sqrt{2} - \sqrt{3})\sqrt{6}}{3\sqrt{6}\sqrt{6}} = \frac{\sqrt{12} - \sqrt{18}}{18} = \frac{2\sqrt{3} - 3\sqrt{2}}{18}$$

P. 42 개념 누르기 한판

1 (1)
$$3\sqrt{7}$$
 (2) $3\sqrt{3}$

$$a = -1, b = 1$$
 (2) 2

3 -5 **4**
$$7\sqrt{2}-13$$
 5 $\frac{5}{3}$

$$\frac{5}{3}$$

6 (1)
$$(5+5\sqrt{3})$$
 cm² (2) $(3\sqrt{2}+6)$ cm²

(3)
$$(3+3\sqrt{3})$$
 cm²

1 (1)
$$\sqrt{112} + \sqrt{28} - 3\sqrt{7} = 4\sqrt{7} + 2\sqrt{7} - 3\sqrt{7} = 3\sqrt{7}$$

(2)
$$2\sqrt{48} - 3\sqrt{12} + \sqrt{3} = 8\sqrt{3} - 6\sqrt{3} + \sqrt{3} = 3\sqrt{3}$$

2 (1) (科性) =
$$3\sqrt{3} - 4\sqrt{2} - 2\sqrt{3} + 3\sqrt{2}$$

 $= \sqrt{3} - \sqrt{2} = -\sqrt{2} + \sqrt{3}$
 $\therefore a = -1, b = 1$
(2) (科性) = $\frac{13\sqrt{10}}{10} + \frac{\sqrt{10}}{2} + \frac{\sqrt{10}}{5}$
 $= \frac{13\sqrt{10}}{10} + \frac{5\sqrt{10}}{10} + \frac{2\sqrt{10}}{10}$
 $= \frac{20\sqrt{10}}{10} = 2\sqrt{10}$
 $\therefore a = 2$

3
$$\sqrt{2}a - \sqrt{3}b = \sqrt{2}(\sqrt{3} - \sqrt{2}) - \sqrt{3}(\sqrt{3} + \sqrt{2})$$

= $\sqrt{6} - 2 - 3 - \sqrt{6} = -5$

4 (주어진 식)=
$$6\sqrt{2}-3\sqrt{16}+\frac{4\sqrt{3}-2\sqrt{6}}{2\sqrt{6}}$$

= $6\sqrt{2}-12+\frac{(4\sqrt{3}-2\sqrt{6})\sqrt{6}}{2\sqrt{6}\sqrt{6}}$
= $6\sqrt{2}-12+\frac{4\sqrt{18}-12}{12}$
= $6\sqrt{2}-12+\frac{12\sqrt{2}-12}{12}$
= $6\sqrt{2}-12+\sqrt{2}-1$
= $7\sqrt{2}-13$

5 (주어진 식)=
$$(3a-2)+(5-3a)\sqrt{7}$$
이므로 $5-3a=0$ $\therefore a=\frac{5}{3}$ 참고 a, b 가 유리수이고 \sqrt{m} 이 무리수일 때, $a+b\sqrt{m}$ 이 유리수가 될 조건 $\Rightarrow b=0$

6 (1) (넓이)
$$= \frac{1}{2} \times (\sqrt{5} + \sqrt{15}) \times 2\sqrt{5} = (\sqrt{5} + \sqrt{15}) \times \sqrt{5}$$

 $= 5 + \sqrt{75} = 5 + 5\sqrt{3} \text{ (cm}^2)$
(2) (넓이) $= (\sqrt{3} + \sqrt{6}) \times \sqrt{6} = \sqrt{18} + 6 = 3\sqrt{2} + 6 \text{ (cm}^2)$
(3) (넓이) $= \frac{1}{2} \times (\sqrt{6} + \sqrt{18}) \times \sqrt{6}$
 $= \frac{1}{2} \times (\sqrt{6} + 3\sqrt{2}) \times \sqrt{6} = \frac{1}{2} \times (6 + 3\sqrt{12})$
 $= \frac{1}{2} \times (6 + 6\sqrt{3}) = 3 + 3\sqrt{3} \text{ (cm}^2)$

P. 43

필수 예제 5 (1)
$$7+4\sqrt{3}$$
 (2) $5-2\sqrt{6}$ (3) 2 (4) $16-\sqrt{3}$

(1)
$$(2+\sqrt{3})^2 = 2^2 + 2 \times 2 \times \sqrt{3} + (\sqrt{3})^2$$

 $= 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3}$
(2) $(\sqrt{3} - \sqrt{2})^2 = (\sqrt{3})^2 - 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{2})^2$
 $= 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6}$
(3) $(3+\sqrt{7})(3-\sqrt{7}) = 3^2 - (\sqrt{7})^2 = 9 - 7 = 2$

$$\begin{array}{l} \text{(4)} \ (3\sqrt{3}-2)(2\sqrt{3}+1) = 6(\sqrt{3})^2 + (3-4)\sqrt{3}-2 \\ = 18 - \sqrt{3} - 2 = 16 - \sqrt{3} \end{array}$$

$$\begin{array}{lll} \text{RM} & 5 & (1) \ 9 - 6\sqrt{2} & (2) \ 3 & (3) \ - 23 - 3\sqrt{5} & (4) \ 17 + \sqrt{2} \\ & (1) \ (\sqrt{6} - \sqrt{3}\,)^2 = (\sqrt{6}\,)^2 - 2 \times \sqrt{6} \times \sqrt{3} + (\sqrt{3}\,)^2 \\ & = 6 - 6\sqrt{2} + 3 = 9 - 6\sqrt{2} \\ & (2) \ (2\sqrt{7} - 5) \ (2\sqrt{7} + 5) = (2\sqrt{7}\,)^2 - 5^2 = 28 - 25 = 3 \\ & (3) \ (\sqrt{5} + 4) \ (\sqrt{5} - 7) = (\sqrt{5}\,)^2 + (-7 + 4)\sqrt{5} - 28 \\ & = 5 - 3\sqrt{5} - 28 = -23 - 3\sqrt{5} \\ & (4) \ (5\sqrt{2} + 3) \ (2\sqrt{2} - 1) = 20 + (-5 + 6)\sqrt{2} - 3 \\ & = 17 + \sqrt{2} \end{array}$$

필수 예제 6 (1)
$$\sqrt{2}-1$$
 (2) $9+4\sqrt{5}$ (3) $\sqrt{6}+2$

(1)
$$\frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1$$
(2)
$$\frac{\sqrt{5}+2}{\sqrt{5}-2} = \frac{(\sqrt{5}+2)^2}{(\sqrt{5}-2)(\sqrt{5}+2)} = 9+4\sqrt{5}$$

$$(3) \frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{2}(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \sqrt{6} + 2$$

$$\frac{2}{3}$$
 $\frac{1}{3}$ $\frac{1}$

$$(1)\frac{7}{3+\sqrt{2}} = \frac{7(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})} = \frac{7(3-\sqrt{2})}{7} = 3-\sqrt{2}$$

$$(2)\,\frac{\sqrt{2}}{1-\sqrt{2}} = \frac{\sqrt{2}\,(1+\sqrt{2}\,)}{(1-\sqrt{2}\,)(1+\sqrt{2}\,)} = \frac{\sqrt{2}\,+2}{-1} = -\sqrt{2}\,-2$$

(3)
$$\frac{-\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{(-\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$$
$$= \frac{-(\sqrt{5}-\sqrt{3})^2}{2} = \frac{-8+2\sqrt{15}}{2}$$
$$= -4+\sqrt{15}$$

유제 7 4

$$x = \frac{1}{2+\sqrt{3}} = \frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})} = 2-\sqrt{3}$$

$$y = \frac{1}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})} = 2+\sqrt{3}$$

$$\therefore x+y=(2-\sqrt{3})+(2+\sqrt{3})=4$$

P. 44 개념 누르기 한판

2
$$a=2, b=11$$

3 (1)
$$3+\sqrt{3}$$
 (2) $3+2\sqrt{2}$ (3) 2 (4) $8\sqrt{3}$
4 (1) $2\sqrt{2}$ (2) 1 (3) 6 **5** 3

6 (1)
$$\frac{\sqrt{3}+1}{2}$$
 (2) $6+3\sqrt{3}$

$$(주어진 식) = (2 - 2\sqrt{2} + 1) - (4 - 3) = 2 - 2\sqrt{2}$$

2 (針也)=
$$3a+(15-2a)\sqrt{2}-20$$

= $(3a-20)+(15-2a)\sqrt{2}$

따라서 3a-20=-14, 15-2a=b이므로 a=2, b=11

- 참고 a,b,c,d는 유리수이고 \sqrt{m} 은 무리수일 때, $a+b\sqrt{m}=c+d\sqrt{m}$ 이면 a=c,b=d이다.
- **3** (1) (주어진 식) = $\frac{6(3+\sqrt{3})}{(3-\sqrt{3})(3+\sqrt{3})}$ = $\frac{6(3+\sqrt{3})}{6}$ = $3+\sqrt{3}$
 - (2) (주어진 식) $= \frac{(2+\sqrt{2})^2}{(2-\sqrt{2})(2+\sqrt{2})}$ $= \frac{6+4\sqrt{2}}{2} = 3+2\sqrt{2}$
 - (3) (주어진 식) = $\frac{7(4-\sqrt{2})}{(4+\sqrt{2})(4-\sqrt{2})} + \frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}$ $= \frac{7(4-\sqrt{2})}{14} + \frac{\sqrt{2}}{2} = \frac{4-\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 2$
 - (4) (주어진 식) = $\frac{(2+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})} \frac{(2-\sqrt{3})^2}{(2+\sqrt{3})(2-\sqrt{3})}$ $= (2+\sqrt{3})^2 (2-\sqrt{3})^2$ $= (7+4\sqrt{3}) (7-4\sqrt{3}) = 8\sqrt{3}$
- 4 $x = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1$

$$y = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \sqrt{2} + 1$$

- (1) $x+y=(\sqrt{2}-1)+(\sqrt{2}+1)=2\sqrt{2}$
- (2) $xy = (\sqrt{2} 1)(\sqrt{2} + 1) = 2 1 = 1$
- (3) $\frac{y}{x} + \frac{x}{y} = \frac{x^2 + y^2}{xy} = \frac{(x+y)^2 2xy}{xy}$ $= \frac{(2\sqrt{2})^2 2 \times 1}{1} = 6$
- 5 $x=\sqrt{5}-1$ 에서 $x+1=\sqrt{5}$ 이므로 이 식의 양변을 제곱하면 $(x+1)^2=(\sqrt{5})^2, x^2+2x+1=5, x^2+2x=4$ $\therefore x^2+2x-1=4-1=3$

다른 풀이

 $x=\sqrt{5}-1$ 을 x^2+2x-1 에 대입하면 $x^2+2x-1=(\sqrt{5}-1)^2+2(\sqrt{5}-1)-1$ $=6-2\sqrt{5}+2\sqrt{5}-2-1=3$

6 (1) 1<√3<2이므로
√3의 정수 부분 a=1, 소수 부분 b=√3-1

∴ $\frac{a}{b} = \frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{\sqrt{3}+1}{2}$ (2) 1<√3<2이므로 -2<-√3<-1에서
3<5-√3<4
따라서 5-√3의 정수 부분 a=3,

소수 부분
$$b = (5 - \sqrt{3}) - 3 = 2 - \sqrt{3}$$

$$\therefore \frac{a}{b} = \frac{3}{2 - \sqrt{3}} = \frac{3(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = 6 + 3\sqrt{3}$$

P. 45~48 단원 마무리

- **25** $\frac{1}{10}$, 과정은 풀이 참조
- **26** 과정은 풀이 참조 (1) 8√3 (2) 4
- 27 18√3 cm, 과정은 풀이 참조
- 28 27. 과정은 풀이 참조

1 3
$$-\sqrt{\frac{6}{5}}\sqrt{\frac{35}{6}} = -\sqrt{\frac{6}{5}} \times \frac{35}{6} = -\sqrt{7}$$

- 2 ĀB=√3, BC=√7이므로 □ABCD=√3×√7=√21
- 3 $4\sqrt{3} = \sqrt{4^2 \times 3} = \sqrt{48}$ 이므로 a = 48 $\sqrt{250} = \sqrt{5^2 \times 10} = 5\sqrt{10}$ 이므로 b = 5, c = 10 $\therefore a - b - c = 48 - 5 - 10 = 33$
- 4 $\sqrt{240} = \sqrt{4^2 \times 3 \times 5} = 4\sqrt{3}\sqrt{5} = 4ab$
- 5 $x\sqrt{\frac{27y}{x}} + y\sqrt{\frac{3x}{y}} = \sqrt{x^2 \times \frac{27y}{x}} + \sqrt{y^2 \times \frac{3x}{y}}$ = $\sqrt{27xy} + \sqrt{3xy}$ = $\sqrt{27 \times 36} + \sqrt{3 \times 36}$ = $18\sqrt{3} + 6\sqrt{3}$ = $24\sqrt{3}$
- 7 (좌번) = $\frac{\sqrt{125}}{3} \times \left(-\frac{1}{\sqrt{60}}\right) \times \frac{6\sqrt{3}}{\sqrt{10}}$ = $\frac{5\sqrt{5}}{3} \times \left(-\frac{1}{2\sqrt{15}}\right) \times \frac{6\sqrt{3}}{\sqrt{10}}$ = $-\frac{5}{\sqrt{10}} = -\frac{5\sqrt{10}}{10}$ = $-\frac{\sqrt{10}}{2}$ $\therefore a = -\frac{1}{2}$

8 ①
$$\sqrt{12300} = \sqrt{1,23 \times 10000} = 100\sqrt{1,23}$$

= $100 \times 1,109 = 110,9$

②
$$\sqrt{1230} = \sqrt{12.3 \times 100} = 10\sqrt{12.3}$$

= $10 \times 3.507 = 35.07$

$$3\sqrt{123} = \sqrt{1.23 \times 100} = 10\sqrt{1.23}$$

= $10 \times 1.109 = 11.09$

(5)
$$\sqrt{0.0123} = \sqrt{\frac{1.23}{100}} = \frac{\sqrt{1.23}}{10}$$

= $\frac{1.109}{10} = 0.1109$

9 164.3=1.643×100이므로
$$\sqrt{a} = \sqrt{2.7} \times 100 = \sqrt{2.7 \times 100^2} = \sqrt{27000}$$

 $\therefore a = 27000$

10 ④ 예를 들어
$$a=2$$
, $b=3$ 일 때, $\sqrt{2}+\sqrt{3}$ 은 더 이상 간단히 할 수 없고 $\sqrt{2+3}=\sqrt{5}$ 이므로 $\sqrt{2}+\sqrt{3}\neq\sqrt{2+3}$ 이다.

11 (좌변)=
$$4\sqrt{6}-6\sqrt{7}-3\sqrt{6}+\sqrt{7}=\sqrt{6}-5\sqrt{7}$$
이므로 $a=1, b=-5$ $\therefore a+b=1+(-5)=-4$

12 ①
$$(1+2\sqrt{5})-(3+\sqrt{5})=-2+\sqrt{5}$$

= $-\sqrt{4}+\sqrt{5}>0$
 $\therefore 1+2\sqrt{5}>3+\sqrt{5}$

②
$$(\sqrt{5} + \sqrt{2}) - 3\sqrt{2} = \sqrt{5} - 2\sqrt{2}$$

$$= \sqrt{5} - \sqrt{8} < 0$$

$$\therefore \sqrt{5} + \sqrt{2} < 3\sqrt{2}$$

③
$$(\sqrt{2}-1)-(2-\sqrt{2})=2\sqrt{2}-3=\sqrt{8}-\sqrt{9}<0$$

 $\therefore \sqrt{2}-1<2-\sqrt{2}$

$$\textcircled{4} \ 2 + \sqrt{5} \underbrace{\square}_{2, \cdots} \ \sqrt{10} - 1 \ \Rightarrow \ \underbrace{2 + \sqrt{5}}_{4, \cdots} \ \boxed{\geq} \ \underline{\sqrt{10} - 1}_{2, \cdots}$$

⑤
$$(3\sqrt{2}-1)-(2\sqrt{3}-1)=3\sqrt{2}-2\sqrt{3}$$

= $\sqrt{18}-\sqrt{12}>0$
∴ $3\sqrt{2}-1>2\sqrt{3}-1$

13
$$\sqrt{3}-2=\sqrt{3}-\sqrt{4}<0$$
, $2\sqrt{3}-4=\sqrt{12}-\sqrt{16}<0$ 이旦로 $\sqrt{(\sqrt{3}-2)^2}-\sqrt{(2\sqrt{3}-4)^2}=-(\sqrt{3}-2)-\{-(2\sqrt{3}-4)\}$ $=-\sqrt{3}+2+2\sqrt{3}-4$ $=\sqrt{3}-2$

14
$$\Box ABCD = 4 \times 4 - 4 \times \left(\frac{1}{2} \times 2 \times 2\right) = 8$$
이므로 $\Box ABCD$ 의 한 변의 길이는 $\sqrt{8} = 2\sqrt{2}$ 이다. 따라서 점 P의 좌표는 $P(-1+2\sqrt{2})$, 점 Q의 좌표는 $Q(-1-2\sqrt{2})$ 이므로 $\overline{PQ} = (-1+2\sqrt{2}) - (-1-2\sqrt{2}) = 4\sqrt{2}$

15
$$\sqrt{7}x + \sqrt{2}y = \sqrt{7}(3\sqrt{2} + \sqrt{7}) + \sqrt{2}(2\sqrt{7} - 5\sqrt{2})$$

= $3\sqrt{14} + 7 + 2\sqrt{14} - 10$
= $5\sqrt{14} - 3$

16 (겉넓이)=
$$2\{(\sqrt{3}+\sqrt{6})\times\sqrt{3}+(\sqrt{3}+\sqrt{6})\times\sqrt{6}+\sqrt{6}\times\sqrt{3}\}$$

= $2(3+3\sqrt{2}+3\sqrt{2}+6+3\sqrt{2})$
= $2(9+9\sqrt{2})$
= $18+18\sqrt{2}$

17 (좌변) =
$$\frac{(\sqrt{8}-6)\sqrt{3}}{\sqrt{3}\sqrt{3}} - \frac{(\sqrt{3}-\sqrt{24})\sqrt{2}}{\sqrt{2}\sqrt{2}}$$

$$= \frac{\sqrt{24}-6\sqrt{3}}{3} - \frac{\sqrt{6}-\sqrt{48}}{2}$$

$$= \frac{2\sqrt{6}-6\sqrt{3}}{3} - \frac{\sqrt{6}-4\sqrt{3}}{2}$$

$$= \frac{2\sqrt{6}}{3} - 2\sqrt{3} - \frac{\sqrt{6}}{2} + 2\sqrt{3}$$

$$= \frac{4\sqrt{6}}{6} - \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{6}$$
따라서 $a = \frac{1}{6}$, $b = 6$ 이므로
$$ab = \frac{1}{6} \times 6 = 1$$

18 ① (좌변)=
$$3\sqrt{2}-\frac{5}{\sqrt{2}}=3\sqrt{2}-\frac{5\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$$

② (좌변)= $\sqrt{12}+\sqrt{16}=2\sqrt{3}+4$
③ (좌변)= $\frac{\sqrt{18}}{3}-\frac{6}{\sqrt{2}}=\sqrt{2}-3\sqrt{2}=-2\sqrt{2}$
④ (좌변)= $6\sqrt{6}+6\sqrt{2}-\sqrt{7}$
⑤ (좌변)= $(\sqrt{18}+\sqrt{3})\times\sqrt{2}+5\sqrt{6}$
= $\sqrt{36}+\sqrt{6}+5\sqrt{6}=6+6\sqrt{6}$

19 (주어진 식)=
$$\{\sqrt{3}+(\sqrt{2}-1)\}\{\sqrt{3}-(\sqrt{2}-1)\}$$

= $(\sqrt{3})^2-(\sqrt{2}-1)^2$
= $3-(3-2\sqrt{2})=2\sqrt{2}$

20 (주어진 식)=
$$15+(-a-6)\sqrt{5}+2a$$

= $(15+2a)+(-a-6)\sqrt{5}$
이므로 $-a-6=0$ $\therefore a=-6$

21 ①
$$\frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}$$
② $\frac{2}{\sqrt{12}} = \frac{1}{2\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
③ $\frac{\sqrt{2}}{3\sqrt{10}} = \frac{1}{3\sqrt{5}} = \frac{\sqrt{5}}{15}$
④ $\frac{3}{\sqrt{2} - 1} = \frac{3(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = 3\sqrt{2} + 3$
⑤ $\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} - \sqrt{3})^2}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}$

$$= \frac{8 - 2\sqrt{15}}{2} = 4 - \sqrt{15}$$

22 (주어진 식)

$$\begin{split} &= \frac{\sqrt{1} - \sqrt{2}}{(\sqrt{1} + \sqrt{2})(\sqrt{1} - \sqrt{2})} + \frac{\sqrt{2} - \sqrt{3}}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})} \\ &+ \dots + \frac{\sqrt{99} - \sqrt{100}}{(\sqrt{99} + \sqrt{100})(\sqrt{99} - \sqrt{100})} \\ &= -(\sqrt{1} - \sqrt{2}) - (\sqrt{2} - \sqrt{3}) - \dots - (\sqrt{99} - \sqrt{100}) \\ &= -\sqrt{1} + \sqrt{2} - \sqrt{2} + \sqrt{3} - \dots - \sqrt{99} + \sqrt{100} \\ &= -\sqrt{1} + \sqrt{100} \\ &= -1 + 10 = 9 \end{split}$$

23
$$x = \frac{1}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})} = 2+\sqrt{3}$$
이므로 $x-2=\sqrt{3}$ 이 식의 양변을 제곱하면 $(x-2)^2 = (\sqrt{3})^2$ $x^2-4x+4=3$ $x^2-4x=-1$ $\therefore x^2-4x+3=-1+3=2$

24 $2 < \sqrt{7} < 3$ 에서 $-3 < -\sqrt{7} < -2$ 이므로 $1 < 4 - \sqrt{7} < 2$ 따라서 $4 - \sqrt{7}$ 의 정수 부분 a = 1, 소수 부분 $b = (4 - \sqrt{7}) - 1 = 3 - \sqrt{7}$ $\therefore \frac{1}{2a - b} = \frac{1}{2 \times 1 - (3 - \sqrt{7})} = \frac{1}{\sqrt{7} - 1}$ $= \frac{\sqrt{7} + 1}{(\sqrt{7} - 1)(\sqrt{7} + 1)}$ $= \frac{\sqrt{7} + 1}{c}$

25
$$\sqrt{0.004} = \sqrt{\frac{4}{1000}} = \sqrt{\frac{1}{250}} = \frac{1}{\sqrt{250}}$$

$$= \frac{1}{5\sqrt{10}} = \frac{\sqrt{10}}{50}$$

$$= \frac{1}{50}\sqrt{10}$$

에서 $\sqrt{0.004}$ 는 $\sqrt{10}$ 의 $\frac{1}{50}$ 배이므로

$$a = \frac{1}{50}$$
 ... (i)

 $\sqrt{150}$ = $5\sqrt{6}$ 에서 $\sqrt{150}$ 은 $\sqrt{6}$ 의 5배이므로

$$b=5$$
 ··· (ii)

$$\therefore ab = \frac{1}{50} \times 5 = \frac{1}{10} \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

26 (1) (삼각형의 넓이) $=\frac{1}{2} \times \sqrt{32} \times \sqrt{24}$

$$= \frac{1}{2} \times 4\sqrt{2} \times 2\sqrt{6}$$

$$= 8\sqrt{3} \qquad \cdots (i)$$

(2) 직사각형의 가로의 길이를 x라 하면

(직사각형의 넓이)=
$$x \times \sqrt{12} = 2\sqrt{3}x$$
 ··· (ii)

삼각형의 넓이와 직사각형의 넓이가 서로 같으므로

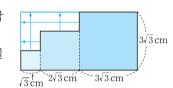
$$8\sqrt{3} = 2\sqrt{3}x$$

$$x = \frac{8\sqrt{3}}{2\sqrt{3}} = 4$$

따라서 직사각형의 가로의 길이는 4이다.

채점 기준	배점
) 삼각형의 넓이 구하기	40 %
i) 직사각형의 넓이를 식으로 나타내기	30 %
i) 진사간형이 가루이 긱이 구하기	30 %

27 세 정사각형의 넓이가 각
각 3cm², 12cm²,
27cm²이므로 한 변의 길
이는 각각



... (iii)

 $\sqrt{3}$ cm.

 $\sqrt{12} = 2\sqrt{3}$ (cm),

$$\sqrt{27} = 3\sqrt{3} \text{ (cm)}$$
 ... (i)

·. (둘레의 길이)

$$=2(\sqrt{3}+2\sqrt{3}+3\sqrt{3})+2\times3\sqrt{3}$$
 ... (ii)

$$=12\sqrt{3}+6\sqrt{3}$$

$$=18\sqrt{3}$$
 (cm) ··· (iii)

채점 기준	배점
(i) 세 정사각형의 한 변의 길이 각각 구하기	30 %
(ii) 둘레의 길이 구하는 식 세우기	40 %
(iii) 둘레의 길이 구하기	30 %

28 $x+y=(\sqrt{6}+\sqrt{3})+(\sqrt{6}-\sqrt{3})=2\sqrt{6}$ $xy=(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})=6-3=3$... (i)

:.
$$x^2 + y^2 + 3xy = (x+y)^2 + xy$$
 ... (ii)
= $(2\sqrt{6})^2 + 3$

채점 기준	배점
(i) x+y, xy의 값 구하기	40 %
(ii) x^2+y^2+3xy 를 변형하기	30 %
(iii) $x^2 + y^2 + 3xy$ 의 값 구하기	30 %

○ T 다항식의 인수분해

P. 53

개념 확인 (1) x^2+xy (2) x (3) x(x+y)

필수 예제 1 나, 다, ㅂ

필수 예제 2 (1) m(a-b) (2) -4a(a+2)

(3) a(2b-y+3z) (4) $2b(2a^2+4a-3b)$

유제 1 (1) 2a(x+3y) (2) $5y^2(x-2)$ (3) $a(b^2-a+3b)$ (4) 3xy(3x-y+2)

유제 2 (1) (x+y)(a+b) (2) (x-y)(a-b) (3) (2a-b)(x+2y) (4) (2a-b)(x-2y)

=(2a-b)(x-2y)

(2) (주어진 식)=a(x-y)-b(x-y)=(x-y)(a-b)(4) (주어진 식)=x(2a-b)-2y(2a-b)

P. 54 개념 누르기 한판

5 2 3 5

4 (1) a(2b-c) (2) 3x(x-5y) (3) -2a(a+3b-2) (4) (x-1)(y-3)

5 x-3 **6**

- (5) $2x^2y$ 와 -4xy의 공통인 인수는 2xy이다.
- 2 $xy(x+y)(x-y) = xy(x^2-y^2)$
- (3)(a+1)+a=2a+1은 a+1을 인수로 갖지 않는다.
- 6 3y(x-2)-5(2-x)=3y(x-2)+5(x-2) =(x-2)(3y+5) 따라서 a=2, b=5이므로 a+b=2+5=7

○2 여러 가지 인수분해 공식

P. 55

개념 확인 (1) 1 (2) 4

필수 에제 1 (1) $(x+5)^2$ (2) $(2x-1)^2$ (3) $\left(a+\frac{1}{4}\right)^2$ (4) $-3(x-3)^2$

(3) (주어진 식)= $a^2+2\times a \times \frac{1}{4} + \left(\frac{1}{4}\right)^2 = \left(a+\frac{1}{4}\right)^2$

(4) (주어진 식)= $-3(x^2-6x+9)=-3(x-3)^2$

유제 1 (1) $(x+8)^2$ (2) $(3x-1)^2$ (3) $\left(a+\frac{b}{2}\right)^2$ (4) $a(x-6y)^2$

(3) (주어진 식)= $a^2+2\times a\times \frac{b}{2}+\left(\frac{b}{2}\right)^2=\left(a+\frac{b}{2}\right)^2$

(4) (주어진 식)= $a(x^2-12xy+36y^2)=a(x-6y)^2$

필수 예제 2 (1) $\frac{1}{64}$ (2) 16 (3) ± 12

(1) $x^2 + \frac{1}{4}x + \square = x^2 + 2 \times x \times \frac{1}{8} + \square$ 이므로

 $\Box = \left(\frac{1}{8}\right)^2 = \frac{1}{64}$

다른 풀이

 $x^2 + \frac{1}{4}x + \square$ 가 완전제곱식이 되려면

 $\Box = \left(\frac{1}{4} \times \frac{1}{2}\right)^2 = \left(\frac{1}{8}\right)^2 = \frac{1}{64}$

참고 x^2+ax+b 가 완전제곱식이 되려면 $b=\left(\frac{a}{2}\right)^2$ 이다.

(2) $x^2 - 8x + \square = x^2 - 2 \times x \times 4 + \square$ 이므로 $\square = 4^2 = 16$

(3) $a^2 + \Box ab + 36b^2 = a^2 + \Box ab + (\pm 6b)^2$ 이므로 $\Box = 2 \times (\pm 6) = \pm 12$

유제 2 (1) $\frac{1}{9}$ (2) 9 (3) ± 10

(1) $x^2 + \frac{2}{3}x + \square = x^2 + 2 \times x \times \frac{1}{3} + \square$ 이므로

 $\square = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

다른 풀이

 $x^2 + \frac{2}{3}x + \square$ 가 완전제곱식이 되려면

 $\Box = \left(\frac{2}{3} \times \frac{1}{2}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

(2) $4x^2+12x+\square=(2x)^2+2\times 2x\times 3+\square$ 이므로 $\square=3^2=9$

(3) $25x^2+ \square x+1=(5x)^2+ \square x+(\pm 1)^2$ 이므로 $\square=2\times5\times(\pm 1)=\pm 10$

유제 3 -42, 42

$$9x^2 + Axy + 49y^2 = (3x)^2 + Axy + (\pm 7y)^2$$
이므로 $A = 2 \times 3 \times (\pm 7) = \pm 42$

P. 56

개념 확인 (1) 2, 2 (2) 3, 3, 3

필수 예제 3 (1)
$$(x+1)(x-1)$$
 (2) $(3a+b)(3a-b)$ (3) $\left(2x+\frac{y}{5}\right)\left(2x-\frac{y}{5}\right)$ (4) $(4y+x)(4y-x)$

$$(3) \ 4x^2 - \frac{y^2}{25} = (2x)^2 - \left(\frac{y}{5}\right)^2 = \left(2x + \frac{y}{5}\right)\left(2x - \frac{y}{5}\right)$$

$$(4)$$
 $-x^2+16y^2=16y^2-x^2=(4y)^2-x^2=(4y+x)(4y-x)$

유제 4 (1)
$$(x+7)(x-7)$$
 (2) $(2x+5y)(2x-5y)$

(3)
$$\left(x + \frac{1}{x}\right)\left(x - \frac{1}{x}\right)$$
 (4) $(9b + a)(9b - a)$

(3)
$$x^2 - \frac{1}{x^2} = x^2 - \left(\frac{1}{x}\right)^2 = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x}\right)$$

(4)
$$-a^2 + 81b^2 = 81b^2 - a^2 = (9b)^2 - a^2$$

= $(9b+a)(9b-a)$

유제 5 (1)
$$2(x+2)(x-2)$$
 (2) $3(x+5y)(x-5y)$ (3) $b(a+1)(a-1)$ (4) $6a(x+2y)(x-2y)$

(1)
$$2x^2-8=2(x^2-4)=2(x+2)(x-2)$$

(2)
$$3x^2 - 75y^2 = 3(x^2 - 25y^2) = 3(x+5y)(x-5y)$$

(3)
$$a^2b-b=b(a^2-1)=b(a+1)(a-1)$$

(4)
$$6ax^2 - 24ay^2 = 6a(x^2 - 4y^2) = 6a(x + 2y)(x - 2y)$$

필수 예제 4 $(x^2+y^2)(x+y)(x-y)$

$$x^{4}-y^{4}=(x^{2})^{2}-(y^{2})^{2}=(x^{2}+y^{2})(x^{2}-y^{2})$$
$$=(x^{2}+y^{2})(x+y)(x-y)$$

유제 6 ㄴ, ㄷ, ㅂ

$$a^{4}-16b^{4}=(a^{2})^{2}-(4b^{2})^{2}=(a^{2}+4b^{2})(a^{2}-4b^{2})$$
$$=(a^{2}+4b^{2})(a+2b)(a-2b)$$

P. 57 한 번 더 연습

1 (1) 3, 3, 3 (2)
$$\frac{3}{2}$$
, $\frac{3}{2}$, $\frac{3}{2}$ (3) 3, 3, 5, 5, 3, 5

2 (1)
$$(x+4)^2$$
 (2) $(a-7b)^2$ (3) $(2x-5)^2$ (4) $\left(x-\frac{1}{2}\right)^2$ (5) $2a(x-3y)^2$ (6) $\left(x-\frac{1}{x}\right)^2$

3 (1) 36 (2) 81 (3)
$$\pm \frac{5}{2}$$
 (4) ± 16

4 (1)
$$(x+6)(x-6)$$
 (2) $7(x+2y)(x-2y)$ (3) $(\frac{1}{2}x+y)(\frac{1}{2}x-y)$ (4) $(\frac{1}{4}b+3a)(\frac{1}{4}b-3a)$

5 (1)
$$a(a+1)(a-1)$$
 (2) $x^2(x+3)(x-3)$

(3)
$$ab(a+2)(a-2)$$
 (4) $4x(x+4y)(x-4y)$

2 (5)
$$2ax^2 - 12axy + 18ay^2 = 2a(x^2 - 6xy + 9y^2)$$

= $2a(x - 3y)^2$

$$(6) \ x^2 - 2 + \frac{1}{x^2} = x^2 - 2 \times x \times \frac{1}{x} + \left(\frac{1}{x}\right)^2 = \left(x - \frac{1}{x}\right)^2$$

참고 식의 변형을 이용하여 다음과 같이 인수분해할 수도 있지 .

만, 중학교 과정에서는
$$\left(x-\frac{1}{x}\right)^2$$
으로 인수분해한다.
$$x^2-2+\frac{1}{x^2}=\left(x^2+2+\frac{1}{x^2}\right)-4=\left(x+\frac{1}{x}\right)^2-2^2$$

$$= \left(x + \frac{1}{x} + 2\right)\left(x + \frac{1}{x} - 2\right)$$

3 (1)
$$x^2+12x+□=x^2+2 \times x \times 6+□$$
이므로 □=6²=36

(2)
$$x^2 - 18x + \square = x^2 - 2 \times x \times 9 + \square$$
이므로 $\square = 9^2 = 81$

(3)
$$a^2 + \square a + \frac{25}{16} = a^2 + \square a + \left(\pm \frac{5}{4}\right)^2$$
이므로
$$\square = 2 \times \left(\pm \frac{5}{4}\right) = \pm \frac{5}{2}$$

(4)
$$4x^2 + \Box xy + 16y^2 = (2x)^2 + \Box xy + (\pm 4y)^2$$
이므로 $\Box = 2 \times 2 \times (\pm 4) = \pm 16$

4 (2)
$$7x^2 - 28y^2 = 7(x^2 - 4y^2) = 7(x + 2y)(x - 2y)$$

$$(4) -9a^2 + \frac{1}{16}b^2 = \frac{1}{16}b^2 - 9a^2 = \left(\frac{1}{4}b + 3a\right)\left(\frac{1}{4}b - 3a\right)$$

5 (1)
$$a^3 - a = a(a^2 - 1) = a(a + 1)(a - 1)$$

(2)
$$x^4 - 9x^2 = x^2(x^2 - 9) = x^2(x + 3)(x - 3)$$

(3)
$$a^3b - 4ab = ab(a^2 - 4) = ab(a + 2)(a - 2)$$

$$(4) 4x^3 - 64xy^2 = 4x(x^2 - 16y^2) = 4x(x + 4y)(x - 4y)$$

P. 58

개념 확인 2 3, 4, 3

곱이 3인 두 정수	두 정수의 합
-1, -3	-4
1, 3	4

$$x^2+4x+3=(x+1)(x+3)$$

필수 에제 5 (1)
$$(x+1)(x+2)$$
 (2) $(x-2)(x-4)$ (3) $(x+3y)(x-2y)$ (4) $(x+2y)(x-7y)$

(1) 곱이 2이고, 합이 3인 두 정수는 1과 2이므로
$$x^2+3x+2=(x+1)(x+2)$$

(2) 곱이 8이고, 합이
$$-6$$
인 두 정수는 -2 와 -4 이므로 $x^2-6x+8=(x-2)(x-4)$

- (3) 곱이 -6이고, 합이 1인 두 정수는 3과 -2이므로 $x^2 + xy - 6y^2 = (x+3y)(x-2y)$
- (4) 곱이 -14이고. 합이 -5인 두 정수는 2와 -7이므로 $x^2-5xy-14y^2=(x+2y)(x-7y)$
- $\frac{2}{3}$ (1) (x+2)(x+7)
- (2)(y-5)(y-7)
- (3)(x+8y)(x-3y)
- (4) (x+3y)(x-10y)

필수 예제 6 1

$$x^2+x-12=(x+4)(x-3)$$
이므로 $a=4, b=-3$ 또는 $a=-3, b=4$ $\therefore a+b=1$

유제 8 2x-8

$$x^2-8x-20=(x+2)(x-10)$$
이므로 (두 일차식의 합)= $(x+2)+(x-10)$ = $2x-8$

P. 59

개념 확인
$$3x^2+2x-5$$

$$x \longrightarrow \begin{array}{c} -1 \longrightarrow -3x \\ 3x \longrightarrow 5 \longrightarrow +) \boxed{5x} \end{array}$$

$$3x^2+2x-5=(x-1)(3x+5)$$

필수 예제 7 (1) (x+2)(2x+1) (2) (2x-1)(2x-3)

$$(2)(2x-1)(2x-3)$$

(3)
$$(x+3y)(3x-2y)$$
 (4) $(3x-2y)(4x+y)$

(1) $2x^2+5x+2=(x+2)(2x+1)$

$$\begin{array}{c|c}
x & 2 \to 4x \\
1 \to + \underline{)x} \\
5x
\end{array}$$

(2)
$$4x^2 - 8x + 3 = (2x - 1)(2x - 3)$$

 $2x - 1 \rightarrow -2x$
 $2x - 3 \rightarrow + \underline{) -6x}$

(3)
$$3x^2 + 7xy - 6y^2 = (x+3y)(3x-2y)$$

 $x \longrightarrow 3y \longrightarrow 9xy$
 $3x \longrightarrow -2y \longrightarrow +) -2xy \longrightarrow 7xy$

(4)
$$12x^2 - 5xy - 2y^2 = (3x - 2y)(4x + y)$$

 $3x - 2y - 8xy$
 $4x - 1y - 8xy$
 $y - 1y - 1y - 1y$

유제 9 (1)
$$(x+4)(2x+1)$$

(2)
$$(2x-1)(3x-2)$$

(3)
$$(x+1)(5x-3)$$

(4)
$$(3x-5y)(4x+y)$$

필수 예제 8 -7

$$2x^{2}-5xy-12y^{2}=(x-4y)(2x+3y)$$

$$x \longrightarrow -8xy$$

$$2x \longrightarrow 3y \rightarrow + \underbrace{3xy}_{-5xy}$$

따라서
$$A=-4$$
, $B=3$ 이므로 $A-B=-4-3=-7$

유제 10 4x-6

$$3x^{2}-10x+8=(x-2)(3x-4)$$

$$x -2 - 6x$$

$$3x -4 - 10x$$

P. 60 한 번 더 연습

- (2)(x-1)(x-5)1 (1) (x+1)(x+4)
 - (3)(x+6)(x-5)
- (4)(y+2)(y-6)
- (5) (x+3y)(x+7y)
- (6) (x-2y)(x+9y)
- (7)(x-4y)(x-7y)
- (8) (x+3y)(x-4y)
- a(x-4)(x-5)
- (2) 3(x+2)(x-3)
- (3) x(x+7)(x-4)
- $(4) 2y^2(x+1)(x-5)$
- (1)(2x+1)(x+1)
- (2)(2x-1)(x-3)
- (3) (3x-1)(x+4)
- (4) (2y-3)(3y+1)
- (5)(x+5y)(3x-y)
- (6) (2a+b)(a-3b)
- (7) (5x-y)(x+y)
- (8) (3x+y)(x-6y)
- 4 (1) a(x+3)(4x+3)
- (2) 2(x-2)(2x+1)
- (3) x(2x-1)(3x+2) (4) xy(x-5)(2x+1)
- 2 (1) (주어진 식)= $a(x^2-9x+20)$

$$=a(x-4)(x-5)$$

$$=3(x+2)(x-3)$$

(3) (주어진 식)=
$$x(x^2+3x-28)$$

$$=x(x+7)(x-4)$$

(4) (주어진 식)=
$$2y^2(x^2-4x-5)$$

$$=2y^2(x+1)(x-5)$$

4 (1) (주어진 식)= $a(4x^2+15x+9)$

$$=a(x+3)(4x+3)$$

(2) (주어진 식)=2(2x²-3x-2)

$$=2(x-2)(2x+1)$$

(3) (주어진 식)= $x(6x^2+x-2)$

$$=x(2x-1)(3x+2)$$

(4) (주어진 식)= $xy(2x^2-9x-5)$

$$=xy(x-5)(2x+1)$$

P. 61 개념 누르기 한판

- 1 7, 4, 2
- a=4, b=4 3 2
- **4** 11
- 5 x-2
- 6 3

- 7 x+2
- 1 $\neg (x+3)^2$ $\vdash (2x-3y)^2$ $= \left(x-\frac{1}{4}\right)^2$
- 2 $25x^2 + 20x + a = (5x)^2 + 2 \times 5x \times 2 + a$ 이므로 $a = 2^2 = 4$ $x^2 + bx + 4 = x^2 + bx + (\pm 2)^2$ 이므로 $b = 2 \times (\pm 2) = \pm 4$ 그런데 b > 0이므로 b = 4
- **3** 0 < x < 2에서 x > 0, x 2 < 0이므로 (주어진 식)= $\sqrt{x^2} + \sqrt{(x-2)^2}$ = x (x-2) = 2
- **4** 27 x^2 -75 y^2 =3(9 x^2 -25 y^2)=3(3x+5y)(3x-5y) 따라서 a=3, b=3, c=5이므로 a+b+c=3+3+5=11
- 5 $x^2-5x+6=(x-2)(x-3)$ $2x^2-3x-2=(x-2)(2x+1)$ 따라서 두 다항식의 일차 이상의 공통인 인수는 x-2이다.
- 6 3x²-8x+a=(x-3)(3x+b)로 놓으면 -8=b-9 ∴ b=1 ∴ a=-3b=-3×1=-3
- 7 2x²+7x+6=(2x+3)(x+2)이고, 가로의 길이가 2x+3이므로 세로의 길이는 x+2이다.

P. 62~63

- 개념 확인 (1) (x+4)(x+5)
 - (2) (x-1)(y+2)
 - (3) (x+y+1)(x-y-1)
 - (4) (x-2)(x+y+1)
 - (1) x+3=A로 놓으면

$$(x+3)^{2}+3(x+3)+2=A^{2}+3A+2$$

$$=(A+1)(A+2)$$

$$=(x+3+1)(x+3+2)$$

$$=(x+4)(x+5)$$

(2)
$$xy+2x-y-2=(xy-y)+(2x-2)$$

= $y(x-1)+2(x-1)$
= $(x-1)(y+2)$

(3)
$$x^{2}-y^{2}-2y-1=x^{2}-(y^{2}+2y+1)$$

 $=x^{2}-(y+1)^{2}$
 $=(x+y+1)(x-y-1)$
(4) $x^{2}+xy-x-2y-2=(x-2)y+(x^{2}-x-2)$
 $=(x-2)y+(x-2)(x+1)$
 $=(x-2)(y+x+1)$
 $=(x-2)(x+y+1)$

필수 예제 9 (1) $(a+b-1)^2$

$$(2)(2x-5y+2)(2x-5y-5)$$

- (3)(3-x)(1+x)
- (4) $(x+3y-1)^2$
- (1) a+b=A로 놓으면

(주어진 식)=
$$A^2-2A+1=(A-1)^2$$

= $(a+b-1)^2$

(2) 2x-5y=A로 놓으면

(주어진 식)=
$$A(A-3)-10=A^2-3A-10$$

= $(A+2)(A-5)$
= $(2x-5y+2)(2x-5y-5)$

(3) 1-x=A로 놓으면

(주어진 식)=
$$2^2-A^2=(2+A)(2-A)$$

= $(2+1-x)(2-1+x)$
= $(3-x)(1+x)$

(4) x-2=A. 3y+1=B로 놓으면

(주어진 식)=
$$A^2+2AB+B^2=(A+B)^2$$

= $\{(x-2)+(3y+1)\}^2$
= $(x+3y-1)^2$

유제 11 (1) x(x-8)

(2)
$$(x-y-1)(x-y-2)$$

$$(3)(x+y-1)(x-y+5)$$

$$(4) -2(3x-2y)(x+4y)$$

(1) x-2=A로 놓으면

(주어진 식)=
$$A^2-4A-12=(A+2)(A-6)$$

= $(x-2+2)(x-2-6)$
= $x(x-8)$

(2) x-y=A로 놓으면

(주어진 식)=
$$A(A-3)+2=A^2-3A+2$$

= $(A-1)(A-2)$
= $(x-y-1)(x-y-2)$

(3) x+2=A, y-3=B로 놓으면

(주어진 식)=
$$A^2-B^2=(A+B)(A-B)$$

= $\{(x+2)+(y-3)\}\{(x+2)-(y-3)\}$
= $(x+y-1)(x-y+5)$

(4) x-2y=A, x+2y=B로 놓으면

(주어진 식)=
$$2A^2-5AB-3B^2=(2A+B)(A-3B)$$

= $\{2(x-2y)+(x+2y)\}\{(x-2y)-3(x+2y)\}$
= $(3x-2y)(-2x-8y)$
= $-2(3x-2y)(x+4y)$

유제 12 -1

$$x-3=A$$
로 놓으면 (주어진 식)= $3A^2+2A-5=(A-1)(3A+5)$ $=(x-3-1)\{3(x-3)+5\}$ $=(x-4)(3x-4)$ 따라서 $a=-4$, $b=3$ 이므로 $a+b=-4+3=-1$

필수 예제 10 (1)
$$(x-1)(y-1)$$

(2)
$$(x+1)(y-z)$$

$$(3)(x+2)(x-2)(y-2)$$

(4)
$$(x+y-3)(x-y-3)$$

(1) (주어진 식)=
$$x(y-1)-(y-1)$$

= $(x-1)(y-1)$

(2) (주어진 식)=
$$x(y-z)+(y-z)$$

= $(x+1)(y-z)$

(3) (주어진 식)=
$$x^2(y-2)-4(y-2)$$

= $(x^2-4)(y-2)$
= $(x+2)(x-2)(y-2)$

(4) (주어진 식)=
$$(x^2-6x+9)-y^2$$

= $(x-3)^2-y^2$
= $(x-3+y)(x-3-y)$
= $(x+y-3)(x-y-3)$

유제 13 (1) (a+1)(b+1)

(2)
$$(x-z)(y-1)$$

$$(3)(x+1)(x-1)(y+1)$$

(4)
$$(x+y-4)(x-y+4)$$

(1) (주어진 식)=
$$a(b+1)+(b+1)=(a+1)(b+1)$$

(2) (주어진 식)=
$$y(x-z)-(x-z)=(x-z)(y-1)$$

(3) (주어진 식)=
$$y(x^2-1)+(x^2-1)$$

= $(x^2-1)(y+1)$
= $(x+1)(x-1)(y+1)$

(4) (주어진 식)=
$$x^2-(y^2-8y+16)$$

= $x^2-(y-4)^2$
= $\{x+(y-4)\}\{x-(y-4)\}$
= $(x+y-4)(x-y+4)$

필수 예제 11 (1) (x-2)(x+y-2)

(2)
$$(x-y+4)(x+y+2)$$

(1) (주어진 식)=
$$(x-2)y+(x^2-4x+4)$$

= $(x-2)y+(x-2)^2$
= $(x-2)(x+y-2)$
(2) (주어진 식)= $x^2+6x-(y^2-2y-8)$
= $x^2+6x-(y-4)(y+2)$
 $x \sim x^{-}(y-4) \rightarrow -(y-4)x$

$$=(x-y+4)(x+y+2)$$

 $(y+2) \rightarrow +) (y+2)x$

다른 풀이

(주어진 식)=
$$x^2+6x+9-y^2+2y-1$$

= $(x^2+6x+9)-(y^2-2y+1)$
= $(x+3)^2-(y-1)^2$
= $\{(x+3)+(y-1)\}\{(x+3)-(y-1)\}$
= $(x+y+2)(x-y+4)$

$\frac{2}{3}$ 14 (1) (x-3)(x+y-3)

(2)
$$(x-y+1)(x+y+3)$$

(1) (주어진 식)=
$$(x-3)y+(x^2-6x+9)$$

= $(x-3)y+(x-3)^2$
= $(x-3)(x+y-3)$
(2) (주어진 식)= $x^2+4x-(y^2+2y-3)$
= $x^2+4x-(y-1)(y+3)$
 x $(y+3) \rightarrow +)$ $(y+3)x$

$$=(x-y+1)(x+y+3)$$

유제 15 2x-y+3

(주어진 식)=
$$2x^2+(y+9)x-(y^2-9)$$

= $2x^2+(y+9)x-(y+3)(y-3)$
 $2x \longrightarrow -(y-3) \rightarrow -(y-3)x$
 $x \longrightarrow (y+3) \rightarrow +) 2(y+3)x$
 $y+9)x$
= $(2x-y+3)(x+y+3)$
= $A(x+y+3)$
 $\therefore A=2x-y+3$

P. 64 개념 누르기 한판

- 1 (1) $(x+1)^2$ (2) (2x-y+3)(2x-y-2)(3) (3x-2y+3)(3x-2y-5) (4) $(x+3y)^2$
- 5x-6
- 3 (1) (a-6)(b+2) (2) (a+1)(a-1)(x+1)(3) (x+3y+4)(x+3y-4)(4) (3x+y-2)(3x-y+2)
- 4 с. п. н
- 5 (1) (x+1)(x+2y+3)
 - (2) (x+y+3)(x-y+5)
 - (3) (x-2y+2)(x-2y-4)

1 (1)
$$x+3=A$$
로 놓으면

(주어진 식)=
$$A^2-4A+4$$

= $(A-2)^2=(x+1)^2$

(2)
$$2x-y=A$$
로 놓으면
(주어진 식)= $(A+1)A-6=A^2+A-6$
= $(A+3)(A-2)$
= $(2x-y+3)(2x-y-2)$

$$3x-2y=A$$
로 놓으면
$$A^2-2A-15=(A+3)(A-5)$$
$$=(3x-2y+3)(3x-2y-5)$$
(4) $x+y=A$, $x-y=B$ 로 놓으면 (주어진 식)= $4A^2-4AB+B^2=(2A-B)^2$
$$=\{2(x+y)-(x-y)\}^2$$
$$=(x+3y)^2$$

(3) (주어진 식)= $(3x-2y)^2-2(3x-2y)-15$ 이므로

- 2 x-1=A로 놓으면 (주어진 식)=6A²-A-2=(2A+1)(3A-2) ={2(x-1)+1}{3(x-1)-2} =(2x-1)(3x-5) ∴ (두 일차식의 합)=(2x-1)+(3x-5) =5x-6
- 3 (1) (주어진 식)=a(b+2)-6(b+2) =(a-6)(b+2)(2) (주어진 식)= $(a^2-1)x+(a^2-1)$ $=(a^2-1)(x+1)$ =(a+1)(a-1)(x+1)(3) (주어진 식)= $(x^2+6xy+9y^2)-16$ $=(x+3y)^2-4^2$ =(x+3y+4)(x+3y-4)(4) (주어진 식)= $9x^2-(y^2-4y+4)$ $=(3x)^2-(y-2)^2$ =(3x+y-2)(3x-y+2)
- 4 $x^3-2x^2-xy^2+2y^2=x^2(x-2)-y^2(x-2)$ = $(x-2)(x^2-y^2)$ =(x-2)(x+y)(x-y)
- 5 (1) (주어진 식)= $2(x+1)y+(x^2+4x+3)$ =2(x+1)y+(x+1)(x+3)=(x+1)(x+2y+3)(2) (주어진 식)= $x^2+8x-y^2+2y+15$ = $x^2+8x-(y^2-2y-15)$ = $x^2+8x-(y+3)(y-5)$ =(x+y+3)(x-y+5)(3) (주어진 식)= $x^2-2(2y+1)x+4y^2+4y-8$ = $x^2-2(2y+1)x+4(y^2+y-2)$ = $x^2-2(2y+1)x+4(y-1)(y+2)$ =(x-2y+2)(x-2y-4)

(주어진 식)=
$$(x^2-4xy+4y^2)-2x+4y-8$$

= $(x-2y)^2-2(x-2y)-8$
= $(x-2y+2)(x-2y-4)$

P. 65

개념 확인 (1) 36, 4, 100 (2) 14, 20, 400 (3) 17, 17, 6, 240

필수 예제 12 (1) 3700 (2) 2500 (3) 400

유제 16 (1) 1800 (2) 400 (3) 1980

필수 예제 13 (1) 10000 (2) $4\sqrt{2}$

(1)
$$x^2 - 8x + 16 = (x - 4)^2$$

 $= (104 - 4)^2 = 100^2 = 10000$
(2) $a + b = (\sqrt{2} + 1) + (\sqrt{2} - 1) = 2\sqrt{2}$
 $a - b = (\sqrt{2} + 1) - (\sqrt{2} - 1) = 2$
 $\therefore a^2 - b^2 = (a + b)(a - b) = 2\sqrt{2} \times 2 = 4\sqrt{2}$

유제 17 (1) 8 (2) $-8\sqrt{3}$

(1)
$$x^2 - 6x + 9 = (x - 3)^2$$

 $= (3 - 2\sqrt{2} - 3)^2$
 $= (-2\sqrt{2})^2 = 8$
(2) $a = \frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} = 2 - \sqrt{3},$
 $b = \frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = 2 + \sqrt{3}$ 이므로
 $a + b = (2 - \sqrt{3}) + (2 + \sqrt{3}) = 4$
 $a - b = (2 - \sqrt{3}) - (2 + \sqrt{3}) = -2\sqrt{3}$
 $\therefore a^2 - b^2 = (a + b)(a - b)$
 $= 4 \times (-2\sqrt{3}) = -8\sqrt{3}$

유제 18 (1) 12 (2) 20

(1)
$$x^2-y^2=(x+y)(x-y)=3\times 4=12$$

(2) (주어진 식)= $(x^2+2x+1)-y^2=(x+1)^2-y^2$
= $(x+1+y)(x+1-y)$
= $(x+y+1)(x-y+1)$
= $(3+1)(4+1)$
= $4\times 5=20$

P. 66 개념 누르기 한판

- 1 (1) 800 (2) 360 (3) 1600
- 2 5
- 3 (1) $2-3\sqrt{2}$ (2) $-8\sqrt{5}$ (3) 96
- 4 7

- 6 (1) 16 (2) -4 (3) ± 22
- (1) (주어진 식)=(102+98)(102-98) $=200 \times 4 = 800$
 - (2) (주어진 식)=12(6.5²-3.5²)

$$=12(6.5+3.5)(6.5-3.5)$$

$$=12 \times 10 \times 3 = 360$$

- (3) (주어진 식)=43²-2×43×3+3²
 - $=(43-3)^2=40^2=1600$
- 2 (주어진 식)= $\sqrt{2.5(5.5^2-4.5^2)}$ $=\sqrt{2.5(5.5+4.5)(5.5-4.5)}$
 - $=\sqrt{2.5\times10\times1}$
 - $=\sqrt{25}=5$
- 3 (1) $a^2+a-2=(a-1)(a+2)$

$$=(1-\sqrt{2}-1)(1-\sqrt{2}+2)$$

$$=(1 \ \sqrt{2} \ 1)(1 \ \sqrt{2})$$

 $=-\sqrt{2}(3-\sqrt{2})$

$$=2-3\sqrt{2}$$

(2)
$$xy = (2+\sqrt{5})(2-\sqrt{5}) = -1$$

$$x+y=(2+\sqrt{5})+(2-\sqrt{5})=4$$

$$x-y=(2+\sqrt{5})-(2-\sqrt{5})=2\sqrt{5}$$

$$\therefore x^3y - xy^3 = xy(x^2 - y^2) = xy(x+y)(x-y)$$

$$=(-1)\times4\times2\sqrt{5}=-8\sqrt{5}$$

(3)
$$x = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} = \frac{(\sqrt{2} - \sqrt{3})^2}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})} = -5 + 2\sqrt{6},$$

$$y = \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \frac{(\sqrt{2} + \sqrt{3})^2}{(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})} = -5 - 2\sqrt{6}$$
이므로

$$x-y=(-5+2\sqrt{6})-(-5-2\sqrt{6})=4\sqrt{6}$$

$$\therefore x^2 + y^2 - 2xy = (x - y)^2$$

$$=(4\sqrt{6})^2=96$$

4 2< $\sqrt{7}$ <3에서 $\sqrt{7}$ 의 정수 부분은 2이므로

소수 부분
$$a=\sqrt{7}-2$$

$$\therefore a^2 + 4a + 4 = (a+2)^2$$

$$=(\sqrt{7}-2+2)^2=(\sqrt{7})^2=7$$

 $5 \quad x-4=A$ 로 놓으면

(주어진 식)=
$$A^2+6A+9=(A+3)^2$$

$$=(x-4+3)^2=(x-1)^2$$

$$=(1-\sqrt{3}-1)^2=(-\sqrt{3})^2=3$$

(2) (주어진 식)=
$$x^2+x-(y^2-7y+12)$$

$$=x^2+x-(y-4)(y-3)$$

$$=(x-y+4)(x+y-3)$$

$$=(-2+4)(1-3)$$

$$=2\times(-2)$$

$$= -4$$

$$(3) (a-b)^2 = (a+b)^2 - 4ab = 6^2 - 4 \times 8 = 4$$
이므로

$$a-b = \pm 2$$

$$\therefore$$
 (주어진 식)= $(a+b)(a-b)+5(a-b)$

$$=(a-b)(a+b+5)$$

$$=(\pm 2) \times (6+5)$$

$$=(\pm 2)\times 11$$

$$= \pm 22$$

P. 67~70 단원 마무리

1 3 2 (4)

(x+3)(x-1)

- 3 (2)
- **4** (5)

- **5** (5)
- **6** ①
- 7 ③ 9 (4)
- **10** (4)
- - **12** ②
- **13** (5)
- 14 2x+9**16** ②
- **15** (2x-y+1)(2x-y-2)
- **17** ①. ⑤ **18** ③
- **19** ③ **22** $-16\sqrt{2}$ **23** ③
- 20 ② **24** ④
- 25 과정은 풀이 참조

21 ④

(1)
$$A = 2$$
, $B = -24$ (2) $(x-4)(x+6)$

- **26** 6x+8, 과정은 풀이 참조
- 27 1. 과정은 풀이 참조
- 28 55. 과정은 풀이 참조

$$1 \quad xy^2 - 3xy = xy(y-3)$$

따라서 인수가 아닌 것은 ③ y-1이다

- 2 ① $x^2+14x+49=(x+7)^2$
 - $21+2y+y^2=(1+y)^2$

$$3\frac{1}{4}x^2+x+1=\left(\frac{1}{2}x+1\right)^2$$

$$59x^2-30x+25=(3x-5)^2$$

3
$$3x^2-2x+k=3\left(x^2-\frac{2}{3}x+\frac{k}{3}\right)$$
이므로

$$\frac{k}{3} = \left\{ \left(-\frac{2}{3} \right) \times \frac{1}{2} \right\}^2 = \frac{1}{9} \quad \therefore k = \frac{1}{3}$$

$$\therefore k = \frac{1}{3}$$

4
$$a+3>0$$
, $a-3<0$ 이므로

(주어진 식)=
$$\sqrt{(a+3)^2}$$
- $\sqrt{(a-3)^2}$
= $(a+3)$ + $(a-3)$
= $2a$

5
$$ax^2-16=(bx+4)(3x+c)$$

=3 $bx^2+(bc+12)x+4c$
 $\stackrel{\triangleleft}{=}$, $a=3b$, $0=bc+12$, $-16=4c$ ○]□로
 $c=-4$, $b=3$, $a=9$
∴ $a+b-c=9+3-(-4)=16$

$$(x-4)(x+2) + 4x = x^2 - 2x - 8 + 4x$$

$$= x^2 + 2x - 8$$

$$= (x+4)(x-2)$$

- 7 ab=18에서 곱이 18인 두 정수는 -1과 -18, -2와 -9, -3과 -6, 1과 18, 2와 9, 3과 6 이다. 이때 A=a+b이므로 A의 값이 될 수 있는 수는 -19, -11, -9, 9, 11, 19이다.
- 8 $4x^2+5x-6=(x+2)(4x-3)$ 이므로 a=2, b=4, c=-3∴ $x^2+(b-a)x+c=x^2+2x-3$ =(x+3)(x-1)
- 9 $x^2+4x-21=(x+7)(x-3)$ $3x^2-11x+6=(x-3)(3x-2)$ 따라서 두 다항식의 일차 이상의 공통인 인수는 x-3이다.
- 10 $(2x+5y)(3x+By)=6x^2+(2B+15)xy+5By^2$ = $6x^2+Axy-20y^2$ 즉, 2B+15=A, 5B=-20이므로 B=-4, A=7 $\therefore A-B=7-(-4)=11$
- 11 ① $-2x^2+6x=-2x(x-3)$ ② $9x^2-169=(3x+13)(3x-13)$ ③ $x^2-xy-56y^2=(x+7y)(x-8y)$ ④ $7x^2+18x-9=(x+3)(7x-3)$
- 12 3x²+ax-4=(x-2)(3x+m)으로 놓으면 -4=-2m이므로 m=2 ∴ a=m-6=2-6=-4
- 13 [그림 1]의 도형의 넓이는 a^2-b^2 [그림 2]의 도형의 넓이는 (a+b)(a-b)이때 두 도형의 넓이가 서로 같으므로 $a^2-b^2=(a+b)(a-b)$
- 14 (도형 A의 넓이)=(2x+5)²-4² =(2x+5+4)(2x+5-4) =(2x+9)(2x+1)

(도형 B의 넓이)=(가로의 길이) \times (2x+1) 따라서 도형 B의 가로의 길이는 2x+9이다

- 15 2x-y=A로 놓으면 (주어진 식)= $A^2-(A-4)-6$ $=A^2-A-2$ =(A+1)(A-2)=(2x-y+1)(2x-y-2)
- 16 $x^2-4xy+4y^2-16=(x-2y)^2-4^2$ = (x-2y+4)(x-2y-4)∴ (두 일차식의 함)=(x-2y+4)+(x-2y-4)= 2x-4y
- **17** (주어진 식)= $x^2+10x-(y^2-2y-24)$ = $x^2+10x-(y-6)(y+4)$ =(x-y+6)(x+y+4)
- 18 $\sqrt{68^2-32^2}=\sqrt{(68+32)(68-32)}$ $=\sqrt{100\times36}=\sqrt{3600}$ $=\sqrt{60^2}=60$ 따라서 가장 알맞은 인수분해 공식은 ③ $a^2-b^2=(a+b)(a-b)$ 이다.
- 19 $5.5^2 + 5.5 + 0.5^2 = 5.5^2 + 2 \times 5.5 \times 0.5 + 0.5^2$ = $(5.5 + 0.5)^2 = 6^2 = 36$
- **20** (주어진 식)= $\frac{994 \times 993 + 994 \times 7}{997^2 3^2}$ $=\frac{994(993 + 7)}{(997 + 3)(997 3)}$ $=\frac{994 \times 1000}{1000 \times 994} = 1$
- 21 x+3=A로 놓으면 (주어진 식)= $A^2-4A+4=(A-2)^2$ $=(x+3-2)^2=(x+1)^2$ $=(3\sqrt{2}-1+1)^2$ $=(3\sqrt{2})^2=18$
- 22 $a = \frac{2}{1+\sqrt{2}} = \frac{2(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})} = -2+2\sqrt{2},$ $b = \frac{2}{1-\sqrt{2}} = \frac{2(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} = -2-2\sqrt{2}$ $a+b = (-2+2\sqrt{2})+(-2-2\sqrt{2}) = -4$ $a-b = (-2+2\sqrt{2})-(-2-2\sqrt{2}) = 4\sqrt{2}$ $\therefore a^2-b^2 = (a+b)(a-b)$ $= -4\times4\sqrt{2}$ $= -16\sqrt{2}$

23 (주어진 식)=
$$(x^2-y^2)-3(x-y)$$

= $(x+y)(x-y)-3(x-y)$
= $(x-y)(x+y-3)$
= $(-2)\times(3-3)=0$

24
$$a^2-b^2-10a+25=(a^2-10a+25)-b^2$$

 $=(a-5)^2-b^2$
 $=(a+b-5)(a-b-5)$
즉, $(a+b-5)(a-b-5)=15$ 이므로
 $a+b=6$ 을 대입하면
 $(6-5)(a-b-5)=15$
∴ $a-b=20$

25 (1)
$$(x+8)(x-3)=x^2+5x-24$$
에서
민이는 상수항을 바르게 보았으므로
 $B=-24$ ····(i)
 $(x-10)(x+12)=x^2+2x-120$ 에서
헤나는 일차항의 계수를 바르게 보았으므로
 $A=2$ ····(ii)

(2) (1)에서 $x^2 + Ax + B = x^2 + 2x - 24$ 이므로 이 식을 바르게 인수분해하면 $x^2 + 2x - 24 = (x-4)(x+6) \qquad \qquad \cdots \text{(iii)}$

채점 기준	배점
(i) <i>B</i> 의 값 구하기	30 %
(ii) <i>A</i> 의 값 구하기	30 %
(iii) 다항식 $x^2 + Ax + B$ 를 바르게 인수분해하기	40 %

26 주어진 모든 직사각형의 넓이의 합은
$$2x^2+5x+3=(x+1)(2x+3)$$
 ··· (i)

따라서 새로 만든 직사각형의 가로, 세로의 길이는	
x+1, 2x+3이므로	(ii)
새로 만든 직사각형의 둘레의 길이는	
$2\{(x+1)+(2x+3)\}=2(3x+4)$	
=6x+8	··· (iii)

채점 기준	배점
(i) 주어진 모든 직사각형의 넓이의 합을 인수분해하기	40 %
(ii) 새로 만든 직사각형의 가로, 세로의 길이 구하기	30 %
(iii) 새로 만든 직사각형의 둘레의 길이 구하기	30 %

27
$$xy-3y+2x-6=y(x-3)+2(x-3)$$

 $=(x-3)(y+2)$... (i)
 $=(x-A)(y+B)$
 따라서 $A=3, B=2$ 이므로 ... (ii)
 $A-B=3-2=1$... (iii)

채점 기준	배점
(i) 좌변을 인수분해하기	50%
(ii) A, B의 값 구하기	30 %
(iii) $A-B$ 의 값 구하기	20 %

28
$$10^{2}-9^{2}+8^{2}-7^{2}+\cdots+2^{2}-1^{2}$$

 $=(10+9)(10-9)+(8+7)(8-7)$
 $+\cdots+(2+1)(2-1)$... (i)
 $=(10+9)+(8+7)+\cdots+(2+1)$
 $=11\times5$
 $=55$... (ii)

채점 기준	배점
(i) 인수분해 공식을 이용하여 주어진 식을 변형하기	60 %
(ii) 답 구하기	40 %

이차방정식과 그 해

P. 74

개념 확인 (1) 3, 2, 1, 4, 1 (2) 4, 4, 12, 3, 8, 1

필수 예제 1 나, ㅁ, ㅂ

- ¬. 2x+1=0 ⇒ 일차방정식
- $\downarrow x^2=0 \Rightarrow 이차방정식$
- 다. $x^2-x=(x-1)(x+1)$ 에서
 - $x^2 x = x^2 1$
 - ∴ -x+1=0 ⇒ 일차방정식
- ㄹ. 2x²-3x+5 ⇒ 이차식
- ㅁ. $x(x^2-4x)=x^3-5x^2+7$ 에서
 - $x^3 4x^2 = x^3 5x^2 + 7$
 - ∴ x²-7=0 ⇒ 이차방정식
- $\exists x^2+1=3x(x-2)$ 에서
 - $x^2+1=3x^2-6x$
 - $\therefore -2x^2+6x+1=0 \Rightarrow$ 이차방정식

유제 1 ③

- ① x(x-4)=0에서 $x^2-4x=0$ \Rightarrow 이차방정식
- ② $x=2x^2$ 에서 $-2x^2+x=0$ \Rightarrow 이차방정식
- ③ $x^2+4=(x-2)^2$ 에서
 - $x^2+4=x^2-4x+4$
 - ∴ 4*x*=0 ⇒ 일차방정식
- $\textcircled{4} \ \frac{x(x-3)}{3} = 20 \ \text{and} \ \frac{1}{3} x^2 x = 20$
 - $\therefore \frac{1}{2}x^2 x 20 = 0 \Rightarrow$ 이차방정식
- ⑤ $x^3+2x-1=(x-2)(x^2+1)$ 에서
 - $x^3 + 2x 1 = x^3 2x^2 + x 2$
 - $\therefore 2x^2 + x + 1 = 0 \Rightarrow$ 이차방정식

필수 예제 2 ④

- [] 안의 수를 주어진 이차방정식의 x에 각각 대입하면
- ① $4^2 8 \neq 0$
- ② $3^2 4 \times 3 \neq 0$
- $32^2-2\times2+1\neq0$
- $45^2-5-20=0$
- (5) $-1^2+3\times1+4\neq0$

유제 2 x = -1 또는 x = 2

- x=-2일 때, $(-2)^2-(-2)-2\neq 0$
- x=-1일 때, $(-1)^2-(-1)-2=0$
- x=0일 때, $0^2-0-2\neq 0$
- x=1일 때, 1²-1-2≠0
- x=2일 때, $2^2-2-2=0$
- 따라서 주어진 이차방정식의 해는 x=-1 또는 x=2이다.

P. 75 개념 누르기 한판

- 1 4
- $\frac{2}{}$ -16
- $3 \quad a \neq 2$
- **4** ②, ④

- **5** 5
- 6 6
- ① $2x^2+3x-2=x+2x^2$ 에서 2x-2=0 ⇒ 일차방정식
 - ② $x^2+3x=x^3-2$ 에서 $-x^3+x^2+3x+2=0$ ⇒ 이차방정식이 아니다
 - ③ x(x-2)=x(x+1)에서 $x^2-2x=x^2+x$ ∴ -3x=0 ⇒ 일차방정식
 - ④ $(x+1)(x-1) = -x^2 + 1$ 에서 $x^2-1=-x^2+1$
 - ∴ 2x²-2=0 ⇒ 이차방정식
 - ⑤ $3(x-1)^2-1=1+3x^2$ 에서 $3(x^2-2x+1)-1=1+3x^2$
 - $3x^2-6x+2=1+3x^2$
 - ∴ -6x+1=0 ⇒ 일차방정식
- 2 $3(x+1)(x-2) = -2x^2 + 7x$
 - $3(x^2-x-2)=-2x^2+7x$
 - $3x^2 3x 6 = -2x^2 + 7x$

 $\therefore 5x^2 - 10x - 6 = 0$

- 따라서 a = -10. b = -6이므로
- a+b=-10+(-6)=-16
- $3 \quad 2(x-1)^2 = ax^2 + 6x + 1$
 - $2(x^2-2x+1)=ax^2+6x+1$
 - $2x^2 4x + 2 = ax^2 + 6x + 1$
 - $(2-a)x^2-10x+1=0$
 - 이때 x^2 의 계수는 0이 아니어야 하므로
 - $2-a\neq 0$ $\therefore a\neq 2$
- 4 각 이차방정식에 x=2를 대입하면
 - ① $2^2 2 \times 2 8 \neq 0$
 - ② 2(2-2)=0
 - $(3)(2+2)(2\times2-1)\neq0$
 - $4 3 \times 2^2 12 = 0$
 - (5) $(2 \times 2 1)^2 \neq 4 \times 2$
- 5 2x²+ax-3=0에 x=-3을 대입하면 2×(-3)²+a×(-3)-3=0
 - 15-3a=0, 3a=15
 - ∴ *a*=5
- 6 $x^2+x-6=0$ 에 x=a를 대입하면
 - $a^2 + a 6 = 0$
 - $\therefore a^2 + a = 6$

○2 이차방정식의 풀이 (1)

P. 76

개념 확인

를 확인 (1)
$$x=0$$
 또는 $x=3$

(2)
$$x = -2$$
 $\pm \pm x = 1$

(3)
$$x = -\frac{1}{3} + \frac{1}{5} x = 2$$

(4)
$$x = \frac{3}{2}$$
 또는 $x = -\frac{4}{3}$

$$(1) x(x-3) = 0$$
에서 $x=0$ 또는 $x-3=0$

$$\therefore x=0 \ \Xi \vdash x=3$$

$$(2)(x+2)(x-1)=0$$
에서 $x+2=0$ 또는 $x-1=0$

$$\therefore x = -2 \stackrel{\leftarrow}{=} x = 1$$

(3)
$$(3x+1)(x-2)=0$$
에서 $3x+1=0$ 또는 $x-2=0$

$$\therefore x = -\frac{1}{3} \, \text{Et} \, x = 2$$

$$(4)(2x-3)(3x+4)=0$$
에서 $2x-3=0$ 또는 $3x+4=0$

$$\therefore x = \frac{3}{2} \pm x = -\frac{4}{3}$$

필수 예제 1 (1) x=0 또는 x=2

(2)
$$x=-4$$
 또는 $x=2$

(3)
$$x = -\frac{2}{3} \pm \frac{1}{2}$$

$$(4) x = -3 \pm x = 2$$

$$(1) x^2 - 2x = 0$$
에서 $x(x-2) = 0$

$$\therefore x=0 \ \text{E} \ \text{E} \ x=2$$

$$(2) x^2 + 2x - 8 = 0$$
에서 $(x+4)(x-2) = 0$

$$\therefore x = -4 \pm \pm x = 2$$

(3)
$$6x^2 = 5x + 6$$
에서 $6x^2 - 5x - 6 = 0$

$$(3x+2)(2x-3)=0$$

$$\therefore x = -\frac{2}{3} + \frac{2}{3} = \frac{3}{2}$$

$$(4)(x+4)(x-3) = -6$$
에서 $x^2 + x - 6 = 0$

$$(x+3)(x-2)=0$$

$$\therefore x = -3 \pm x = 2$$

유제 1 (1) x=0 또는 x=-5

(2)
$$x = -6$$
 또는 $x = 5$

(3)
$$x = -\frac{1}{3} + \frac{3}{2}$$

$$(4) x = -1$$
 $\pm \frac{1}{2} x = 10$

(1)
$$2x^2+10x=0$$
에서 $2x(x+5)=0$

$$(2) x^2 + x - 30 = 0$$
 에서 $(x+6)(x-5) = 0$

∴
$$x=-6$$
 또는 $x=5$

$$(3)$$
 $6x^2-7x=3$ 에서 $6x^2-7x-3=0$

$$(3x+1)(2x-3)=0$$

$$\therefore x = -\frac{1}{3} \pm \frac{1}{2} = \frac{3}{2}$$

(4)
$$(x-1)(x-8)=18$$
에서 $x^2-9x-10=0$

$$(x+1)(x-10)=0$$

유제 2 x=-1

$$x^2-4x-5=0$$
에서 $(x+1)(x-5)=0$

$$\therefore x = -1 \, \text{£} \vdash x = 5$$

$$2x^2+7x+5=0$$
에서 $(2x+5)(x+1)=0$

$$\therefore x = -\frac{5}{2}$$
 또는 $x = -1$

따라서 두 이차방정식의 공통인 근은 x=-1이다.

P. 77

필수 예제 2 (1) x=-2(중근)

$$(2) x = \frac{1}{2} (\frac{2}{5} \frac{7}{5})$$

$$(3) x = -3(중근)$$

$$(4) x = 4 (중근)$$

$$(1) x^2 + 4x + 4 = 0$$
 $(x+2)^2 = 0$

$$\therefore x = -2(\frac{2}{2})$$

(2)
$$8x^2 - 8x + 2 = 0$$
에서 $2(4x^2 - 4x + 1) = 0$

$$2(2x-1)^2 = 0$$
 : $x = \frac{1}{2} (\overline{2})$

$$(3)$$
 $3-x^2=6(x+2)$ 에서 $3-x^2=6x+12$

$$x^2+6x+9=0$$
, $(x+3)^2=0$

(4)
$$(x-2)(x-4)=2x-8$$
 에서 $x^2-6x+8=2x-8$

$$x^2-8x+16=0$$
, $(x-4)^2=0$

유제 3 ㄴ, ㄹ, ㅂ

$$\neg x^2 - 16 = 0$$
에서 $(x+4)(x-4) = 0$

$$-.7x^2+14x+7=0$$
에서 $7(x^2+2x+1)=0$

$$7(x+1)^2 = 0$$
 : $x = -1(\frac{2}{2})$

$$x^2+x-2=0$$
에서 $(x+2)(x-1)=0$

$$\therefore x=-2$$
 또는 $x=1$

$$=.9x^2-6x+1=0$$
에서 $(3x-1)^2=0$

$$3x^2-4x-4=0$$
에서 $(3x+2)(x-2)=0$

$$\therefore x = -\frac{2}{3} \pm \pm x = 2$$

ㅂ.
$$x(x-10)=-25$$
에서 $x^2-10x+25=0$

$$(x-5)^2=0$$

$$(x-5)^2 = 0$$
 $\therefore x = 5(중그)$

필수 예제 3 (1) a=30, x=-6

(2)
$$a=2$$
일 때 $x=-1$, $a=-2$ 일 때 $x=1$

(1) 좌변이 완전제곱식이어야 하므로

$$6+a=\left(\frac{12}{2}\right)^2$$
, $6+a=36$

$$\therefore a=30$$

이때
$$x^2+12x+36=0$$
에서

$$(x+6)^2 = 0$$
 $\therefore x = -6(\frac{2}{2})$

(2) 좌변이 완전제곱식이어야 하므로

$$1 = \left(\frac{a}{2}\right)^2, 1 = \frac{a^2}{4}, a^2 = 4$$
 $\therefore a = \pm 2$

(i) a=2일 때. $x^2+2x+1=0$

$$(x+1)^2 = 0$$
 : $x = -1(중그)$

(ii)
$$a = -2$$
일 때, $x^2 - 2x + 1 = 0$

$$(x-1)^2 = 0$$
 : $x=1(\frac{2}{2})$

$\frac{2}{3}$ 4 (1) a=-1, x=5

(2) a = 12일 때 x = -6, a = -12일 때 x = 6

(1) 좌변이 완전제곱식이어야 하므로

$$24-a=\left(\frac{-10}{2}\right)^2$$
, $24-a=25$

 $\therefore a = -1$

이때 $x^2-10x+25=0$ 에서

$$(x-5)^2 = 0$$
 $\therefore x = 5(중그)$

(2) 좌변이 완전제곱식이어야 하므로

$$36 = \left(\frac{a}{2}\right)^2$$
, $36 = \frac{a^2}{4}$, $a^2 = 144$ $\therefore a = \pm 12$

(i) a=12일 때. $x^2+12x+36=0$

$$(x+6)^2=0$$
 $\therefore x=-6(\frac{27}{6})$

(ii) a = -12 일 때. $x^2 - 12x + 36 = 0$

$$(x-6)^2=0$$
 $\therefore x=6(\frac{27}{61})$

유제 5 a=8. b=16

중근이 x=-4이고. 이차항의 계수가 1이므로

$$(x+4)^2=0, x^2+8x+16=0$$

$$a = 8. b = 16$$

P. 78 개념 누르기 한판

1 ②

2 (1)
$$x=2$$
 또는 $x=4$

2 (1)
$$x=2$$
 또는 $x=4$ (2) $x=-\frac{3}{2}$ 또는 $x=\frac{3}{2}$

$$(3) x = 3 \left(\frac{2}{5} \right)$$

$$(3) x = 3\left(\frac{3}{5}\right) \qquad (4) x = \frac{3}{2}\left(\frac{3}{5}\right)$$

(5)
$$x = -\frac{2}{3} \, \text{ET} \, x = 3$$
 (6) $x = -2 \, \text{ET} \, x = 2$

-7

4 a=15, x=-5

5 ① ④

6 a=1, x=1

2 (1) $x^2-6x+8=0$ 에서 (x-2)(x-4)=0 $\therefore x=2 \ \text{E} \vdash x=4$

> (2) $4x^2-9=0$ 에서 (2x+3)(2x-3)=0 $\therefore x = -\frac{3}{2} \, \text{E-} x = \frac{3}{2}$

 $(3) 2x^2 - 12x + 18 = 0$ 에서 $2(x^2 - 6x + 9) = 0$ $2(x-3)^2 = 0$: $x=3(\frac{27}{61})$

 $(4) 4x^2 - 12x + 9 = 0$ 에서 $(2x - 3)^2 = 0$ $\therefore x = \frac{3}{2} (\frac{2}{6} \frac{7}{6})$

(5) $3x^2-7x=6$ 에서 $3x^2-7x-6=0$ (3x+2)(x-3)=0 $\therefore x = -\frac{2}{2} \times x = 3$

(6) $(x+1)(x-1)=2x^2-5$ $x^2-4=0$, (x+2)(x-2)=0 $\therefore x = -2 \pm x = 2$

3 $x^2 = 9x - 18$ 에서 $x^2 - 9x + 18 = 0$ (x-3)(x-6)=0 : x=3 $\pm x=6$ 두 근 중 작은 근이 x=3이므로 $3x^2 + ax - 6 = 0$ 에 x = 3을 대입하면 $3 \times 3^2 + a \times 3 - 6 = 0$. 3a + 21 = 0 $\therefore a = -7$

 $x^2+8x+a=0$ 에 x=-3을 대입하면 $(-3)^2+8\times(-3)+a=0$, -15+a=0 $\therefore a=15$ 이때 $x^2+8x+15=0$ 에서 (x+3)(x+5)=0 $\therefore x = -3 \pm x = -5$ 따라서 구하는 다른 한 근은 x = -5이다.

5 ① $x^2-4x+3=0$ 에서 (x-1)(x-3)=0 $\therefore x=1 \, \text{E} := x=3$

② $x^2+10x+25=0$ 에서 $(x+5)^2=0$ $\therefore x = -5(\frac{27}{21})$

③ $x^2-14x+49=0$ 에서 $(x-7)^2=0$ $\therefore x=7(\frac{2}{2})$

④ $9x^2+9x+2=0$ 에서 (3x+2)(3x+1)=0 $\therefore x = -\frac{2}{3} \pm \frac{1}{2} = -\frac{1}{3}$

⑤ $9x^2+12x+4=0$ 에서 $(3x+2)^2=0$

따라서 중근을 갖지 않는 것은 ① ④이다.

5 좌변이 완전제곱식이어야 하므로

$$-2a+3 = \left(\frac{-2a}{2}\right)^2, -2a+3 = a^2$$

 $a^2+2a-3=0$, (a+3)(a-1)=0

 $\therefore a = -3 \pm a = 1$

그런데 a > 0이므로 a = 1

 $x^2-2ax-2a+3=0$ 에 a=1을 대입하면

 $x^2-2x+1=0$, $(x-1)^2=0$

 $\therefore x=1(\frac{2}{2})$

P. 79

필수 예제 4 (1) $x=\pm 4\sqrt{2}$ (2) $x=\pm \frac{3}{4}$

(3) $x = -3 \pm \sqrt{5}$ (4) $x = -2 \pm 2 \pm 2 \pm 3 = 4$

$$(2)$$
 9 $-16x^2=0$ 에서 $16x^2=9$

$$x^2 = \frac{9}{16}$$
 : $x = \pm \frac{3}{4}$

(3)
$$(x+3)^2 = 5$$
에서 $x+3 = \pm \sqrt{5}$

$$\therefore x = -3 \pm \sqrt{5}$$

$$(4) 2(x-1)^2 = 18$$
에서 $(x-1)^2 = 9$

$$x-1 = \pm 3$$

$$\therefore x = -2 \stackrel{\text{H}}{=} x = 4$$

유제 6 (1)
$$x = \pm \sqrt{6}$$

(2)
$$x = \pm \frac{9}{2}$$

(3)
$$x = \frac{-1 \pm 2\sqrt{2}}{2}$$

(3)
$$x = \frac{-1 \pm 2\sqrt{2}}{2}$$
 (4) $x = -\frac{8}{3} \pm \frac{1}{2} = \frac{2}{3}$

$$(1) x^2 - 6 = 0$$
에서 $x^2 = 6$

$$\therefore x = \pm \sqrt{6}$$

(2)
$$4x^2 - 81 = 0$$
에서 $4x^2 = 81$

$$x^2 = \frac{81}{4}$$
 : $x = \pm \frac{9}{2}$

$$(3)$$
 8 $-(2x+1)^2=0$ 에서 $(2x+1)^2=8$

$$2x+1=\pm 2\sqrt{2}$$
, $2x=-1\pm 2\sqrt{2}$

$$\therefore x = \frac{-1 \pm 2\sqrt{2}}{2}$$

$$(4) -9(x+1)^2+25=0$$
에서 $9(x+1)^2=25$

$$(x+1)^2 = \frac{25}{9}, x+1 = \pm \frac{5}{3}$$

$$\therefore x = -\frac{8}{3} \pm \frac{2}{3}$$

유제 7 3

$$3(x+a)^2=15$$
에서 $(x+a)^2=5$

$$x+a=\pm\sqrt{5}$$

$$\therefore x = -a \pm \sqrt{5} = 2 \pm \sqrt{b}$$

따라서
$$a=-2$$
, $b=5$ 이므로

$$a+b=-2+5=3$$

유제 8 (1) $q \ge 0$ (2) $a \ne 0$, $aq \ge 0$ (3) $a \ne 0$, $aq \ge 0$

(2) 이차방정식이므로 $a \neq 0$

양변을
$$a$$
로 나누면 $x^2 = \frac{q}{a}$ 에서 $\frac{q}{a} \ge 0$ 이어야 하므로

$$aq \ge 0$$

$$\therefore a \neq 0, aq \geq 0$$

(3) 이차방정식이므로 $a \neq 0$

양변을
$$a$$
로 나누면 $(x+p)^2 = \frac{q}{a}$ 에서 $\frac{q}{a} \ge 0$ 이어야 하므로

$$aq \ge 0$$

$$\therefore a \neq 0, aq \geq 0$$

P. 80

필수 예제 5 (1) 9, 9, 3, 7, 3±√7

(2) 1, 1, 1,
$$\frac{2}{3}$$
, $1 \pm \frac{\sqrt{6}}{3}$

유제 9 (1)
$$p=1$$
, $q=3$ (2) $p=-\frac{2}{3}$, $q=\frac{10}{9}$

$$(1) x^2 - 2x = 2에서$$

$$x^{2}-2x+\left(\frac{-2}{2}\right)^{2}=2+\left(\frac{-2}{2}\right)^{2}$$

$$(x-1)^2=3$$

$$\therefore p=1, q=3$$

$$(2)$$
 $3x^2+4x-2=0$ 에서

$$x^2 + \frac{4}{3}x - \frac{2}{3} = 0$$

$$x^2 + \frac{4}{3}x = \frac{2}{3}$$

$$x^{2} + \frac{4}{3}x + \left(\frac{4}{3} \times \frac{1}{2}\right)^{2} = \frac{2}{3} + \left(\frac{4}{3} \times \frac{1}{2}\right)^{2}$$

$$\left(x+\frac{2}{3}\right)^2=\frac{10}{9}$$

$$p = -\frac{2}{3}, q = \frac{10}{9}$$

유제 10 (1)
$$x=4\pm\sqrt{19}$$

(2)
$$x = -2 \pm \sqrt{6}$$

(3)
$$x = -1 \pm \frac{\sqrt{7}}{2}$$
 (4) $x = \frac{4 \pm \sqrt{10}}{3}$

(4)
$$x = \frac{4 \pm \sqrt{10}}{3}$$

$$(1) x^2 - 8x = 3에서$$

$$x^{2}-8x+\left(\frac{-8}{2}\right)^{2}=3+\left(\frac{-8}{2}\right)^{2}$$

$$(x-4)^2=19$$

$$\therefore x = 4 \pm \sqrt{19}$$

$$(2)$$
 $3x^2+12x-6=0$ 에서

$$x^2 + 4x - 2 = 0$$

$$x^2 + 4x = 2$$

$$x^2+4x+\left(\frac{4}{2}\right)^2=2+\left(\frac{4}{2}\right)^2$$

$$(x+2)^2 = 6$$

$$\therefore x = -2 \pm \sqrt{6}$$

$$(3)$$
 $4x^2 + 8x - 3 = 0$ 에서

$$x^2 + 2x - \frac{3}{4} = 0$$

$$x^2 + 2x = \frac{3}{4}$$

$$x^2+2x+\left(\frac{2}{2}\right)^2=\frac{3}{4}+\left(\frac{2}{2}\right)^2$$

$$(x+1)^2 = \frac{7}{4}$$

$$\therefore x = -1 \pm \frac{\sqrt{7}}{2}$$

$$(4) x^2 - \frac{8}{3}x + \frac{2}{3} = 0$$

$$x^2 - \frac{8}{2}x = -\frac{2}{2}$$

$$x^{2} - \frac{8}{3}x + \left(-\frac{8}{3} \times \frac{1}{2}\right)^{2} = -\frac{2}{3} + \left(-\frac{8}{3} \times \frac{1}{2}\right)^{2}$$

$$\left(x-\frac{4}{3}\right)^2=\frac{10}{9}$$

$$\therefore x = \frac{4 \pm \sqrt{10}}{3}$$

P. 81 개념 누르기 한판

1 (1)
$$x = \pm \frac{2}{3}$$
 (2) $x = \pm \frac{\sqrt{5}}{2}$

(2)
$$x = \pm \frac{\sqrt{5}}{2}$$

(3)
$$x = -5$$
 $\pm \pm x = 1$ (4) $x = 6 \pm \sqrt{7}$

(4)
$$x = 6 \pm \sqrt{7}$$

(5)
$$x=2\pm\frac{\sqrt{3}}{2}$$
 (6) $x=\frac{5\pm\sqrt{5}}{4}$

(6)
$$x = \frac{5 \pm \sqrt{5}}{4}$$

(7)
$$x = -\frac{7}{2} \times \frac{1}{2} \times x = \frac{9}{2}$$
 (8) $x = -\frac{1}{3} \times \frac{1}{2} \times x = 3$

$$(7) x = -\frac{1}{2} \pm \frac{1}{2} \times \frac{1}{2}$$

2 10 3
$$A=4$$
, $B=2$, $C=7$, $D=2\pm\sqrt{7}$

4 (1)
$$x = -5 \pm 2\sqrt{7}$$
 (2) $x = \frac{-1 \pm \sqrt{5}}{2}$

(3)
$$x=1\pm\frac{\sqrt{10}}{2}$$
 (4) $x=4\pm3\sqrt{2}$

(4)
$$x = 4 + 3\sqrt{2}$$

5
$$a=-6, b=10$$

1 (3)
$$(x+2)^2 = 9$$
 에서 $x+2 = \pm 3$

(4)
$$(x-6)^2-7=0$$
에서 $(x-6)^2=7$

$$x-6=\pm\sqrt{7}$$

$$\therefore x=6\pm\sqrt{7}$$

(5)
$$4(x-2)^2 = 3$$
 에서 $(x-2)^2 = \frac{3}{4}$

$$x-2 = \pm \frac{\sqrt{3}}{2}$$

$$\therefore x=2\pm\frac{\sqrt{3}}{2}$$

(6)
$$(4x-5)^2 = 5$$
에서 $4x-5 = \pm \sqrt{5}$

$$4x = 5 \pm \sqrt{5}$$

$$\therefore x = \frac{5 \pm \sqrt{5}}{4}$$

$$(7) \ 5\left(x-\frac{1}{2}\right)^2 - 80 = 0$$
 $\text{ and } \left(x-\frac{1}{2}\right)^2 = 16$

$$x - \frac{1}{2} = \pm 4$$

$$\therefore x = -\frac{7}{2}$$
 또는 $x = \frac{9}{2}$

(8)
$$2(3x-4)^2-50=0$$
에서 $(3x-4)^2=25$

$$3x-4=\pm 5$$

$$\therefore x = -\frac{1}{3} \, \text{EL} x = 3$$

2
$$\frac{1}{2}(x-5)^2 = 3$$
 $(x-5)^2 = 6$

$$x-5=\pm\sqrt{6} \qquad \therefore x=5\pm\sqrt{6}$$

따라서 두 근의 합은

$$(5-\sqrt{6})+(5+\sqrt{6})=10$$

4 (1)
$$x^2+10x-3=0$$
 에서 $x^2+10x=3$

$$x^2+10x+5^2=3+5^2$$
, $(x+5)^2=28$

$$\therefore x = -5 \pm 2\sqrt{7}$$

$$(2) x^2 + x - 1 = 0$$
에서 $x^2 + x = 1$

$$x^2 + x + \left(\frac{1}{2}\right)^2 = 1 + \left(\frac{1}{2}\right)^2$$

$$\left(x+\frac{1}{2}\right)^2 = \frac{5}{4}, \ x+\frac{1}{2} = \pm \frac{\sqrt{5}}{2}$$

$$\therefore x = \frac{-1 \pm \sqrt{5}}{2}$$

(3)
$$2x^2 = 4x + 3$$
 $||x||^2 = 2x + \frac{3}{2}$, $x^2 - 2x = \frac{3}{2}$

$$x^2-2x+(-1)^2=\frac{3}{2}+(-1)^2$$

$$(x-1)^2 = \frac{5}{2}, x-1 = \pm \sqrt{\frac{5}{2}} = \pm \frac{\sqrt{10}}{2}$$

$$\therefore x=1\pm\frac{\sqrt{10}}{2}$$

(4)
$$\frac{1}{2}x^2 - 4x - 1 = 0$$
에서 $x^2 - 8x - 2 = 0$, $x^2 - 8x = 2$

$$x^2 - 8x + (-4)^2 = 2 + (-4)^2$$

$$(x-4)^2 = 18$$
 : $x = 4 \pm 3\sqrt{2}$

5
$$x^2-5x+4=2x^2+7x$$
에서 $x^2+12x=4$

$$x^2 + 12x + 6^2 = 4 + 6^2$$

$$(x+6)^2=40$$

$$x+6=\pm 2\sqrt{10}$$
 $\therefore x=-6\pm 2\sqrt{10}$

$$\therefore a = -6, b = 10$$

○3 이차방정식의 풀이 (2)

개념 확인
$$a,\left(rac{b}{2a}
ight)^2, rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

필수 에제 1 (1)
$$x = \frac{-5 \pm \sqrt{13}}{6}$$
 (2) $x = -2 \pm 2\sqrt{2}$

(3)
$$x = \frac{3 \pm \sqrt{15}}{2}$$

(1) 근의 공식에 a=3, b=5, c=1을 대입하면

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 3 \times 1}}{2 \times 3}$$
$$= \frac{-5 \pm \sqrt{13}}{2 \times 3}$$

(2) 짝수 공식에 $a=1,\ b'=2,\ c=-4$ 를 대입하면

$$x = \frac{-2 \pm \sqrt{2^2 - 1 \times (-4)}}{1}$$
$$= -2 + \sqrt{8} = -2 + 2\sqrt{2}$$

근의 공식에
$$a=1, b=4, c=-4$$
를 대입하면

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times (-4)}}{2 \times 1}$$

$$= \frac{-4 \pm \sqrt{32}}{2} = \frac{-4 \pm 4\sqrt{2}}{2}$$

$$=-2+2\sqrt{2}$$

- (3) $2x^2-6x=3$ 에서 $2x^2-6x-3=0$ 이므로 짝수 공식에 $a=2,\ b'=-3,\ c=-3$ 을 대입하면 $x=\frac{-(-3)\pm\sqrt{(-3)^2-2\times(-3)}}{2}$ $=\frac{3\pm\sqrt{15}}{2}$
- 유제 1 (1) $x=\frac{-1\pm\sqrt{33}}{2}$ (2) $x=\frac{1\pm\sqrt{5}}{4}$ (3) $x=\frac{7\pm\sqrt{13}}{6}$
 - (1) 근의 공식에 a=1, b=1, c=-8을 대입하면 $x=\frac{-1\pm\sqrt{1^2-4\times1\times(-8)}}{2\times1}$ $=\frac{-1\pm\sqrt{33}}{2}$
 - (2) 짝수 공식에 a=4, b'=-1, c=-1을 대입하면 $x=\frac{-(-1)\pm\sqrt{(-1)^2-4\times(-1)}}{4}$ $=\frac{1\pm\sqrt{5}}{4}$
 - (3) $3x^2 = 7x 3$ 에서 $3x^2 7x + 3 = 0$ 이므로 근의 공식에 a = 3, b = -7, c = 3을 대입하면 $x = \frac{-(-7) \pm \sqrt{(-7)^2 4 \times 3 \times 3}}{2 \times 3}$ $= \frac{7 \pm \sqrt{13}}{6}$
- 유제 2 A=-3, B=41 근의 공식에 a=2, b=3, c=-4를 대입하면 $x=\frac{-3\pm\sqrt{3^2-4\times2\times(-4)}}{2\times2}$ $=\frac{-3\pm\sqrt{41}}{4}=\frac{A\pm\sqrt{B}}{4}$
 - · 4--3 R-41

P. 83

- 필수 예제 2 (1) $x = \frac{-2 \pm \sqrt{10}}{6}$ (2) x = -5 또는 $x = -\frac{1}{3}$
 - (1) 양변에 12를 곱하면 $6x^2+4x-1=0$

$$\therefore x = \frac{-2 \pm \sqrt{2^2 - 6 \times (-1)}}{6}$$
$$= \frac{-2 \pm \sqrt{10}}{6}$$

- (2) 양변에 10을 곱하면 $6x^2+32x+10=0$ $3x^2+16x+5=0$, (x+5)(3x+1)=0 $\therefore x=-5$ 또는 $x=-\frac{1}{2}$
- (3) (3x-2)(x-2)=2x(x-1)이 사 $3x^2-8x+4=2x^2-2x, x^2-6x+4=0$ ∴ $x=-(-3)\pm\sqrt{(-3)^2-1}\times 4=3\pm\sqrt{5}$

- 유제 3 (1) $x=\pm\sqrt{11}$ (2) $x=-\frac{4}{5}$ 또는 x=5 (3) $x=\frac{1\pm\sqrt{17}}{2}$
 - (1) 양변에 6을 곱하면 $2(x^2-2)-3(x^2-1)=-12$ $2x^2-4-3x^2+3=-12, x^2=11$ ∴ $x=\pm\sqrt{11}$
 - (2) 양변에 10을 곱하면 $5x^2-21x=20$ $5x^2-21x-20=0, (5x+4)(x-5)=0$ $\therefore x=-\frac{4}{5}$ 또는 x=5
 - (3) 좌변을 전개하면 $2x^2-2x-(x^2-x-6)=10$ $2x^2-2x-x^2+x+6-10=0$ $x^2-x-4=0$ $\therefore x=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times(-4)}}{2\times1}$ $=\frac{1\pm\sqrt{17}}{2}$
- 필수 예제 3 (1) x=-1 또는 x=10 (2) x=0 또는 x=1
 - (1) $(x-3)^2-3(x-3)=28$ 에서 $(x-3)^2-3(x-3)-28=0$ x-3=A로 놓으면 $A^2-3A-28=0$ (A+4)(A-7)=0∴ A=-4 또는 A=7즉, x-3=-4 또는 x-3=7∴ x=-1 또는 x=10
 - (2) x+2=A로 놓으면 $\frac{1}{6}A^2-\frac{5}{6}A+1=0$ 양변에 6을 곱하면 $A^2-5A+6=0$ (A-2)(A-3)=0 $\therefore A=2$ 또는 A=3즉, x+2=2 또는 x+2=3 $\therefore x=0$ 또는 x=1
- 유제 4 (1) $x=\frac{2}{3}$ 또는 x=3 (2) x=-1 또는 $x=\frac{1}{4}$
 - (1) x-1=A로 놓으면 $3A^2-5A-2=0$ (3A+1)(A-2)=0 $\therefore A=-\frac{1}{3}$ 또는 A=2즉, $x-1=-\frac{1}{3}$ 또는 x-1=2 $\therefore x=\frac{2}{3}$ 또는 x=3
 - $(2) \ x + \frac{1}{2} = A$ 로 놓으면 $\frac{1}{2}A^2 \frac{1}{8}A \frac{3}{16} = 0$ 양변에 16을 곱하면 $8A^2 2A 3 = 0$ (2A + 1)(4A 3) = 0 $\therefore A = -\frac{1}{2}$ 또는 $A = \frac{3}{4}$ 즉, $x + \frac{1}{2} = -\frac{1}{2}$ 또는 $x + \frac{1}{2} = \frac{3}{4}$ $\therefore x = -1$ 또는 $x = \frac{1}{4}$

P. 84 한 번 더 연습

1 (1)
$$x = \frac{-7 \pm \sqrt{5}}{2}$$
 (2) $x = \frac{-3 \pm \sqrt{29}}{2}$

(2)
$$x = \frac{-3 \pm \sqrt{29}}{2}$$

(3)
$$x = -1 \pm \sqrt{5}$$

(4)
$$x = -3 \pm \sqrt{13}$$

(5)
$$x = \frac{5 \pm \sqrt{33}}{4}$$

(5)
$$x = \frac{5 \pm \sqrt{33}}{4}$$
 (6) $x = \frac{-4 \pm \sqrt{19}}{3}$
2 (1) $x = -2 \pm \sqrt{7}$ (2) $x = 2 \pm \frac{1}{2} x = 3$

2 (1)
$$x = -2 \pm \sqrt{7}$$

(2)
$$x=2 \, \text{E} = x=3$$

(3)
$$x = \frac{-5 \pm \sqrt{2}}{4}$$

(4)
$$x = \frac{-1 \pm \sqrt{41}}{4}$$

(3)
$$x = \frac{-5 \pm \sqrt{29}}{4}$$
 (4) $x = \frac{-1 \pm \sqrt{41}}{4}$
3 (1) $x = \frac{5 \pm \sqrt{17}}{2}$ (2) $x = \frac{-1 \pm 3\sqrt{5}}{4}$

(2)
$$x = \frac{-1 \pm 3\sqrt{5}}{4}$$

(3)
$$x = -2 \, \text{F} = -1$$

(3)
$$x = -2 \, \text{EL} \, x = -1$$
 (4) $x = -\frac{3}{2} \, \text{EL} \, x = 5$

4 (1)
$$a=0$$
 또는 $a=\frac{1}{2}$ (2) $x=-\frac{4}{3}$ 또는 $x=0$

(2)
$$x = -\frac{4}{3}$$
 또는 $x = 0$

1 (1)
$$x = \frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times 11}}{2 \times 1}$$

= $\frac{-7 \pm \sqrt{5}}{2}$

(2)
$$x^2 - 5 = -3x$$
 $|x|$ $x^2 + 3x - 5 = 0$

$$\therefore x = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-5)}}{2 \times 1}$$

$$= \frac{-3 \pm \sqrt{29}}{2}$$

(3)
$$x = -1 \pm \sqrt{1^2 - 1 \times (-4)} = -1 \pm \sqrt{5}$$

(4)
$$x^2+6x=4$$
에서 $x^2+6x-4=0$

$$\therefore x = -3 \pm \sqrt{3^2 - 1 \times (-4)} = -3 \pm \sqrt{13}$$

(5)
$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 2 \times (-1)}}{2 \times 2}$$

$$5 \pm \sqrt{33}$$

$$=\frac{5\pm\sqrt{33}}{4}$$

(6)
$$x = \frac{-4 \pm \sqrt{4^2 - 3 \times (-1)}}{3} = \frac{-4 \pm \sqrt{19}}{3}$$

2 (1) 양변에 6을 곱하면
$$x^2 + 4x - 3 = 0$$

$$\therefore x = -2 \pm \sqrt{2^2 - 1 \times (-3)} = -2 \pm \sqrt{7}$$

$$(2)$$
 양변에 10 을 곱하면 $5x^2-25x+30=0$

$$x^2-5x+6=0$$
, $(x-2)(x-3)=0$

(3) 양변에 10을 곱하면 $4x^2 + 10x - 1 = 0$

$$\therefore x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1)}}{4}$$
$$= \frac{-5 \pm \sqrt{29}}{4}$$

(4) 양변에 10을 곱하면 $6x^2-2(x^2-x)=10$

$$6x^2 - 2x^2 + 2x = 10, 4x^2 + 2x - 10 = 0$$

$$2x^2 + x - 5 = 0$$

$$\therefore x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-5)}}{2 \times 2}$$
$$= \frac{-1 \pm \sqrt{41}}{4}$$

3 (1)
$$(x-1)(x-4)=2$$
 $|x| x^2-5x+4=2$ $x^2-5x+2=0$

$$\therefore x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 2}}{2 \times 1}$$
$$= \frac{5 \pm \sqrt{17}}{2}$$

$$(2) \ 4(x-1)^2+10(x-2)+5=0$$
에서

$$4x^2 - 8x + 4 + 10x - 20 + 5 = 0$$

$$4x^2+2x-11=0$$

$$\therefore x = \frac{-1 \pm \sqrt{1^2 - 4 \times (-11)}}{4}$$

$$= \frac{-1 \pm \sqrt{45}}{4} = \frac{-1 \pm 3\sqrt{5}}{4}$$

(3)
$$(x+1)^2+(x+2)^2=(2x+3)^2$$
에서

$$x^2+2x+1+x^2+4x+4=4x^2+12x+9$$

$$2x^2 + 6x + 4 = 0$$

$$x^2 + 3x + 2 = 0$$

$$(x+2)(x+1)=0$$

$$\therefore x = -2 \stackrel{\text{\tiny }}{=} x = -1$$

(4) 양변에 15를 곱하면
$$3x(x-1)=5(x-3)(x+1)$$

$$3x^2 - 3x = 5x^2 - 10x - 15$$

$$2x^2 - 7x - 15 = 0$$

$$(2x+3)(x-5)=0$$

$$\therefore x = -\frac{3}{2} \pm x = 5$$

4 (1)
$$2a+1=A$$
로 놓으면 $A^2-3A+2=0$

$$(A-1)(A-2)=0$$

즉,
$$2a+1=1$$
 또는 $2a+1=2$

∴
$$a=0$$
 또는 $a=\frac{1}{2}$

(2)
$$x+1=A$$
로 놓으면 $\frac{1}{2}A^2-\frac{1}{3}A-\frac{1}{6}=0$

양변에 6을 곱하면 $3A^2 - 2A - 1 = 0$

$$(3A+1)(A-1)=0$$

$$\therefore A = -\frac{1}{3}$$
 또는 $A = 1$

즉,
$$x+1=-\frac{1}{3}$$
 또는 $x+1=1$

$$\therefore x = -\frac{4}{3} \pm \pm x = 0$$

P. 85

개념 확인

a, b, c의 값	b²-4ac의 값	근의 개수
(1) $a=3$, $b=4$, $c=-1$	$4^2 - 4 \times 3 \times (-1) = 28$	2개
(2) $a=1, b=6, c=9$	$6^2 - 4 \times 1 \times 9 = 0$	1개
(3) $a=2$, $b=-5$, $c=4$	$(-5)^2 - 4 \times 2 \times 4 = -7$	0개

필수 예제 4 다. ㄹ. ㅁ

- ¬. $b^2 4ac = (-3)^2 4 \times 1 \times 5 = -11 < 0$ ∴ 구이 없다
- $b'^2 ac = (-2)^2 4 \times 1 = 0$
 - :. 중근
- $c. b^2 4ac = (-7)^2 4 \times 3 \times (-2) = 73 > 0$
 - ∴ 서로 다른 두 근
- $= b^2 4ac = 5^2 4 \times 2 \times (-2) = 41 > 0$
 - :. 서로 다른 두 근
- □. $(x+3)^2=4x+9$ 에서 $x^2+6x+9=4x+9$ $x^2+2x=0$
 - $b'^2 ac = 1^2 1 \times 0 = 1 > 0$
 - ∴ 서로 다른 두 근
- ㅂ. 양변에 12를 곱하면 $4x^2-2x+1=0$ $b'^2-ac=(-1)^2-4\times 1=-3<0$
 - .. 근이 없다.

유제 5 ⑤

- ① $b'^2 ac = (-4)^2 1 \times 5 = 11 > 0$
 - :. 서로 다른 두 근
- ② $b^2 4ac = (-9)^2 4 \times 2 \times (-3) = 105 > 0$
 - .. 서로 다른 두 근
- $3b'^2-ac=2^2-3\times(-1)=7>0$
 - :. 서로 다른 두 근
- $4b^{2}-ac=1^{2}-4\times(-1)=5>0$
 - :. 서로 다른 두 근
- $5b^2-4ac=7^2-4\times5\times8=-111<0$
 - ∴ 근이 없다.

필수 예제 5 (1) $k < \frac{9}{8}$ (2) $k = \frac{9}{8}$ (3) $k > \frac{9}{8}$

- $b^2 4ac = 3^2 4 \times 1 \times 2k = 9 8k$
- $(1) b^2 4ac > 0$ 이어야 하므로
 - 9-8k>0 : $k<\frac{9}{8}$
- (2) $b^2 4ac = 0$ 이어야 하므로
 - 9-8k=0 : $k=\frac{9}{8}$
- $(3) b^2 4ac < 0$ 이어야 하므로
 - 9-8k<0 : $k>\frac{9}{8}$

유제 6 (1) k < 6 (2) k = 6 (3) k > 6

$$b'^2-ac=(-1)^2-1\times(k-5)=6-k$$

- (1) $b'^2 ac > 0$ 이어야 하므로
 - 6-k>0 $\therefore k<6$
- (2) $b'^2 ac = 0$ 이어야 하므로
 - 6-k=0 $\therefore k=6$
- (3) $b'^2 ac < 0$ 이어야 하므로
 - 6-k<0 $\therefore k>6$

유제 7 k=12, x=3

중근을 가지므로

$$b'^2 - ac = (-3)^2 - 1 \times (k-3) = 0$$
 $\therefore k = 12$
 $x = x^2 - 6x + 9 = 0 \text{ and } (x-3)^2 = 0$

∴ x=3(중근)

P. 86

필수 예제 6 $-\frac{7}{3}, \frac{1}{3}$

두 근을 α , β 라 하면 이차방정식의 근과 계수의 관계에 의해 $\alpha+\beta=-\frac{7}{3},\ \alpha\beta=\frac{1}{3}$

유제 8 1

$$m = -\frac{-2}{5} = \frac{2}{5}, n = \frac{-3}{5} = -\frac{3}{5}$$

$$m-n=\frac{2}{5}-\left(-\frac{3}{5}\right)=1$$

필수 예제 7 (1) $-\frac{1}{3}$ (2) 7

$$\alpha + \beta = -\frac{-1}{1} = 1$$
, $\alpha \beta = \frac{-3}{1} = -3$ 이므로

$$(1)\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{1}{-3} = -\frac{1}{3}$$

(2)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 1^2 - 2 \times (-3) = 7$$

유제 9 (1) 7 (2) 21 (3) $\frac{21}{2}$

$$\alpha + \beta = -\frac{-5}{1} = 5$$
, $\alpha \beta = \frac{2}{1} = 2$ 이므로

- (1) $\alpha + \alpha\beta + \beta = (\alpha + \beta) + \alpha\beta = 5 + 2 = 7$
- (2) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta = 5^2 2 \times 2 = 21$
- (3) $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{21}{2}$

P. 87

필수 예제 8 (1)
$$x^2-4x-5=0$$

(2)
$$-x^2+6x-9=0$$

(3)
$$3x^2 - 9x - 6 = 0$$

(1) (x+1)(x-5)=0이므로 $x^2-4x-5=0$

다른 풀이

두 근의 합은 -1+5=4, 곱은 $-1\times 5=-5$ 이므로

$$x^2$$
의 계수가 1 인 이차방정식은

$$(2) - (x-3)^2 = 0$$
이므로 $-(x^2-6x+9) = 0$

$$x - x^2 + 6x - 9 = 0$$

(3)
$$3(x^2-3x-2)=0$$
이旦로

$$3x^2 - 9x - 6 = 0$$

 $x^2 - 4x - 5 = 0$

유제 10 (1) $6x^2 - 5x + 1 = 0$

(2)
$$3x^2+12x+12=0$$

(3)
$$-4x^2+16x-1=0$$

(1)
$$6\left(x-\frac{1}{2}\right)\left(x-\frac{1}{3}\right)=0$$
이므로

$$6\left(x^2 - \frac{5}{6}x + \frac{1}{6}\right) = 0$$

$$\therefore 6x^2 - 5x + 1 = 0$$

다른 풀이

두 근의 합은
$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
, 곱은 $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ 이므로

 x^2 의 계수가 6인 이차방정식은

$$6\left(x^2 - \frac{5}{6}x + \frac{1}{6}\right) = 0$$

$$\therefore 6x^2 - 5x + 1 = 0$$

(2)
$$3(x+2)^2 = 0$$
이므로 $3(x^2+4x+4) = 0$

$$3x^2+12x+12=0$$

$$(3) -4\left(x^2-4x+\frac{1}{4}\right) = 0$$
이므로 $-4x^2+16x-1=0$

필수 예제 9 $x=-3-2\sqrt{2}, a=1$

한 근이
$$-3+2\sqrt{2}$$
이므로 다른 한 근은 $-3-2\sqrt{2}$ 이다. $x^2+6x+a=0$ 에서 a 는 두 근의 곱이므로 $a=(-3+2\sqrt{2})(-3-2\sqrt{2})=9-8=1$

$x^2-4x-1=0$

한 근이 $2-\sqrt{5}$ 이므로 다른 한 근은 $2+\sqrt{5}$ 이다.

두 근의 합은
$$(2-\sqrt{5})+(2+\sqrt{5})=4$$

두 근의 곱은
$$(2-\sqrt{5})(2+\sqrt{5})=4-5=-1$$

따라서 x^2 의 계수가 1인 이차방정식은

$$x^2 - 4x - 1 = 0$$

다른 풀이

$$x=2-\sqrt{5}$$
에서 $x-2=-\sqrt{5}$

양변을 제곱하면 $(x-2)^2 = (-\sqrt{5})^2$

$$x^2 - 4x + 4 = 5$$

$$x^2 - 4x - 1 = 0$$

P. 88~89 개념 누르기 한판

2 (1)
$$x = \frac{3 \pm \sqrt{13}}{4}$$
 (2) $x = 5 \pm \sqrt{34}$ (3) $x = -1$ $\pm \pm x = 8$

- **3** ③ **4** ③ **5** ④
- **6** ① **7** 10

$$2x^2-4x-16=0$$

$$9 - 4$$

2 (1) 양변에 10을 곱하면
$$4x^2 - 6x = 1$$

$$4x^2 - 6x - 1 = 0$$

$$\therefore x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times (-1)}}{4}$$

$$=\frac{3\pm\sqrt{13}}{4}$$

(2) 양변에 6을 곱하면 3(x+1)(x-3)=2x(x+2)

$$3x^2 - 6x - 9 = 2x^2 + 4x$$

$$x^2 - 10x - 9 = 0$$

$$\therefore x = -(-5) \pm \sqrt{(-5)^2 - 1 \times (-9)}$$
= 5 + $\sqrt{34}$

(3)
$$2x-3=A$$
로 놓으면 $A^2=8A+65$

$$A^2-8A-65=0$$
, $(A+5)(A-13)=0$

$$\therefore x = -1 \pm x = 8$$

$$A^2-8A+16=0$$
, $(A-4)^2=0$

즉,
$$x-2y=4$$
이므로

$$2x-4y=2(x-2y)=2\times 4=8$$

4 해를 가지려면

$$b'^2 - ac = (-2)^2 - 2 \times (2k - 3) \ge 0$$
이어야 하므로

$$10-4k \ge 0$$

$$\therefore k \leq \frac{5}{2}$$

5 ①
$$\alpha + \beta = -\frac{-4}{1} = 4$$

$$2 \alpha \beta = \frac{1}{1} = 1$$

$$(4) \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4^2 - 2 \times 1 = 14$$

$$(5) \frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{14}{1} = 14$$

6 두 근을 α , $\alpha+6$ 이라 하면

두 근의 합은
$$\alpha + (\alpha + 6) = -\frac{-4}{2}$$

$$2\alpha + 6 = 2$$
 $\therefore \alpha = -2$

두 근의 곱은
$$\alpha(\alpha+6) = \frac{k}{2}$$

$$-2 \times (-2+6) = \frac{k}{2}$$
 : $k = -16$

7
$$2(x-1)(x-2)=0$$
이므로 $2(x^2-3x+2)=0$

$$\therefore 2x^2 - 6x + 4 = 0$$

따라서
$$a=6$$
. $b=4$ 이므로

$$a+b=6+4=10$$

A+B=5+33=38

- 8 $\alpha+\beta=-\frac{-4}{1}=4$, $\alpha\beta=\frac{-2}{1}=-2$ 이므로 두 근이 4, -2이고 x^2 의 계수가 2인 이차방정식은 2(x-4)(x+2)=0, $2(x^2-2x-8)=0$ $2x^2-4x-16=0$
- 9 한 근이 $-1+\sqrt{5}$ 이므로 다른 한 근은 $-1-\sqrt{5}$ 이다. $x^2+2x+m=0$ 에서 m은 두 근의 곱이므로 $m=(-1+\sqrt{5})(-1-\sqrt{5})=1-5=-4$

P. 90

 $10(x+4)=x^2+16$ 에서 $x^2-10x-24=0$ (x+2)(x-12)=0 $\therefore x=-2$ 또는 x=12 그런데 x>0이므로 x=12 따라서 동생의 나이는 12살이다.

필수 예제 1 7, 9

방법1 두 수를 x, x+2(x는 홀수)라 하면
 x(x+2)=63
 x²+2x-63=0, (x+9)(x-7)=0
 ∴ x=-9 또는 x=7
 그런데 x>0이므로 x=7
 따라서 구하는 두 수는 7, 9이다.

방법2 두 수를 2x-1, 2x+1(x는 자연수)이라 하면 (2x-1)(2x+1)=63
 4x²-1=63, 4x²=64, x²=16
 ∴ x=±4
 그런데 x>0이므로 x=4
 따라서 구하는 두 수는 7, 9이다.

유제 1 8

두 수를 x, x+4라 하면 x(x+4)=96 $x^2+4x-96=0$, (x+12)(x-8)=0 x=-12 또는 x=8 그런데 x는 자연수이므로 x=8 따라서 두 수는 8, 12이고, 이 중 작은 수는 8이다.

필수 예제 2 15명

학생 수를 x명이라 하면 한 사람이 받는 사탕의 개수는 (x-4)개이므로 x(x-4)=165 $x^2-4x-165=0$, (x+11)(x-15)=0 $\therefore x=-11$ 또는 x=15

그런데 x>0이므로 x=15따라서 학생 수는 15명이다.

유제 2 10명

학생 수를 x명이라 하면 한 사람이 받는 사과의 개수는 (x+3)개이므로 x(x+3)=130 $x^2+3x-130=0$, (x+13)(x-10)=0 $\therefore x=-13$ 또는 x=10 그런데 x>0이므로 x=10 따라서 학생 수는 10명이다.

P. 91

필수 예제 3 (1) 2초 후 또는 3초 후 (2) 5초 후

(1) $-5t^2 + 25t = 30$, $5t^2 - 25t + 30 = 0$ $t^2 - 5t + 6 = 0$, (t - 2)(t - 3) = 0∴ t = 2 또는 t = 3따라서 물 로켓의 높이가 30 m가 되는 것은 쏘아 올린 지 2초 후 또는 3초 후이다.

(2) 지면에 떨어지는 것은 높이가 0 m일 때이므로
 -5t²+25t=0, t²-5t=0, t(t-5)=0
 ∴ t=0 또는 t=5
 그런데 t>0이므로 t=5
 따라서 물 로켓이 지면에 떨어지는 것은 쏘아 올린 지 5초후이다.

유제 3 3초 후

-5x²+35x+40=100, 5x²-35x+60=0 x²-7x+12=0, (x-3)(x-4)=0 ∴ x=3 또는 x=4 따라서 이 공의 높이가 처음으로 100m가 되는 것은 쏘아 올 린 지 3초 후이다.

필수 예제 4 10 cm

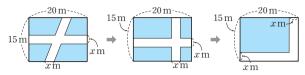
처음 정사각형의 한 변의 길이를 xcm라 하면 (x+2)(x-4)=72 $x^2-2x-8=72$, $x^2-2x-80=0$ (x+8)(x-10)=0 $\therefore x=-8$ 또는 x=10 그런데 x>4이므로 x=10 따라서 처음 정사각형의 한 변의 길이는 x=10 따라서 처음 정사각형의 한 변의 길이는 x=10 다

유제 4 2 cm

색칠한 원의 반지름의 길이를 xcm라 하면 $\pi(x+2)^2 = 4\pi x^2$ $x^2 + 4x + 4 = 4x^2$, $3x^2 - 4x - 4 = 0$ (3x+2)(x-2) = 0 $\therefore x = -\frac{2}{3}$ 또는 x = 2

그런데 x>0이므로 x=2따라서 색칠한 워의 반지름의 길이는 2cm이다

필수 예제 5 3



위의 그림의 세 직사각형에서 색칠한 부분의 넓이는 모두 같 ㅇㅁ로

(20-x)(15-x)=204

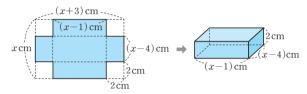
 $300 - 35x + x^2 = 204$. $x^2 - 35x + 96 = 0$

(x-3)(x-32)=0

∴ x=3 또는 x=32

그런데 0<x<15이므로 x=3

유제 5 7 cm



위의 그림과 같이 처음 직사각형 모양의 종이의 세로의 길이를 xcm라 하면

2(x-1)(x-4)=36

 $x^2-5x+4=18$, $x^2-5x-14=0$

(x+2)(x-7)=0

 $\therefore x = -2 \pm x = 7$

그런데 x>4이므로 x=7

따라서 처음 직사각형 모양의 종이의 세로의 길이는 7cm이다.

P. 92 개념 누르기 한판

1 십각형

2 -4 또는 -2 3 ②

4 9cm

5 3초 후 또는 7초 후

 $\frac{n(n-3)}{2} = 35에서 n^2 - 3n - 70 = 0$ (n+7)(n-10)=0 : n=-7 $\pm \frac{1}{6}$ n=10그런데 n > 3이므로 n = 10

따라서 구하는 다각형은 십각형이다.

 $\frac{1}{2}$ 어떤 수를 x라 하면 $(x+4)^2=2(x+4)$ $x^2+8x+16=2x+8$, $x^2+6x+8=0$ (x+4)(x+2)=0 $\therefore x = -4 \pm x = -2$ 따라서 어떤 수는 -4 또는 -2이다.

- $-5t^2+50t+5=125$, $5t^2-50t+120=0$ $t^2-10t+24=0$, (t-4)(t-6)=0∴ *t*=4 또는 *t*=6 따라서 이 폭죽이 처음으로 125 m의 높이에 도달하는 데 걸 리는 시간은 4초이다.
- \overline{AC} 의 길이를 xcm라 하면 \overline{BC} 의 길이는 (12-x) cm이므로 $x^2 + (12 - x)^2 = 90$ $x^2+144-24x+x^2=90$, $2x^2-24x+54=0$ $x^2-12x+27=0$, (x-3)(x-9)=0∴ *x*=3 또는 *x*=9 그런데 6<x<12이므로 x=9 따라서 \overline{AC} 의 길이는 9 cm이다.
- 5 두 점 P. Q가 동시에 출발한 지 x초 후의 \overline{AP} 의 길이는 x cm. \overline{BQ} 의 길이는 2xcm이므로 $\triangle PBQ = \frac{1}{2} \times 2x \times (10 - x) = 21$ $x(10-x)=21, x^2-10x+21=0$ (x-3)(x-7)=0 : $x=3 \pm x=7$ 따라서 $\triangle PBQ$ 의 넓이가 21 cm^2 가 되는 것은 출발한 지 3초 후 또는 7초 후이다

P. 93~96 단원 마무리

1 2, 3

2 4

a=-2, b=0

4 ②

5 ④

6 ②

7 A = -2, x = 2

8 ③

11 ⑤ **12** ① **13** ④

9 (4)

10 $\frac{7}{4}$ **14** ③

15 ①

16 2 **17** (5)

18 -4

19 ①

20 $x = -3 \pm \sqrt{37}$

23 12초후 24 5

25 -5. 과정은 풀이 참조 **26** 과정은 풀이참조 (1) $\left(x-\frac{3}{2}\right)^2 = \frac{7}{4}$ (2) $x = \frac{3 \pm \sqrt{7}}{2}$

27 $x = \frac{-1 \pm \sqrt{17}}{4}$, 과정은 풀이 참조

28 12 m, 과정은 풀이 참조

- 1 ① $3x^2 = x^2 x + 1$ 에서 $2x^2 + x 1 = 0$ \Rightarrow 이차방정식
 - ② x²+4x+3 ⇒ 이차식
 - ③ $x^2+1=x(x+1)$ 에서 $x^2+1=x^2+x$ ∴ -x+1=0 ⇒ 일차방정식
 - ④ $x^2+2x+3=0$ \Rightarrow 이차방정식
 - ⑤ $x^2+2=3x$ 에서 $x^2-3x+2=0$ \Rightarrow 이차방정식

- $\mathbf{2}$ [] 안의 수를 주어진 이차방정식의 x에 각각 대입하면
 - ① $1^2 2 \times 1 \neq 0$
 - ② $(-1)^2 6 \times (-1) + 5 \neq 0$
 - $(3)(-5)^2-(-5)-20\neq 0$
 - (4) $2 \times (\frac{1}{2})^2 + 3 \times \frac{1}{2} 2 = 0$
 - (5) $3 \times \left(\frac{1}{3}\right)^2 3 \times \frac{1}{3} 2 \neq 0$
- 3 $x^2+ax-8=0$ 에 x=4를 대입하면 $4^2+a\times 4-8=0$, 4a+8=0∴ a=-2 $x^2-4x-b=0$ 에 x=4를 대입하면 $4^2-4\times 4-b=0$ ∴ b=0
- 4 $x^2+5x+1=0$ 에 x=p를 대입하면 $p^2+5p+1=0$ 이므로 $p^2+5p=-1$ $p^2+5p-3=-1-3=-4$
- 5 $2x^2 x 6 = 0$ 에서 (2x+3)(x-2) = 0 $\therefore x = -\frac{3}{2}$ 또는 x = 2즉, x = 2가 $x^2 - 5x + a - 1 = 0$ 의 한 근이므로 x = 2를 대입하면 $2^2 - 5 \times 2 + a - 1 = 0$, a - 7 = 0 $\therefore a = 7$
- **6** ② $(x-4)^2=0$ $\therefore x=4(\frac{2}{2})$
- 7 $x^2+2=A(1-2x)$ 에서 $x^2+2=A-2Ax$ $x^2+2Ax+2-A=0$ ··· ① ①이 중근을 가지려면 좌변이 완전제곱식이어야 하므로 $2-A=\left(\frac{2A}{2}\right)^2$ 에서 $2-A=A^2$ $A^2+A-2=0$, (A+2)(A-1)=0 \therefore A=-2 또는 A=1 그런데 A<0이므로 A=-2 이때 A=-2를 ①에 대입하면 $x^2-4x+4=0$, $(x-2)^2=0$

다른 풀이

∴ *x*=2(중근)

- ①에서 $b'^2 ac = A^2 1 \times (2 A) = 0$ 이어야 하므로 $A^2 + A 2 = 0$, (A + 2)(A 1) = 0 $\therefore A = -2$ ($\because A < 0$) 이때 A = -2를 ①에 대입하면 $x^2 4x + 4 = 0$, $(x 2)^2 = 0$ $\therefore x = 2(중규)$
- 8 $4(x-3)^2 = 20$ 에서 $(x-3)^2 = 5$ $x-3 = \pm \sqrt{5}$ $\therefore x=3\pm \sqrt{5}$

- ④ a=5, b=16이면
 (x-5)²=16, x-5=±4
 ∴ x=1 또는 x=9
 즉, b>0이지만 양수인 두 근을 가진다.
- 10 $x^2 + 3x + 2 = 0$ 에서 $x^2 + 3x = -2$ $x^2 + 3x + \left(\frac{3}{2}\right)^2 = -2 + \left(\frac{3}{2}\right)^2$ $\therefore \left(x + \frac{3}{2}\right)^2 = \frac{1}{4}$ 따라서 $a = \frac{3}{2}, b = \frac{1}{4}$ 이므로 $a + b = \frac{3}{2} + \frac{1}{4} = \frac{7}{4}$
- 11 $x = \frac{-(-A) \pm \sqrt{(-A)^2 4 \times 2 \times 1}}{2 \times 2}$ $= \frac{A \pm \sqrt{A^2 - 8}}{4} = \frac{5 \pm \sqrt{B}}{4}$ 따라서 A = 5, $B = A^2 - 8 = 5^2 - 8 = 17$ 이므로 A + B = 5 + 17 = 22
- 12 양변에 6을 곱하면 2x(x-2)-3x(x+2)=2x-1 $2x^2-4x-3x^2-6x=2x-1$ $x^2+12x-1=0$ ∴ $x=-6\pm\sqrt{6^2-1\times(-1)}=-6\pm\sqrt{37}$
- 13 양변에 10을 곱하면 $x^2 8 = 3x$ $x^2 3x 8 = 0$ $∴ x = \frac{-(-3) \pm \sqrt{(-3)^2 4 \times 1 \times (-8)}}{2 \times 1}$ $= \frac{3 \pm \sqrt{41}}{2}$ 따라서 $a = \frac{3 \sqrt{41}}{2}$ 이고, $6 < \sqrt{41} < 7$ 이므로 $-7 < -\sqrt{41} < -6, -4 < 3 \sqrt{41} < -3$ $-2 < \frac{3 \sqrt{41}}{2} < -\frac{3}{2} < -1$ 즉 -2 < a < -1이므로 n = -1
- 15 중근을 가지려면 $b'^2 ac = m^2 1 \times n = 0$ 이어야 하므로 $m^2 = n$ 따라서 순서쌍 (m, n)은 (1, 1), (2, 4)의 2개이다.

- 16 해를 가지려면 $b^2 4ac = (2k-1)^2 4 \times 1 \times (k^2 2) \ge 0$ $-4k + 9 \ge 0 \qquad \therefore k \le \frac{9}{4}$ 따라서 가장 큰 정수 k의 값은 2이다.
- 17 ① $\alpha + \beta = -\frac{-8}{4} = 2$ ② $\alpha\beta = -\frac{1}{4}$ ③ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 2 \times \left(-\frac{1}{4}\right) = \frac{9}{2}$ ④ $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = 2^2 - 4 \times \left(-\frac{1}{4}\right) = 5$ ⑤ $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} = \frac{9}{2} \div \left(-\frac{1}{4}\right)^2 = \frac{9}{2} \times 16 = 72$
- 18 두 근을 α , 3α 라 하면 두 근의 합은 $\alpha+3\alpha=-\frac{8}{3}$ $4\alpha=-\frac{8}{3} \qquad \therefore \alpha=-\frac{2}{3}$ 두 근의 곱은 $3\alpha^2=-\frac{k}{3}$ $3\times\left(-\frac{2}{3}\right)^2=-\frac{k}{3}$ $\therefore k=-4$
- 19 $\alpha+\beta=-\frac{-5}{2}=\frac{5}{2}$, $\alpha\beta=\frac{1}{2}$ 이므로 $\alpha-1$, $\beta-1$ 을 두 근으로 하는 이차방정식에서 두 근의 합은 $(\alpha-1)+(\beta-1)=\alpha+\beta-2=\frac{5}{2}-2=\frac{1}{2}$ 두 근의 곱은 $(\alpha-1)(\beta-1)=\alpha\beta-(\alpha+\beta)+1=\frac{1}{2}-\frac{5}{2}+1=-1$ 이때 x^2 의 계수가 2이므로 구하는 이차방정식은 $2\left(x^2-\frac{1}{2}x-1\right)=0$ $\therefore 2x^2-x-2=0$
- 20 준기가 잘못 본 이차방정식은 (x+4)(x-7)=0이므로 $x^2-3x-28=0$ 선미가 잘못 본 이차방정식은 두 근의 합이 $(-3+\sqrt{2})+(-3-\sqrt{2})=-6$ 두 근의 곱이 $(-3+\sqrt{2})(-3-\sqrt{2})=9-2=7$ 이므로 $x^2+6x+7=0$ 그런데 준기는 상수항을, 선미는 일차항의 계수를 바르게 보았으므로 처음의 이차방정식은 $x^2+6x-28=0$ $\therefore x=-3\pm\sqrt{3^2-1}\times(-28)=-3\pm\sqrt{37}$

- **21** 한 근이 $2+\sqrt{3}$ 이므로 다른 한 근은 $2-\sqrt{3}$ 이다. $x^2-4x-a+3=0$ 에서 -a+3은 두 근의 곱이므로 $-a+3=(2+\sqrt{3})(2-\sqrt{3})=4-3=1$ 즉, -a+3=1이므로 a=2
- 22 $\overline{AB}: \overline{BC} = \overline{BC}: \overline{AC}$ 이므로 $(1+x): x = x: 1 \text{에서 } x^2 = 1 + x$ $x^2 x 1 = 0$ $\therefore x = \frac{-(-1) \pm \sqrt{(-1)^2 4 \times 1 \times (-1)}}{2 \times 1} = \frac{1 \pm \sqrt{5}}{2}$ 그런데 x > 0이므로 $x = \frac{1 + \sqrt{5}}{2}$
- 23 야구공이 지면에 떨어질 때의 높이는 $0 \, \mathrm{mol}$ 므로 $60t-5t^2=0$, $t^2-12t=0$ t(t-12)=0 $\therefore t=0$ 또는 t=12 그런데 t>0이므로 t=12 따라서 이 야구공이 지면에 떨어지는 것은 쏘아 올린 지 12초 후이다.
- **24** 점 P(a, b)는 y = -2x + 8의 그래프 위의 점이므로 b = -2a + 8즉. 점 P의 좌표는 (a, -2a+8)이때 점 Q의 좌표는 (a, 0)이므로 $\overline{PQ} = -2a + 8$, $\overline{OQ} = a$ 또 점 A의 좌표는 (0, 8)이므로 $\overline{AO} = 8$ $\therefore \Box AOQP = \frac{1}{2} \times (\overline{PQ} + \overline{AO}) \times \overline{OQ}$ $=\frac{1}{2} \times \{(-2a+8)+8\} \times a$ $=-a^2+8a$ 이때 □AOQP=15이므로 $-a^2+8a=15$, $a^2-8a+15=0$ (a-3)(a-5)=0 ∴ a=3 또는 a=5(i) a=3일 때. $b = -2a + 8 = -2 \times 3 + 8 = 2$ (ii) a=5일 때 $b = -2a + 8 = -2 \times 5 + 8 = -2$ 그런데 a>0, b>0이므로 (i), (ii)에서 a=3, b=2

a+b=3+2=5

25 $x^2 - 8x + 15 = 0$ 에서 (x - 3)(x - 5) = 0∴ x = 3 또는 x = 5 ...(i) $5x^2 - 13x - 6 = 0$ 에서 (5x + 2)(x - 3) = 0∴ $x = -\frac{2}{5}$ 또는 x = 3 ...(ii) 이때 두 이차방정식의 공통인 근은 x = 3이다. ...(iii) 따라서 $2x^2 + ax - 3 = 0$ 에 x = 3을 대입하면 $2 \times 3^2 + a \times 3 - 3 = 0$, 15 + 3a = 0∴ a = -5 ...(iv)

...(ii)

채점 기준	배점
(i) 이차방정식 $x^2 - 8x + 15 = 0$ 의 해 구하기	30 %
(ii) 이차방정식 $5x^2-13x-6=0$ 의 해 구하기	30 %
(iii) 두 이차방정식의 공통인 근 구하기	20 %
(iv) a의 값 구하기	20 %

26 (1)
$$2x^2 - 6x + 1 = 0$$
 $||A||$ $x^2 - 3x + \frac{1}{2} = 0$...(i) $x^2 - 3x = -\frac{1}{2}$ $x^2 - 3x + \left(\frac{-3}{2}\right)^2 = -\frac{1}{2} + \left(\frac{-3}{2}\right)^2$ $\left(x - \frac{3}{2}\right)^2 = \frac{7}{4}$...(ii) $(2) \left(x - \frac{3}{2}\right)^2 = \frac{7}{4}$ $||A||$ $x - \frac{3}{2} = \pm \frac{\sqrt{7}}{2}$...(iii)

 $\therefore x = \frac{3 \pm \sqrt{7}}{2}$

채점 기준	배점
(i) 양변을 x^2 의 계수로 나누기	20 %
$(ii)(x+a)^2=b$ 의 꼴로 나타내기	40 %
(iii) 제곱근 구하기	30 %
(iv) 이차방정식의 해 구하기	10%

27 $x^2 + ax + b = 0$ 의 두 근이 -1, 2이므로 (x+1)(x-2)=0 $\therefore x^2-x-2=0$ a = -1, b = -2...(i) 즉, $bx^2 + ax + 2 = 0$ 에서 $-2x^2 - x + 2 = 0$ 이므로 $2x^2 + x - 2 = 0$ $\therefore x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-2)}}{2 \times 2} = \frac{-1 \pm \sqrt{17}}{4}$

채점 기준 배점 (i)
$$a$$
, b 의 값 구하기 50% (ii) 이처방정식 $bx^2 + ax + 2 = 0$ 의 해 구하기 50%

28 작은 정사각형의 한 변의 길이를 xm라 하면 큰 정사각형의 한 변의 길이는 (x+6)m이다. ...(i) 이때 두 정사각형의 넓이의 합이 468 m²이므로 $x^2 + (x+6)^2 = 468$...(ii) $2x^2+12x-432=0$, $x^2+6x-216=0$ (x+18)(x-12)=0... (iii) ∴ x=-18 또는 x=12 그런데 x>0이므로 x=12따라서 작은 정사각형의 한 변의 길이는 12m이다. ... (iv)

채점 기준	배점
(i) 미지수 정하기	20 %
(ii) 이치방정식 세우기	30 %
(iii) 이차방정식의 해 구하기	30 %
(iv) 작은 정사각형의 한 변의 길이 구하기	20 %

... (iv)

이차함수의 뜻

P. 100

필수 예제 1 ㄷ. ㅂ

 $y=x^2(2-x)=-x^3+2x^2$ \Rightarrow 이차함수가 아니다. $= y = (x+2)^2 - 4x = x^2 + 4 \Rightarrow$ 이차함수 $y = -2(x-2)(x+2) = -2x^2 + 8$ \Rightarrow 이차함수

유제 1 (1) y = 4x, 이차함수가 아니다. (2) $y=x^3$, 이차함수가 아니다.

(3) $y=x^2+4x+3$. 이차함수

(4) $u=\pi x^2$, 이차함수

(3) $y=(x+1)(x+3)=x^2+4x+3$ \Rightarrow 이차함수

필수 예제 2 3

$$f(2)=2^2+2\times2-5=3$$

유제 2 6

$$f(-2) = \frac{1}{2} \times (-2)^2 + (-2) + 1 = 1$$

$$f(2) = \frac{1}{2} \times 2^2 + 2 + 1 = 5$$

$$\therefore f(-2) + f(2) = 1 + 5 = 6$$

유제 3 1

 $f(3)=3^2-2\times3+a=4$ 이므로 9-6+a=4 : a=1

P. 101 개념 누르기 한판

2 4 3 5 4 - 1 5 17

- ② $y=x(x+2)-x^2=x^2+2x-x^2=2x$ > 일차함수 ③ $(2x+1)(x-3)+4=2x^2-5x+1=0$ \Rightarrow 이차방정식
- $2 ① <math>y = \frac{1}{2} \times x \times 8 = 4x \Rightarrow 2$ 일차함수 ② $y=2\times x=2x$ \Rightarrow 일차함수
 - ③ $y=100\times\frac{x}{100}=x$ \Rightarrow 일차함수
 - ④ $y = \pi \times x^2 \times 3 = 3\pi x^2$ \Rightarrow 이차함수
 - ⑤ *y*=1000×*x*=1000*x* ⇒ 일차함수
- $y=3x^2-ax(x-5)-8=(3-a)x^2+5ax-8$ 따라서 x^2 의 계수가 0이 아니어야 하므로 $3-a\neq 0$ $\therefore a\neq 3$

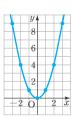
- 4 $f(2) = -2^2 + 5 \times 2 4 = -4 + 10 4 = 2$ $f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + 5 \times \frac{1}{2} - 4 = -\frac{1}{4} + \frac{5}{2} - 4 = -\frac{7}{4}$ $3f(2)+4f(\frac{1}{2})=3\times 2+4\times (-\frac{7}{4})=6-7=-1$
- f(-2)=4에서 $a \times (-2)^2 + 3 \times (-2) - 6 = 4$ 4a-12=4, 4a=16 : a=4따라서 $f(x) = 4x^2 + 3x - 6$ 이므로 $f(1) = 4 \times 1^2 + 3 \times 1 - 6 = 1$ $f(2)=4\times2^2+3\times2-6=16$ f(1)+f(2)=1+16=17
- **6** f(k) = -3에서 $-k^2+3k+7=-3$ $k^2-3k-10=0$, (k+2)(k-5)=0 $\therefore k = -2$ 또는 k = 5그런데 k > 0이므로 k = 5

\bigcirc 기차함수 $u=ax^2$ 의 그래프

P. 102

필수 예제 1 (1)

)	x	 -3	-2	-1	0	1	2	3	
	y	 9	4	1	0	1	4	9	



(2) ㄱ. 0, 0, 아래 ㄴ. x=0리. 증가 ㅁ. 위

 \vdash . x

P. 103

유제 1 ②, ③

$$2 \frac{9}{4} = \left(-\frac{3}{2}\right)^2$$

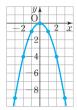
 $31 = (-1)^2$

유제 2 $\frac{1}{9}$

 $y=x^2$ 에 $x=-\frac{1}{3}$, y=a를 대입하면 $a = \left(-\frac{1}{3}\right)^2 = \frac{1}{9}$

필수 예제 2 (1)

x	 -3	-2	-1	0	1	2	3	
y	 -9	-4	-1	0	-1	-4	-9	



(2) 기. 0, 0, 위 나. x=0

 $\vdash x$

ㄹ. 감소

ㅁ. 아래

유제 3 ②, ⑤

$$2 \frac{1}{9} \neq -\left(-\frac{1}{3}\right)^2$$

⑤ $25 \neq -5^2$

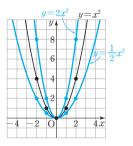
유제 4 -6.6

$$y=-x^2$$
에 $x=a$, $y=-36$ 을 대입하면 $-36=-a^2$, $a^2=36$ $\therefore a=\pm 6$

P. 104

필수 예제 3 (1)

\boldsymbol{x}		-2	-1	0	1	2	
$y=x^2$	•••	4	1	0	1	4	
$y = 2x^2$		8	2	0	2	8	
$y = \frac{1}{2}x^2$		2	$\frac{1}{2}$	0	$\frac{1}{2}$	2	



(2)
$$y=2x^2$$
, $y=x^2$, $y=\frac{1}{2}x^2$

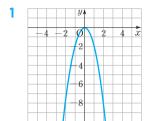
(2) x^2 의 계수의 절댓값이 클수록 그래프의 폭이 좁아진다. 이차함수 $y=x^2$, y=2x, $y=\frac{1}{2}x^2$ 의 x^2 의 계수의 절댓값 을 차례로 구하면 $1, 2, \frac{1}{2}$ 이므로 그래프의 폭이 좁은 것부 터 차례로 나열하면 $y=2x^2$, $y=x^2$, $y=\frac{1}{2}x^2$ 이다.

유제 5 (1) ㄴ. ㄷ (2) ㄹ (3) ㄱ과 ㄴ

- $(1) x^2$ 의 계수가 음수이면 그래프가 위로 볼록하므로 L. L
- (2) x^2 의 계수의 절댓값이 작을수록 그래프의 폭이 넓어지므로 =
- (3) x^2 의 계수의 절댓값이 같고 부호가 반대인 두 이차함수의 그래프는 x축에 서로 대칭이므로 \neg 과 \lor
- $\Box y = -3x^2$ 유제 6 기, 0, 0, y 나, 아래 리. 12 미. 감소

 $= y = 3x^2$ 에 x = -2를 대입하면 $y = 3x(-2)^2 = 12$ 따라서 점 $(-2\ 12)$ 를 지난다

P. 105 개념 누르기 한판



- (1) (0, 0), x=0
- (2) 제3, 4사분면
- (3) $y = 2x^2$
- (4) 감소한다
- **3** (1) ¬ (2) □ (3) ⊕ (4) □
- **4** $\frac{1}{2} < a < \frac{7}{3}$ **5** $y = \frac{1}{2}x^2$
- **2** ③ $y = \frac{1}{4}x^2$ 에 x = 4, y = 1을 대입하면 $1 \neq \frac{1}{4} \times 4^2$ 이므로 점 (4, 1)을 지나지 않는다.
 - ⑤ *y*축에 대칭이다.
- $\mathbf{3}$ (1) 그래프가 아래로 볼록하고 $y=x^2$ 의 그래프보다 폭이 좁 아야 하므로 🗇
 - (2) 그래프가 아래로 볼록하고 $y = x^2$ 의 그래프보다 폭이 넓 어야 하므로 ①
 - (3) 그래프가 위로 볼록하고 $y=x^2$ 의 그래프와 x축에 서로 대칭이어야 하므로 ②
 - (4) 그래프가 위로 볼록하고 $y=x^2$ 의 그래프보다 폭이 넓어 야 하므로 🗈
- **4** $y=ax^2$ 의 그래프는 $y=\frac{1}{2}x^2$ 의 그래프보다 폭이 좁고 $y = \frac{7}{3}x^2$ 의 그래프보다 폭이 넓으므로 $\frac{1}{2} < a < \frac{7}{3}$
- 5 꼭짓점이 원점이므로 이차함수의 식을 $y=ax^2$ 으로 놓자. 이때 그래프가 점 (2, 2)를 지나므로

 $2=a\times 2^2$ $\therefore a=\frac{1}{2}$ $\therefore y=\frac{1}{2}x^2$

\bigcirc 3 이차함수 $y=a(x-p)^2+q$ 의 그래프

P. 106

개념 확인



- (1) 3
- (2) 0
- (3) 0, 3

필수 에제 1 (1)
$$y=-5x^2+2, x=0, (0, 2)$$
 (2) $y=\frac{2}{3}x^2-4, x=0, (0, -4)$

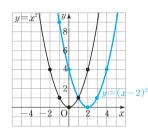
유제 1 (1) $y = -2x^2 + 4$ (2) x = 0, 0, 4 (3) 위 (4) 좁다

유제 2 14

평행이동한 그래프의 식은 $y=4x^2-2$ 이 그래프가 점 (-2, k)를 지나므로 $k=4\times (-2)^2-2=16-2=14$

P. 107

개념 확인



- (1) 2
- (2) 2
- (3) 2, 0

필수 예제 2 (1)
$$y=3(x+1)^2$$
, $x=-1$, $(-1,0)$ (2) $y=-\frac{1}{4}(x-3)^2$, $x=3$, $(3,0)$

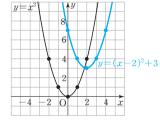
유제 3 (1)
$$y=\frac{1}{3}(x+2)^2$$
 (2) $x=-2$, -2 , 0 (3) 아래 (4) 감소

유제 4 -6, -2

평행이동한 그래프의 식은 $y=-\frac{1}{2}(x+4)^2$ 이 그래프가 점 (k,-2)를 지나므로 $-2=-\frac{1}{2}(k+4)^2, \ (k+4)^2=4$ $k+4=\pm 2 \qquad \therefore \ k=-6$ 또는 k=-2

P. 108

개념 확인

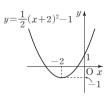


- (2) 2
- (3) 2, 3

필수 에제 3 (1)
$$y=2(x-2)^2+6$$
, $x=2$, (2, 6) (2) $y=-(x+2)^2-5$, $x=-2$, (-2, -5) (3) $y=-\frac{2}{5}(x+3)^2+2$, $x=-3$, (-3, 2)

유제 5 (1)
$$y = \frac{1}{2}(x+2)^2 - 1$$
 (2) $x = -2$, -2 , -1 (3) 아래 (4) 1, 1, 2, 3

(4) 꼭짓점의 좌표가 (-2, -1)이고, 아래로 볼록하며 점 (0, 1)을 지 난다. 즉, 그래프가 오른쪽 그림과 같으므로 제 1, 2, 3 사분면을 지 난다.



유제 6 -7

평행이동한 그래프의 식은 $y=-\frac{1}{3}(x-3)^2-4$ 이 그래프가 점 (6, k)를 지나므로 $k=-\frac{1}{3}(6-3)^2-4=-3-4=-7$

P. 109

필수 에제 4 (1)
$$y=4(x-3)^2+7$$
 (2) $y=4(x-1)^2+1$ (3) $y=4(x-3)^2+1$

- (1) x 대신 x-2를 대입하면 $y=4(x-2-1)^2+7$ $\therefore y=4(x-3)^2+7$
- (2) y 대신 y+6을 대입하면 $y+6=4(x-1)^2+7 \qquad \therefore y=4(x-1)^2+1$
- (3) x 대신 x-2, y 대신 y+6을 대입하면 $y+6=4(x-2-1)^2+7$ $\therefore y=4(x-3)^2+1$

$Rac{1}{2}$ $y = -2(x+2)^2 + 8$

x 대신 x+1, y 대신 y-5를 대입하면 $y-5=-2(x+1+1)^2+3$ $\therefore y=-2(x+2)^2+8$

필수 에제 5 (1) $y = \frac{1}{2}x^2 - 3$, $y = -\frac{1}{2}x^2 + 3$ (2) $y = -6(x-1)^2 - 2$, $y = 6(x+1)^2 + 2$

(1) x축에 대하여 대칭이동한 그래프의 식은 y 대신 -y를 대입하면 $-y = -\frac{1}{2}x^2 + 3$ $\therefore y = \frac{1}{2}x^2 - 3$

y축에 대하여 대칭이동한 그래프의 식은 x 대신 -x를 대입하면

 $y = -\frac{1}{2}(-x)^2 + 3$ $\therefore y = -\frac{1}{2}x^2 + 3$

(2) x축에 대하여 대칭이동한 그래프의 식은 y 대신 -y를 대입하면 $-y = 6(x-1)^2 + 2$ $\therefore y = -6(x-1)^2 - 2$ y축에 대하여 대칭이동한 그래프의 식은 x 대신 -x를 대입하면 $y = 6(-x-1)^2 + 2$ $\therefore y = 6(x+1)^2 + 2$

x축에 대하여 대칭이동한 그래프의 식은 y 대신 -y를 대입하면

y축에 대하여 대칭이동한 그래프의 식은 x 대신 -x를 대입하면 $y=3(-x+1)^2-5$ $\therefore y=3(x-1)^2-5$

P. 110~111 개념 누르기 한판

- 1 (1) $y = \frac{1}{2}x^2 3$, © (2) $y = \frac{1}{2}(x+2)^2$, \bigcirc (3) $y = \frac{1}{2}(x+2)^2 3$, \bigcirc

(1)~(3)을 그래프의 폭이 좁은 것부터 차례로 나열하면 (1), (3), (2)이다.

- **3** -8 **4** ② **5** \neg , \exists **6** $m = -\frac{1}{5}$, n = -4 **7** ③, ⑤ **8** 23 **9** -7
- 1 (1) 평행이동한 그래프의 식은 $y = \frac{1}{2}x^2 3$ 이고, 꼭짓점의 좌표가 (0, -3)인 그래프는 (0)이다.
 - (2) 평행이동한 그래프의 식은 $y=\frac{1}{2}(x+2)^2$ 이고, 꼭짓점의 좌표가 (-2,0)인 그래프는 \bigcirc 이다.
 - (3) 평행이동한 그래프의 식은 $y = \frac{1}{2}(x+2)^2 3$ 이고, 꼭짓점의 좌표가 (-2, -3)인 그래프는 (-2, -3)인 그래프는
- **3** 평행이동한 그래프의 식은 $y=\frac{3}{2}x^2+a$ 이 그래프가 점 (-4, 16)을 지나므로 $16=\frac{3}{2}\times(-4)^2+a$, 16=24+a $\therefore a=-8$
- **4** ② 축의 방정식은 x=0이다.
- L. a=-3이면 위로 볼록한 포물선이다.
 C. 꼭짓점의 좌표는 (2, 0)이다.
 D. a>0이면 아래로 볼록한 포물선이므로 x>2일 때 x의 값이 증가하면 y의 값도 증가한다.
- 6 $y=5x^2$ 의 그래프를 평행이동한 그래프의 식은 $y=5(x-m)^2+n$ 이 식이 $y=5\Big(x+\frac{1}{5}\Big)^2-4$ 와 일치해야 하므로 $m=-\frac{1}{5},\;n=-4$
- 7 ③ 위로 볼록한 포물선이다
 - ⑤ $y=-2(x-1)^2+1$ 의 그래프는 꼭짓점의 좌표가 (1, 1)이고, 위로 볼록하며 점 (0, -1)을 지난다.

즉, 그래프가 오른쪽 그림과 같으므로 제1, 3, 4사분면을 지나고, 제2사분면을 지나지 않는다.

- 8 x 대신 x+3, y 대신 y+1을 대입하면 $y+1=5(x+3-2)^2+4$ $\therefore y=5(x+1)^2+3$ 이 그래프가 점 (-3,a)를 지나므로 $a=5(-3+1)^2+3=23$
- 9 y 대신 -y를 대입하면 $-y=\frac{1}{2}(x-1)^2+5 \qquad \therefore y=-\frac{1}{2}(x-1)^2-5$ 이 식에 x 대신 -x를 대입하면 $y=-\frac{1}{2}(-x-1)^2-5 \qquad \therefore y=-\frac{1}{2}(x+1)^2-5$ 이 그래프가 점 (1,k)를 지나므로 $k=-\frac{1}{2}(1+1)^2-5=-7$

P. 112

- 개념 확인 (1) x-1, 2, 2, 3, $3(x-1)^2+2$ (2) x-1, q, 4a, 2, 1, $2(x-1)^2+1$
- 필수 예제 6 (1) $y=4(x+3)^2-1$ (2) $y=(x-2)^2$
 - (1) 꼭짓점의 좌표가 (-3, -1)이므로 $y=a(x+3)^2-1$ 로 놓자

15=4a-1 ∴ a=4 ∴ y=4(x+3)²-1

(2) 꼭짓점의 좌표가 (2, 0)이므로 $y=a(x-2)^2$ 으로 놓자. 이 그래프가 점 (0, 4)를 지나므로 4=4a $\therefore a=1$ $\therefore y=(x-2)^2$

유제 9
$$y = -\frac{1}{3}x^2 + 4$$

꼭짓점의 좌표가 (0, 4)이므로 $y=ax^2+4$ 로 놓자.

이 그래프가 점 (3, 1)을 지나므로

 $1=9a+4 \qquad \therefore a=-\frac{1}{3}$

 $\therefore y = -\frac{1}{3}x^2 + 4$

- 필수 에제 7 (1) $y=-(x+3)^2+8$ (2) $y=2(x-4)^2-5$
 - (1) 축의 방정식이 x=-3이므로 $y=a(x+3)^2+q$ 로 놓자. 이 그래프가 두 점 (-1, 4), (0, -1)을 지나므로

4=4a+q ... \bigcirc -1=9a+q ... \bigcirc

- $^{\circ}$, $^{\circ}$ 으을 연립하여 풀면 a=-1, q=8
- $\therefore y = -(x+3)^2 + 8$

(2) 축의 방정식이 x=4이므로 $y=a(x-4)^2+q$ 로 놓자. 이 그래프가 두 점 (2, 3), (3, -3)을 지나므로

3=4a+q ... \bigcirc

-3 = a + q

- ... (L)
- \bigcirc . \bigcirc 을 연립하여 풀면 a=2, q=-5
- $\therefore y = 2(x-4)^2 5$

유제 10 $y=-\frac{1}{2}(x-2)^2+8$

축의 방정식이 x=2이므로 $y=a(x-2)^2+a$ 로 놓자.

이 그래프가 두 점 (6, 0), (0, 6)을 지나므로

0=16a+a ... \bigcirc

6 = 4a + q

... ₺

- \bigcirc , \bigcirc 을 연립하여 풀면 $a = -\frac{1}{2}$, q = 8
- $\therefore y = -\frac{1}{2}(x-2)^2 + 8$

P. 113

개념 확인 (1) 아래. > (2) 3. < . <

필수 예제 8 a < 0, p < 0, q > 0

그래프가 위로 볼록하므로 a < 0꼭짓점 (p, q)가 제2사분면 위에 있으므로 p < 0, q > 0

유제 11 a>0, p>0, q<0

그래프가 아래로 볼록하므로 a>0꼭짓점 (p, q)가 제 4 사분면 위에 있으므로 p > 0, q < 0

유제 12 ①, ④

그래프가 위로 볼록하므로 a < 0

꼭짓점 (p, q)가 제 3사분면 위에 있으므로 p < 0, q < 0즉. a<0. b<0. a<0이므로

- ③ ab > 0
- 4) a+q < 0
- ⑤ a+p+q<0

P. 114 개념 누르기 한판

- 1 (1) $y=2(x-3)^2+2$ (2) $y=8(x+2)^2+1$ (3) $y = -(x+1)^2 + 6$
- 2 (1) $y = (x-1)^2$ (2) $y = -2(x+1)^2 + 1$ (3) $y=3(x+2)^2-3$
- 3 (2) 4 (5)
- 1 (1) 꼭짓점의 좌표가 (3, 2)이므로 $y=a(x-3)^2+2$ 로 놓자. 이 그래프가 점 (4.4)를 지나므로 4=a+2 $\therefore a=2$

$$y=2(x-3)^2+2$$

(2) 꼭짓점의 좌표가 (-2, 1)이므로 $y=a(x+2)^2+1$ 로 놓자. 이 그래프가 점 $\left(-\frac{1}{2}, 19\right)$ 를 지나므로

$$19 = \frac{9}{4}a + 1$$
 : $a = 8$

- $y=8(x+2)^2+1$
- (3) 축의 방정식이 x = -1이므로 $y = a(x+1)^2 + a$ 로 놓자. 이 그래프가 두 점 (0, 5), (1, 2)를 지나므로

5=a+q $\cdots \bigcirc$ 2=4a+q $\cdots \bigcirc$

 \bigcirc . \bigcirc 을 연립하여 풀면 a=-1. q=6

- $\therefore y = -(x+1)^2 + 6$
- **2** (1) 꼭짓점의 좌표가 (1, 0)이므로 $y=a(x-1)^2$ 으로 놓자. 이 그래프가 점 (0, 1)을 지나므로

a=1

 $\therefore y = (x-1)^2$

(2) 꼭짓점의 좌표가 (-1, 1)이므로 $y=a(x+1)^2+1$ 로 놓자. 이 그래프가 점 (0, -1)을 지나므로

-1 = a + 1 : a = -2

 $y = -2(x+1)^2 + 1$

(3) 축의 방정식이 x = -2이므로 $y = a(x+2)^2 + a$ 로 놓자. 이 그래프가 두 점 (-3, 0), (0, 9)를 지나므로

0=a+q ... \bigcirc

9 = 4a + q ··· (L)

- \bigcirc . \bigcirc 을 연립하여 풀면 a=3. q=-3
- $y=3(x+2)^2-3$
- 3 그래프가 아래로 볼록하므로 a>0꼭짓점 (p, 0)이 y축보다 왼쪽에 있으므로 p<0
- 4 a < 0이므로 위로 볼록한 포물선이다. p>0, q>0이므로 꼭짓점 (p, q)가 제1사분면 위에 있다. 따라서 $y=a(x-b)^2+q$ 의 그래프로 알맞은 것은 ⑤이다.

P. 115~118 단원 마무리 🗼

1 7, 5, 5 2 5 3 5 4 2

5 ④ **6** 6 **7** ④ **8** L, **5 9** ①

10 ⑤ **11** ① **12** -2 **13** ③ **14** ③ **15** ④ **16** ② **17** -7 **18** -10 **19** ②

20 ⑤ **21** ② **22** ④

23 9. 과정은 풀이 참조

24 -6, -4, 과정은 풀이 참조

25 $\frac{4}{3}$, 과정은 풀이 참조 26 4, 과정은 풀이 참조

- 2 ① $y=\pi x$ \Rightarrow 일차함수
 - ② *y*=1200*x* ⇒ 일차함수
 - ③ $y=2x\times 2x\times 2x=8x^3$ \Rightarrow 이차함수가 아니다.
 - ④ $y = \frac{x}{8}$ \Rightarrow 일차함수
 - ⑤ $y=\frac{1}{2}\times(x+2x)\times x=\frac{3}{2}x^2$ \Rightarrow 이차함수
- 3 $y=(2x+1)^2-x(ax+3)$ = $(4-a)x^2+x+1$ 따라서 x^2 의 계수가 0이 아니어야 하므로 $4-a\neq 0$ $\therefore a\neq 4$
- 4 $f(x)=3x^2-x+a$ 에서 f(-1)=2이므로 $f(-1)=3\times(-1)^2-(-1)+a=2$ $\therefore a=-2$ 따라서 $f(x)=3x^2-x-2$ 이므로 f(2)=b에서 $f(2)=3\times2^2-2-2=b$ $\therefore b=8$ $\therefore a+b=-2+8=6$
- 6 $y=ax^2$ 의 그래프가 점 (-2, 3)을 지나므로 3=4a $\therefore a=\frac{3}{4}$ $y=\frac{3}{4}x^2$ 의 그래프가 점 (3, b)를 지나므로 $b=\frac{27}{4}$ $\therefore b-a=\frac{27}{4}-\frac{3}{4}=6$
- 7 평행이동한 그래프의 식은 $y=-2x^2+3$ 이 그래프가 점 (1, n)을 지나므로 $n=-2\times 1^2+3=1$
- 8 \neg . 꼭짓점의 좌표는 (0, 7)이다. $p = -\frac{7}{4}x^2$ 의 그래프를 평행이동한 것이다.
- $y = (x+2)^2$ 의 그래프는 아래로 볼록한 포물선이고, 축의 방정식이 x = -2이므로 x < -2일 때, x의 값이 증가하면 y의 값은 감소한다.
- x^2 의 계수의 절댓값이 클수록 그래프의 폭이 좁아진다. $\left|\frac{1}{2}\right|<|-1|<\left|\frac{5}{4}\right|<\left|-\frac{7}{3}\right|<|3|$ 이므로 그래프의 폭이 가장 좁은 것은 ⑤ $y=3(x+1)^2$ 이다.

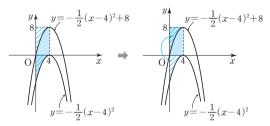
- 11 $y=-3x^2$ 의 그래프를 평행이동한 그래프의 식은 $y=-3(x-a)^2$ 이 식이 $y=-3(x+5)^2$ 과 같아야 하므로 a=-5 $y=\frac{1}{3}x^2$ 의 그래프를 평행이동한 그래프의 식은 $y=\frac{1}{3}x^2+b$ 이 식이 $y=\frac{1}{3}x^2+9$ 와 같아야 하므로 b=9 $\therefore a-b=-5-9=-14$
- 주어진 그래프의 꼭짓점의 좌표가 (-4, 0)이므로 p=-4
 따라서 y=a(x+4)²의 그래프가 점 (0, 8)을 지나므로 8=16a ∴ a=1/2
 ∴ ap=1/2 × (-4)=-2
- 13
 각 이차함수의 그래프의 꼭짓점의 좌표를 구하면

 ① (2, 0)
 ② (0, 2)

 ③ (-1, 2)
 ④ (1, 2)

 ⑤ (-1, -2)
- **14** $y=-\frac{1}{2}(x+2)^2+1$ 의 그래프는 위로 볼록하고, 꼭짓점의 좌표가 (-2, 1)인 포물선이다.
- 15 ① 아래로 볼록한 포물선이다.
 - ② 축의 방정식은 x = -4이다.
 - ③ 꼭짓점의 좌표는 (-4, -6)이다.
 - ⑤ $y=3x^2$ 의 그래프를 x축의 방향으로 -4만큼, y축의 방향으로 -6만큼 평행이동한 그래프이다.
- 이차함수 y=a(x-p)²+q에서 x²의 계수 a의 값이 같으면 그래프를 평행이동하여 완전히 포갤 수 있다.
 각 이차함수의 x²의 계수를 구하면
 그. -2
 나. 2
 다. -1
 르. 1
 ㅁ. -2
 따라서 그래프를 평행이동하여 완전히 포갤 수 있는 것은 그과 ㅁ이다.
- 17 $y=6x^2+4$ 에 x 대신 x-p, y 대신 y-q를 대입하면 $y-q=6(x-p)^2+4$ $\therefore y=6(x-p)^2+4+q$ 이 식이 $y=6(x-2)^2+\frac{1}{2}$ 과 같아야 하므로 $p=2,\ 4+q=\frac{1}{2}$ 에서 $q=-\frac{7}{2}$ $\therefore pq=2\times\left(-\frac{7}{2}\right)=-7$

- y 대신 y 를 대입하면 $-y = \frac{2}{3}(x-2)^2 + 1 \qquad \therefore y = -\frac{2}{3}(x-2)^2 1$ 이 식에 x 대신 x+1, y 대신 y+3을 대입하면 $y+3 = -\frac{2}{3}(x+1-2)^2 1 \qquad \therefore y = -\frac{2}{3}(x-1)^2 4$ 이 그래프가 점 (4, k)를 지나므로 $k = -\frac{2}{2}(4-1)^2 4 = -10$
- 19 축의 방정식이 x=2이므로 $y=a(x-2)^2+q$ 로 놓자. 이 그래프가 두 점 (-1,-25), (1,-1)을 지나므로 -25=9a+q ··· ① -1=a+q ··· ① ①, ①을 연립하여 풀면 a=-3, q=2∴ $y=-3(x-2)^2+2$
- 그래프가 위로 볼록하므로 a<0
 꼭짓점 (-p, q)가 제4사분면 위에 있으므로
 -p>0, q<0 ∴ p<0, q<0
- 그래프가 아래로 볼록하므로 a>0
 꼭짓점 (p, q)가 제2사분면 위에 있으므로 p<0, q>0
 ∴ aq>0, pq<0
 따라서 일차함수 y=aqx+pq의 그래프는 오른쪽 위로 향하고, x축보다 아래쪽에서 y축과 만나는 직선이다.
- 22 두 이차함수의 x^2 의 계수가 $-\frac{1}{2}$ 로 같으므로 두 이차함수의 그래프는 평행이동하면 완전히 포개어진다. 따라서 다음 그림에서 빗금 친 부분의 넓이가 같으므로 색칠한 부분의 넓이는 직사각형의 넓이와 같다.



- ∴ (색칠한 부분의 넓이)=4×8=32
- 23 $y=-x^2$ 의 그래프는 y축에 대칭이고, 두 점 B, C 사이의 거리가 4이므로 점 C의 x좌표는 2이다. ... (i) 즉, 점 C의 y좌표는 $y=-2^2=-4$... (ii) 따라서 사다리꼴 ABCD는 윗변의 길이가 2, 아랫변의 길이가 4, 높이가 4-1=3이므로 ... (iii) $\square ABCD=\frac{1}{2}\times(2+4)\times 3=9$... (iv)

채점 기준	배점
(i) 점 C 의 x 좌표 구하기	30 %
(ii) 점 C의 <i>y</i> 좌표 구하기	20 %
(iii) 사다리꼴 ABCD의 윗변의 길이, 아랫변의 길이, 높이 구하기	20 %
(iv) 사다리꼴 ABCD의 넓이 구하기	30 %

24 평행이동한 그래프의 식은 $y=-4(x+5)^2+12 \qquad \cdots (i)$ 이 그래프가 점 (k,8)을 지나므로 $8=-4(k+5)^2+12 \qquad (k+5)^2=1 \qquad k+5=\pm 1 \qquad \cdots (ii)$

채점 기준	배점
(i) 평행이동한 그래프의 식 구하기	30 %
(ii) k의 값 구하기	70%

25 $y=2(x-2p)^2-3p^2$ 의 그래프의 꼭짓점의 좌표는 $(2p,-3p^2)$ (i) 이 점이 직선 $y=-\frac{1}{2}x-4$ 위에 있으므로 $-3p^2=-\frac{1}{2}\times 2p-4$ (ii) $3p^2-p-4=0$ (3p-4)(p+1)=0 $\therefore p=\frac{4}{3}$ 또는 p=-1 그런데 p>0이므로 $p=\frac{4}{3}$ (iii)

채점 기준	배점
(i) 이차함수의 그래프의 꼭짓점의 좌표 구하기	30 %
(ii) p에 대한 이차방정식 세우기	20 %
(iii) <i>p</i> 의 값 구하기	50 %

26 꼭짓점의 좌표가 (-4, 4)이므로 $y=a(x+4)^2+4$... p=-4, q=4 ... (i) 이 그래프가 원점 (0, 0)을 지나므로 0=16a+4 ... $a=-\frac{1}{4}$... (ii)

 $\therefore apq = -\frac{1}{4} \times (-4) \times 4 = 4 \qquad \cdots \text{ (iii)}$

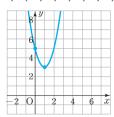
채점 기준	배점
(i) p, q의 값 구하기	40 %
(ii) a의 값 구하기	40 %
(iii) <i>apq</i> 의 값 구하기	20 %

VI. 이차함수 $y=ax^2+bx+c$ 의 그래프

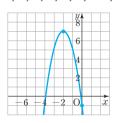
이 기차함수 $y=ax^2+bx+c$ 의 그래프

P. 122

개념 확인 (1) 1, 1, 1, 2, 1, 3, 1, 3, 0, 5



(2) 4, 4, 4, 8, 2, 7, -2, 7, 0, -1



P. 123

필수 예제 1 $\,$ (1) 그래프는 풀이 참조, $(2,\,-1),\,(0,\,3)$

(2) 그래프는 풀이 참조, $\left(\frac{3}{2}, \, \frac{9}{2}\right)$, $(0, \, 0)$

(3) 그래프는 풀이 참조, (1,-1), $\left(0,-\frac{1}{2}\right)$

(4) 그래프는 풀이 참조, (3, 2), (0, -1)

(1) $y=x^2-4x+3=(x^2-4x+4-4)+3=(x-2)^2-1$

⇒ 꼭짓점의 좌표 : (2, -1)

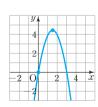
y축과의 교점의 좌표 : (0, 3)

(2)
$$y = -2x^2 + 6x = -2\left\{x^2 - 3x + \left(\frac{-3}{2}\right)^2 - \left(\frac{-3}{2}\right)^2\right\}$$

$$=-2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}$$

 \Rightarrow 꼭짓점의 좌표 : $\left(\frac{3}{2}, \frac{9}{2}\right)$

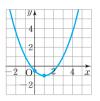
y축과의 교점의 좌표 : (0, 0)



(3)
$$y = \frac{1}{2}x^2 - x - \frac{1}{2} = \frac{1}{2}(x^2 - 2x + 1 - 1) - \frac{1}{2}$$

= $\frac{1}{2}(x - 1)^2 - 1$

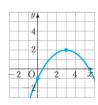
 \Rightarrow 꼭짓점의 좌표 : $\left(1,\,-1
ight)$ y축과의 교점의 좌표 : $\left(0,\,-rac{1}{2}
ight)$



(4)
$$y = -\frac{1}{3}x^2 + 2x - 1 = -\frac{1}{3}(x^2 - 6x + 9 - 9) - 1$$

$$=-\frac{1}{3}(x-3)^2+2$$

⇒ 꼭짓점의 좌표 : (3, 2)
 y축과의 교점의 좌표 : (0, -1)



필수 예제 2 (1) -5, -10 (2) 0, 15 (3) 4 (4) 감소

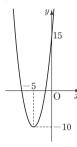
$$y=x^{2}+10x+15$$

$$=(x^{2}+10x+25-25)+15$$

$$=(x+5)^{2}-10$$

의 그래프는 오른쪽 그림과 같다.

- (1) 꼭짓점의 좌표는 (-5, -10)이다.
- (2) *y*축과의 교점의 좌표는 (0, 15)이다.
- (3) 제4사분면을 지나지 않는다.
- (4) x<-5일 때, x의 값이 증가하면y의 값은 감소한다.



유제1 나, ㄷ

$$y = -3x^{2} + 12x - 8$$

$$= -3(x^{2} - 4x + 4 - 4) - 8$$

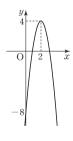
$$= -3(x - 2)^{2} + 4$$

의 그래프는 오른쪽 그림과 같다.

ㄱ. 위로 볼록하다.

ㄹ. 제1, 3, 4사분면을 지난다.

ㅁ. x>2일 때, x의 값이 증가하면 y의 값은 감소한다.



필수 예제 3 (2, 0), (5, 0)

 $y=x^2-7x+10$ 에 y=0을 대입하면

$$x^2 - 7x + 10 = 0$$

(x-2)(x-5)=0 ∴ x=2 또는 x=5

 \therefore (2, 0), (5, 0)

 $\frac{2}{3}$ (-1, 0), (5, 0)

 $y = -2x^2 + 8x + 10$ 에 y = 0을 대입하면

 $-2x^2+8x+10=0$

 $x^2-4x-5=0$, (x+1)(x-5)=0

∴ x=-1 또는 x=5

(-1, 0), (5, 0)

P. 124

개념 확인 $2, 2, 2, 2, 3, 1, 3x^2+x+2$

필수 예제 4 $u=x^2-4x+4$

 $y=ax^2+bx+c$ 로 놓으면 그래프가 점 (0, 4)를 지나므로

이때 $y=ax^2+bx+4$ 의 그래프가 두 점 (-1, 9). (1, 1)을 지나므로

9 = a - b + 4 : a - b = 5

1=a+b+4 $\therefore a+b=-3$... (L)

 \bigcirc , \bigcirc 을 연립하여 풀면 a=1, b=-4

 $y = x^2 - 4x + 4$

유제 3 (1) $y=2x^2-8x+5$ (2) $y=-x^2+5x-9$

 $(1) y = ax^2 + bx + c$ 로 놓으면 그래프가 점 (0, 5)를 지나므로 c=5

이때 $y=ax^2+bx+5$ 의 그래프가 두 점 (1, -1).

(2, -3)을 지나므로

-1 = a + b + 5 : a + b = -6

... (¬)

-3 = 4a + 2b + 5 : 2a + b = -4

... (L)

 \bigcirc . \bigcirc 을 연립하여 풀면 a=2. b=-8

 $\therefore y = 2x^2 - 8x + 5$

(2) $y=ax^2+bx+c$ 로 놓으면 그래프가 점 (0, -9)를 지나므로 c = -9

이때 $y=ax^2+bx-9$ 의 그래프가 두 점 (-1, -15),

(1. -5)를 지나므로

-15 = a - b - 9 : a - b = -6

-5 = a + b - 9 : a + b = 4

... (L)

 \bigcirc . \bigcirc 을 연립하여 풀면 a=-1. b=5

 $\therefore y = -x^2 + 5x - 9$

필수 예제 5 $y=x^2-5x+4$

x축과 두 점 (1, 0), (4, 0)에서 만나므로

y=a(x-1)(x-4)로 놓자.

이 그래프가 점 (3, -2)를 지나므로

 $-2=a\times2\times(-1)$ $\therefore a=1$

 $y = (x-1)(x-4) = x^2 - 5x + 4$

|| 4 (1) || || || || || || 4 (2) || || || || 4 (2) || || 4 (2) || 4 (2) || 4 (2) || 5 (2) || 6 (2) || 6 (2) || 6 (2) || 6 (2) || 6 (2) || 6 (2) || 6 (2) || 7 (2) || 6 (2) || 7 (2) || 8 (2) || 9 (2

(1) x축과 두 점 (-2, 0), (-1, 0)에서 만나므로 y=a(x+2)(x+1)로 놓자.

이 그래프가 점 (0.4)를 지나므로

 $4=a\times2\times1$ $\therefore a=2$

 $y=2(x+2)(x+1)=2x^2+6x+4$

(2) 그래프가 두 점 (-5, 0), (2, 0)을 지나므로 y=a(x+5)(x-2)로 놓자.

이 그래프가 점 (1, 12)를 지나므로

 $12=a\times 6\times (-1)$ $\therefore a=-2$

 $\therefore y = -2(x+5)(x-2) = -2x^2 - 6x + 20$

P. 125

개념 확인 (1) 아래. > (2) 왼. >. > (3) 위. >

필수 에제 6 (1) a < 0, b > 0, c > 0 (2) a > 0, b > 0, c < 0

(1) 그래프가 위로 볼록하므로 a < 0

축이 y축의 오른쪽에 있으므로 ab < 0

y축과의 교점이 x축보다 위쪽에 있으므로 c>0

(2) 그래프가 아래로 볼록하므로 a > 0

축이 y축의 왼쪽에 있으므로 ab>0

y축과의 교점이 x축보다 아래쪽에 있으므로 c<0

유제 5 ④

① 그래프가 위로 볼록하므로 a < 0

② 축이 y축의 왼쪽에 있으므로 ab > 0

③ y축과의 교점이 x축보다 위쪽에 있으므로 c>0

④ x=1일 때. y=0이므로 a+b+c=0

⑤ x = -1일 때. y > 0이므로 a - b + c > 0

P. 126~127 개념 누르기 한판

1 (1) $y = -(x+3)^2 - 3$, x = -3, (-3, -3)(2) $y=3(x-1)^2-7$, x=1, (1, -7)

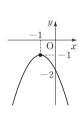
(3) $y = -\frac{1}{4}(x-2)^2 + 6$, x = 2, (2, 6)

2 ⓐ **3 -6 4** ② ⓐ

5 (1) A(-1, 0), B(1, -4), C(3, 0) (2) 8

6 $y = \frac{1}{2}x^2 - \frac{2}{2}x - 1$ **7** ② **8** ②

 $y=-x^2-2x-2=-(x+1)^2-1$ 에서 꼭짓점의 좌표는 (-1, -1). (x^2) 의 계수)=-1<0이므로 그래프가 위로 볼록하고, y축과의 교점의 좌표는 (0, -2)이다. 따라서 $y = -x^2 - 2x - 2$ 의 그래프는 오 른쪽 그림과 같다.



3 평행이동한 그래프의 식은

$$y = \frac{1}{3}(x-m)^2 + n$$

이 식이 $y = \frac{1}{3}x^2 + 2x + 5$ 와 같아야 한다. 이때

$$y = \frac{1}{3}x^2 + 2x + 5$$

$$=\frac{1}{3}(x^2+6x+9-9)+5$$

$$=\frac{1}{2}(x+3)^2+2$$

따라서 m=-3 n=2이므로

 $mn = -3 \times 2 = -6$

- 4 $y = -\frac{1}{2}x^2 5x + \frac{5}{2}$ = $-\frac{1}{2}(x^2 + 10x + 25 - 25) + \frac{5}{2}$ = $-\frac{1}{2}(x+5)^2 + 15$
 - ② 꼭짓점의 좌표는 (-5, 15)이다.
 - ④ $y = -\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 -5만큼, y축의 방향으로 15만큼 평행이동한 그래프이다
- 5 (1) $y=x^2-2x-3=(x-1)^2-4$ 이므로 꼭짓점의 좌표는 (1, -4) ∴ B(1, -4) 또 두 점 A, C는 그래프와 *x*축의 교점이므로 $y=x^2-2x-3$ 에 y=0을 대입하면 $x^2-2x-3=0$ (x+1)(x-3)=0 ∴ x=-1 또는 x=3∴ A(-1,0) C(3,0)
 - (2) $\triangle ABC$ 는 밑변의 길이가 3-(-1)=4이고, 높이가 4이므로 $\triangle ABC=\frac{1}{2}\times 4\times 4=8$
- 6 그래프가 x축 위의 두 점 (-1, 0), (3, 0)을 지나므로 y=a(x+1)(x-3)으로 놓자. 이 그래프가 점 (0, -1)을 지나므로 $-1=a\times1\times(-3)$ $\therefore a=\frac{1}{3}$ $\therefore y=\frac{1}{3}(x+1)(x-3)=\frac{1}{3}x^2-\frac{2}{3}x-1$

다른 풀이

 $y=ax^2+bx+c$ 로 놓으면 그래프가 점 (0,-1)을 지나므로 c=-1

이때 $y=ax^2+bx-1$ 의 그래프가 두 점 (-1, 0), (3, 0)을 지나므로

- 0=a-b-1 $\therefore a-b=1$ $\cdots \bigcirc$
- 0=9a+3b-1 $\therefore 9a+3b=1$ $\cdots \bigcirc$
- \bigcirc , ⓒ을 연립하여 풀면 $a=\frac{1}{3}, b=-\frac{2}{3}$

$$\therefore y = \frac{1}{3}x^2 - \frac{2}{3}x - 1$$

- 그래프가 위로 볼록하므로 a<0
 축이 y축의 오른쪽에 있으므로 ab<0 ∴ b>0
 y축과의 교점이 x축의 위쪽에 있으므로 c>0
 ¬. bc>0
 ∟. ac<0
 □. x=1일 때, y>0이므로 a+b+c>0
 □. x=-2일 때, y<0이므로 4a-2b+c<0
- 8 y=ax+b의 그래프에서 a>0, b>0
 y=x²+ax+b의 그래프는
 (x²의 계수)=1>0이므로 아래로 볼록하다.
 또 1×a>0이므로 축이 y축의 왼쪽에 있고,
 b>0이므로 y축과의 교점이 x축보다 위쪽에 있다.

○2 이차함수의 최댓값과 최솟값

P. 128

- 개념 확인 (1) 최댓값 1, 최솟값은 없다.
 - (2) 최솟값 2. 최댓값은 없다.
 - (3) 최댓값 0. 최솟값은 없다.

필수 에제 1 (1) x=2에서 최솟값은 -5이고, 최댓값은 없다. (2) x=-4에서 최댓값은 6이고, 최솟값은 없다.

(1) $y=2x^2-8x+3=2(x^2-4x+4-4)+3$ =2(x-2)²-5

따라서 x=2에서 최솟값은 -5이고. 최댓값은 없다.

(2) $y = -x^2 - 8x - 10 = -(x^2 + 8x + 16 - 16) - 10$ = $-(x+4)^2 + 6$

따라서 x=-4에서 최댓값은 6이고, 최솟값은 없다.

- 유제 1 (1) x=-1에서 최솟값은 -3이고, 최댓값은 없다. (2) x=1에서 최솟값은 0이고, 최댓값은 없다.
 - (3) x = -1에서 최댓값은 5이고, 최솟값은 없다.
 - (2) $y=7x^2-14x+7=7(x^2-2x+1-1)+7$ =7 $(x-1)^2$

따라서 x=1에서 최솟값은 0이고, 최댓값은 없다.

(3) $y=-3x^2-6x+2=-3(x^2+2x+1-1)+2$ = $-3(x+1)^2+5$ 따라서 x=-1에서 최댓값은 5이고, 최솟값은 없다.

필수 예제 2 -2

$$y=x^2+4x-m$$

= $(x^2+4x+4-4)-m$
= $(x+2)^2-4-m$
즉, $x=-2$ 에서 최솟값은 $-4-m$ 이다.
그런데 최솟값이 -2 이므로
 $-4-m=-2$ $\therefore m=-2$

유제 2 6

$$y = -\frac{1}{4}x^2 - 2x + 1 + k$$

 $= -\frac{1}{4}(x^2 + 8x + 16 - 16) + 1 + k$
 $= -\frac{1}{4}(x + 4)^2 + 5 + k$
즉, $x = -4$ 에서 최댓값은 $5 + k$ 이다.
그런데 최댓값이 11 이므로
 $5 + k = 11$ $\therefore k = 6$

P. 129

필수 예제 3 8

x=2에서 최솟값이 -6이므로 꼭짓점의 좌표는 (2, -6)이때 x^2 의 계수가 $\frac{1}{2}$ 이므로

$$y=\frac{1}{2}(x-2)^2-6=\frac{1}{2}x^2-2x-4$$

따라서 $b=-2$, $c=-4$ 이므로 $bc=-2\times(-4)=8$

유제 3 7

x=-1에서 최댓값이 1이므로 꼭짓점의 좌표는 (-1,1) 또 $y=-4x^2$ 의 그래프와 모양과 폭이 같으므로 x^2 의 계수는 -4이다.

$$\therefore y = -4(x+1)^2 + 1 = -4x^2 - 8x - 3$$

따라서 $a = -4$, $b = -8$, $c = -3$ 이므로 $a - b - c = -4 - (-8) - (-3) = 7$

유제 4 7

축의 방정식이 x=-3이고, 최솟값이 -4이므로 꼭짓점의 좌표는 (-3,-4)이때 x^2 의 계수가 a이므로 $y=a(x+3)^2-4=ax^2+6ax+9a-4$ 따라서 b=6a, 5=9a-4에서 a=1, b=6

필수 예제 4 -15

a+b=1+6=7

$$y=-x^2-2mx-6m-6$$

= $-(x^2+2mx+m^2-m^2)-6m-6$
= $-(x+m)^2+m^2-6m-6$
 $\therefore M=m^2-6m-6$
= $(m^2-6m+9-9)-6$
= $(m-3)^2-15$
따라서 $M \stackrel{\circ}{\sim} m=3$ 에서 최숫값이 -15 이다.

유제 5 $\frac{1}{4}$

$$y=x^{2}+2kx+k$$

$$=(x^{2}+2kx+k^{2}-k^{2})+k$$

$$=(x+k)^{2}-k^{2}+k$$

$$\therefore m=-k^{2}+k$$

$$=-\left(k^{2}-k+\frac{1}{4}-\frac{1}{4}\right)$$

$$=-\left(k-\frac{1}{2}\right)^{2}+\frac{1}{4}$$

따라서 m은 $k=\frac{1}{2}$ 에서 최댓값이 $\frac{1}{4}$ 이다.

P. 130 개념 누르기 한판

1 ⓐ **2** ⓐ **3** -3 **4** $\frac{1}{4}$ **5** $y = -3x^2 - 6x - 1$ **6** 6

1 최댓값이 존재하는 이차함수의 그래프는 위로 볼록해야 하므로 x^2 의 계수가 음수인 것을 찾으면 ④이다.

2 ① $y=4x^2+4x+5$ = $4\left(x+\frac{1}{2}\right)^2+4$

따라서 $x=-\frac{1}{2}$ 에서 최솟값은 4이고, 최댓값은 없다.

② $y=-2x^2-4x-1$ = $-2(x+1)^2+1$ 따라서 x=-1에서 최댓값은 1이고, 최솟값은 없다.

③ $y = \frac{1}{2}x^2 - 4x - 1$ = $\frac{1}{2}(x - 4)^2 - 9$

따라서 x=4에서 최솟값은 -9이고, 최댓값은 없다.

④ $y=-3x^2-6x+3$ $=-3(x+1)^2+6$ 따라서 x=-1에서 최댓값은 6이고, 최솟값은 없다.

- y=3x²+4에 x 대신 x-1, y 대신 y+7을 대입하면 y+7=3(x-1)²+4
 ∴ y=3(x-1)²-3
 따라서 x=1에서 최솟값은 -3이다.
- 4 $y=-\frac{1}{3}x^2+4kx+k$ $=-\frac{1}{3}(x^2-12kx+36k^2-36k^2)+k$ $=-\frac{1}{3}(x-6k)^2+12k^2+k$ 즉, x=6k에서 최댓값은 $12k^2+k$ 이다. 그런데 최댓값이 1이므로 $12k^2+k=1$, $12k^2+k-1=0$ (4k-1)(3k+1)=0 $\therefore k=\frac{1}{4}$ 또는 $k=-\frac{1}{3}$ 그런데 k>0이므로 $k=\frac{1}{4}$
- 5 x=-1에서 최댓값이 2이므로 꼭짓점의 좌표는 (-1, 2) 또 그래프를 평행이동하면 $y=-3x^2-7x-2$ 의 그래프와 완전히 포개어지므로 x^2 의 계수는 -3이다. $\therefore y=-3(x+1)^2+2=-3x^2-6x-1$

따라서 m은 k=1에서 최댓값이 5이므로 구하는 합은 5+1=6

P. 131

필수 예제 5 2

직사각형의 넓이를 $y \text{ cm}^2$ 라 하면 $y=(8+2x)(8-x)=-2x^2+8x+64$ $=-2(x-2)^2+72$ 즉, x=2에서 최댓값은 72이다. 따라서 이 직사각형의 넓이가 최대일 때의 x의 값은 2이다.

$\frac{25}{10}$ 6 (1) 25 cm² (2) 5 cm, 5 cm

직사각형의 둘레의 길이가 $20\,\mathrm{cm}$ 이므로 가로와 세로의 길이의 합은 $10\,\mathrm{cm}$ 이고, 세로의 길이가 $x\,\mathrm{cm}$ 이므로 가로의 길이는 $(10-x)\,\mathrm{cm}$ 이다.

이때 이 직사각형의 넓이를 $y \text{ cm}^2$ 라 하면

$$y=x(10-x)=-x^2+10x$$

= $-(x-5)^2+25$

즉. x = 5에서 최댓값은 25이다.

- (1) 이 직사각형의 넓이의 최댓값은 25 cm²이다.
- (2) x=5일 때, 넓이가 최대이므로 그때의 세로의 길이는 5 cm, 가로의 길이는 10-5=5 (cm)이다.

필수 예제 6 (1) 45 m (2) 6초 후

- (1) $y=30x-5x^2=-5(x-3)^2+45$ 즉, x=3에서 최댓값은 45이다. 따라서 이 공의 최고 높이는 45m이다.
- (2) 이 공이 다시 지면에 떨어지는 때는 y=0일 때이므로 0=30x-5x², x²-6x=0
 x(x-6)=0 ∴ x=0 또는 x=6
 그런데 x>0이므로 x=6
 따라서 이 공은 쏘아 올린 지 6초 후에 다시 지면에 떨어진다.

유제 7 (1) 500개 (2) 2000만 원

이익금을 y만 원이라 하면

$$y = -\frac{1}{100}x^2 + 10x - 500 = -\frac{1}{100}(x - 500)^2 + 2000$$

즉, x=500에서 최댓값은 2000이다.

- (1) 하루 이익금을 최대로 하려면 500개의 제품을 생산해야 한다.
- (2) 하루 이익금은 최대 2000만 원이다.

P. 132 개념 누르기 한판

- 1 100, 10, 10 2 128 cm² 3 450 m² 4 2초
- 5 (1) (1000-x)원, (400+2x)개 (2) $y=-2x^2+1600x+400000$ (3) 720000원, 600원
- 1 한 수를 x라 하면 다른 한 수는 20-x이므로 $y=x(20-x)=-x^2+20x$ $=-(x-10)^2+100$

즉, x=10에서 최댓값은 100이다. 따라서 두 수의 곱의 최댓값은 100이고, 그때의 두 수는 10, 10이다

2 밑변의 길이를 xcm라 하면 높이는 (32-x)cm이므로 이때 삼각형의 넓이를 ycm²라 하면

$$y = \frac{1}{2}x(32-x) = -\frac{1}{2}x^2 + 16x$$
$$= -\frac{1}{2}(x-16)^2 + 128$$

즉, x=16에서 최댓값은 128이다. 따라서 이 삼각형의 넓이의 최댓값은 $128 \, \mathrm{cm}^2$ 이다.

3 닭장의 세로의 길이를 xm라 하면 가로의 길이는 (60-2x)m이므로

닭장의 넓이를 y m^2 라 하면

$$y = x(60-2x) = -2x^2 + 60x$$

$$=-2(x-15)^2+450$$

즉, x=15에서 최댓값은 450이다. 따라서 이 닭장의 최대 넓이는 $450 \,\mathrm{m}^2$ 이다.

- 4 $y=-5x^2+20x+10$ =-5(x-2)²+30 즉, x=2에서 최댓값은 30이다. 따라서 이 물체가 최고 높이에 도달하는 데 걸리는 시간은 2초이다.
- 5 (1) 한 개에 1000원인 떡의 가격을 x원 내리면 (1000-x)원이고, 그때의 하루 판매량은 (400+2x)개이다.

(2)
$$y = (1000 - x)(400 + 2x)$$

= $-2x^2 + 1600x + 400000$

(3)
$$y = -2x^2 + 1600x + 400000$$

= $-2(x - 400)^2 + 720000$

즉, *x*=400에서 최댓값은 720000이다.

따라서 하루 총 판매 금액의 최댓값은 720000원이고,

그때의 떡 한 개의 가격은

1000-x=1000-400=600(원)

P. 133~136 단원 마무리

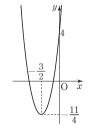
- 1
 5
 2
 3
 4
 4
 3
 5
 4

 6
 2
 7
 3
 8
 -17
 9
 4
 10
 2
- 11 ⑤ 12 ④ 13 ③ 14 4 15 ② 16 ④ 17 ③ 18 ③ 19 ④ 20 9
- **21** ③ **22** ③
- **23** $y = \frac{1}{2}x^2 \frac{1}{2}x + 2$, 과정은 풀이 참조
- 24 6, 과정은 풀이 참조
- **25** $a \ge \frac{3}{4}$, 과정은 풀이 참조
- **26** 과정은 풀이 참조 (1) $-a^2+2a$ (2) 1, (1, 2)

$$y = -\frac{2}{5}x^2 - 4x = -\frac{2}{5}(x+5)^2 + 10$$

따라서 $a = -\frac{2}{5}$, $p = -5$, $q = 10$ 이므로
$$apq = -\frac{2}{5} \times (-5) \times 10 = 20$$

2 $y=3x^2+9x+4$ = $3(x+\frac{3}{2})^2-\frac{11}{4}$ 이므로 그 그래프는 오른쪽 그림과 같다.



3 $y=-2x^2+4x-5=-2(x-1)^2-3$

따라서 제4사분면을 지나지 않는다.

- ① 직선 x=1을 축으로 한다.
- ② 꼭짓점의 좌표는 (1, -3)이다.
- ③ y축과 만나는 점의 좌표는 (0, -5)이다.
- ④ y 대신 -y를 대입하면 $-y = -2x^2 + 4x 5 \qquad \therefore y = 2x^2 4x + 5$
- ⑤ $y=-2x^2$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -3만큼 평행이동한 그래프이다.
- 4 y=4x²-ax+8의 그래프가 점 (1, 4)를 지나므로 4=4-a+8 ∴ a=8
 ∴ y=4x²-8x+8=4(x-1)²+4
 따라서 축의 방정식은 x=1이다.
- 5 $y=-x^2+ax+b$ 의 그래프가 점 (0, 5)를 지나므로 b=5 이때 $y=-x^2+ax+5$ 의 그래프가 점 (5, 0)을 지나므로 0=-25+5a+5 ∴ a=4 ∴ $y=-x^2+4x+5=-(x-2)^2+9$ 따라서 꼭짓점의 좌표는 (2, 9)이다.
- y=2x²-4x+a=2(x-1)²+a-2이므로 꼭짓점의 좌표는 (1, a-2)
 y=-3x²+6x+3a=-3(x-1)²+3a+3이므로 꼭짓점의 좌표는 (1, 3a+3)
 이때 두 그래프의 꼭짓점이 일치하므로 a-2=3a+3 ∴ a=-5/2
- 7 $y=\frac{1}{4}x^2-x-8$ 에 y=0을 대입하면 $\frac{1}{4}x^2-x-8=0, \ x^2-4x-32=0$ $(x+4)(x-8)=0 \qquad \therefore x=-4 \ \text{또는} \ x=8$ 즉, A(-4, 0), B(8, 0) 또는 A(8, 0), B(-4, 0)이므로 $\overline{AB}=12$

- 8 $y=2x^2-8x+1=2(x-2)^2-7$ 이 식에 x 대신 x-1, y 대신 y+4를 대입하면 $y+4=2(x-1-2)^2-7$ ∴ $y=2(x-3)^2-11$ $=2x^2-12x+7$ 따라서 a=2, b=-12, c=7이므로 a+b-c=2+(-12)-7=-17
- x축과 두 점 (-2, 0), (3, 0)에서 만나므로 y=a(x+2)(x-3)으로 놓자.
 이 그래프가 점 (0, 3)을 지나므로 3=a×2×(-3) ∴ a=-1/2
 ∴ y=-1/2(x+2)(x-3)=-1/2x²+1/2x+3
- 10 그래프가 아래로 볼록하므로 a>0축이 y축의 오른쪽에 있으므로 ab<0 ∴ b<0y축과의 교점이 x축보다 아래쪽에 있으므로 c<0c. b<0, c<0이므로 b+c<0c. x=1일 때, y<0이므로 a+b+c<0c. x=-1일 때, y=0이므로 a-b+c=0c. c0 를 c0 를
- 11 y=ax²+bx+c의 그래프가 위로 볼록하므로 a<0 축이 y축의 오른쪽에 있으므로 ab<0 ∴ b>0 y축과의 교점이 x축보다 아래쪽에 있으므로 c<0 따라서 y=bx²+cx+a의 그래프는 b>0이므로 아래로 볼록하고, bc<0이므로 축이 y축의 오른쪽에 있으며, a<0이므로 y축과의 교점이 x축보다 아래쪽에 있다. 따라서 y=bx²+cx+a의 그래프로 적당한 것은 ⑤이다.
- **12** (x²의 계수)>0이면 최솟값을 가진다.
 - ② 최솟값은 0이다.
 - ③ 최솟값은 1이다.
 - ④ $y=x^2+2x=(x+1)^2-1$ ⇒ 최솟값은 -1이다.
- 13 $y=2x^2-12x=2(x-3)^2-18$ 이므로 m=-18 $y=-\frac{1}{3}x^2+4x-3=-\frac{1}{3}(x-6)^2+9$ 이므로 M=9 $\therefore m+M=-18+9=-9$
- 14 y=-x²-6x+3의 그래프를 평행이동하면 완전히 포개어 지므로 x²의 계수는 -1이다.
 이때 축의 방정식이 x=1이므로 y=-(x-1)²+q로 놓자.
 이 그래프가 점 (0, 3)을 지나므로 3=-1+q ∴ q=4
 따라서 y=-(x-1)²+4이므로 x=1에서 최댓값은 4이다.

- 15 $y=-3x^2+18x+a$ = $-3(x-3)^2+27+a$ 즉, x=3에서 최댓값이 27+a이다. 그런데 최댓값이 25이므로 27+a=25 ∴ a=-2
- 16 x=0에서 최댓값이 -1이므로 꼭짓점의 좌표는 (0,-1) $y=ax^2-1$ 로 놓으면 그래프가 점 (2,-3)을 지나므로 -3=4a-1 $\therefore a=-\frac{1}{2}$ $\therefore y=-\frac{1}{2}x^2-1$
- 17 $y=-2x^2-4kx+k$ $=-2(x^2+2kx+k^2-k^2)+k$ $=-2(x+k)^2+2k^2+k$ $\therefore M=2k^2+k$ $=2\left(k^2+\frac{1}{2}k+\frac{1}{16}-\frac{1}{16}\right)$ $=2\left(k+\frac{1}{4}\right)^2-\frac{1}{8}$

따라서 M은 $k=-\frac{1}{4}$ 에서 최솟값이 $-\frac{1}{8}$ 이다.

- 18 한 수를 x라 하면 다른 한 수는 x+4이고, 두 수의 곱을 y라 하면 y=x(x+4) =x²+4x =(x+2)²-4 즉, x=-2에서 최솟값은 -4이다. 따라서 곱이 최소가 되는 두 수는 -2, -2+4=2이므로 구하는 큰 수는 2이다.
- 19 직사각형의 가로의 길이를 x cm라 하면 세로의 길이는 (24-x) cm이다. 직사각형의 넓이를 y cm²라 하면 y=x(24-x) $=-x^2+24x$ $=-(x-12)^2+144$ 즉, x=12에서 최댓값은 144이다. 따라서 직사각형의 넓이의 최댓값은 144 cm²이다.
- 20 단면의 세로의 길이가 xcm이므로 가로의 길이는 (36-2x)cm이다. 단면의 넓이를 ycm²라 하면 y=x(36-2x) $=-2x^2+36x$ $=-2(x-9)^2+162$ 즉, x=9에서 최댓값은 162이다. 따라서 단면의 넓이가 최대가 되도록 하는 x의 값은 9이다.

- 21 $h=-5t^2+40t=-5(t-4)^2+80$ 즉, t=4에서 최댓값은 80이다. 따라서 로켓이 가장 높이 올라갔을 때의 높이는 80 m이다.
- **22** 점 P의 x좌표를 k라 하면 점 P는 $y=x^2+3$ 의 그래프 위의 점이므로

 $P(k, k^2+3)$

점 Q는 점 P와 x좌표가 같고, 직선 y=x 위의 점이므로 Q(k,k)

$$\therefore \overline{PQ} = k^2 + 3 - k$$

$$= \left(k - \frac{1}{2}\right)^2 + \frac{11}{4}$$

즉, $k = \frac{1}{2}$ 에서 최솟값은 $\frac{11}{4}$ 이다.

따라서 $\overline{\mathrm{PQ}}$ 의 길이의 최솟값은 $\frac{11}{4}$ 이다.

23 $y=ax^2+bx+c$ 로 놓으면 그래프가 점 (0, 2)를 지나므로 c=2 ... (i)

이때 $y=ax^2+bx+2$ 의 그래프가 두 점 (-1, 3), (3, 5)를 지나므로

$$3=a-b+2$$
 $\therefore a-b=1$ $\cdots \bigcirc$

$$5=9a+3b+2$$
 $\therefore 3a+b=1$ $\cdots \bigcirc$

$$\bigcirc$$
, \bigcirc 을 연립하여 풀면 $a=\frac{1}{2},\ b=-\frac{1}{2}$... (ii)

$$\therefore y = \frac{1}{2}x^2 - \frac{1}{2}x + 2 \qquad \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) 상수항 구하기	20 %
(ii) x^2 의 계수와 x 의 계수 구하기	60 %
(iii) 이차함수의 식 구하기	20 %

24 꼭짓점의 좌표가 (1, 4)이므로 $y=a(x-1)^2+4$ 로 놓자.

이 그래프가 점 (0, 3)을 지나므로

$$3=a+4$$
 $\therefore a=-1$

$$= -(x-1)^2 + 4 = -x^2 + 2x + 3$$
 ... (i)

이 식에 y=0을 대입하면

 $0 = -x^2 + 2x + 3$

$$x^2-2x-3=0$$
, $(x+1)(x-3)=0$

∴ x=-1 또는 x=3

따라서 x축과의 교점의 좌표는 각각

$$(-1, 0), (3, 0)$$
 ... (ii)

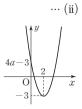
$$\therefore$$
 (삼각형의 넓이)= $\frac{1}{2} \times 4 \times 3 = 6$... (iii)

채점 기준	배점
${ m (i)}$ 주어진 포물선을 그래프로 하는 이차함수의 식 구하기	40 %
(ii) x 축과의 교점의 좌표 구하기	40 %
(iii) 삼각형의 넓이 구하기	20 %

- **25** x=2에서 최솟값이 -3이므로 꼭짓점의 좌표는 (2, -3) x^2 의 계수가 a이므로 이차함수의 식을 $y=a(x-2)^2-3$ 으 로 놓자. ... (i)
 - 이 이차함수가 최솟값을 가지므로

$$a>0$$
 ... \bigcirc

또 그래프가 제3사분면을 지나지 않으므 로 (y축과의 교점의 y좌표) \geq 0이어야 한다. $y=a(x-2)^2-3$ 에 x=0을 대입하면 y = 4a - 3



$$\stackrel{\leq}{\rightarrow}, 4a - 3 \ge 0 \qquad \therefore a \ge \frac{3}{4}$$

즉, 4a-3≥0

따라서
$$\bigcirc$$
, \bigcirc 에서 $a \ge \frac{3}{4}$... (iii)

... (L)

채점 기준	배점
$(i) y=a(x-p)^2+q$ 의 꼴로 놓기	20 %
(ii) <i>a</i> 의 부호 판별하기	30 %
$(ext{iii})$ a 의 값의 범위 구하기	50 %

26 (1) 점 P는 직선 y = -2x + 4 위의 점이므로

$$P(a, -2a+4) \cdots (i)$$

$$\therefore \triangle POQ = \frac{1}{2} \times a \times (-2a + 4)$$

$$=-a^2+2a \qquad \cdots \text{ (ii)}$$

(2)
$$\triangle POQ = -a^2 + 2a$$

$$=-(a^2-2a+1-1)$$

$$=-(a-1)^2+1$$

즉, a=1에서 최댓값은 1이다.

따라서 △POQ의 넓이의 최댓값은 1이고,

··· (iii)

... (iv)

채점 기주	배점
세염 기군	매감
(i) 점 P 의 좌표를 a 에 관한 식으로 나타내기	10 %
(ii) $\triangle POQ$ 의 넓이를 a 에 관한 식으로 나타내기	30 %
(iii) △POQ의 넓이의 최댓값 구하기	30 %
(iv) $\triangle POQ$ 의 넓이가 최대일 때의 점 P 의 좌표 구하기	30 %

제곱근과 실수

○ 1 제곱근의 뜻과 성질

유형 1

- **1** (1) ± 2 (2) ± 7 (3) ± 9 (4) ± 0.1 (5) $\pm \frac{1}{4}$
- **2** (1) ± 4 (2) ± 8 (3) ± 12 (4) ± 0.9 (5) $\pm \frac{10}{2}$
- **3** 36, 36, 6
- **4** (1) 0 (2) ±1 (3) ±3 (4) ±10 (5) 없다. (6) 없다. (7) ± 0.3 (8) ± 0.4 (9) $\pm \frac{1}{2}$ (10) $\pm \frac{5}{8}$
- **5** (1) 0 (2) 1 (3) 2 **6** (1) 9, ±3 (2) 16, ±4
 - (3) $\frac{1}{9}$, $\pm \frac{1}{3}$ (4) 0.04, ± 0.2

유형 2

- 1 (1) $\pm \sqrt{5}$ (2) $\pm \sqrt{10}$ (3) $\pm \sqrt{21}$ (4) $\pm \sqrt{123}$
- (5) $\pm \sqrt{0.1}$ (6) $\pm \sqrt{3.6}$ (7) $\pm \sqrt{\frac{2}{3}}$ (8) $\pm \sqrt{\frac{35}{6}}$

- **2** (1) 1 (2) ± 6 (3) 2 (4) -7 (5) -0.5 (6) 1.1 (7) $\frac{2}{3}$ (8) $\pm \frac{7}{8}$

- 3 (1) $\pm \sqrt{6}$ (2) $\sqrt{17}$ (3) $\pm \sqrt{0.8}$ (4) $-\sqrt{\frac{2}{5}}$
- **4** (1) $\pm \sqrt{2}$, $\sqrt{2}$ (2) $\pm \sqrt{23}$, $\sqrt{23}$ (3) ± 8 , 8 (4) ± 12 , 12

- **5** (1) $\sqrt{7}$ (2) $\pm \sqrt{7}$ (3) $-\sqrt{7}$ (4) $\sqrt{7}$
- 6 (1) 5
- $(2) \pm 5$
- (3) -5 (4) 5

유형 3

- 1 (1) 2 (2) 5 (3) 0.1 (4) $\frac{3}{4}$

- **2** (1) 5 (2) -5 (3) 0.7 (4) -0.7 (5) $\frac{3}{5}$ (6) $-\frac{3}{5}$
- 3 (1) 11 (2) $\frac{1}{3}$ (3) -0.9 (4) $-\frac{2}{5}$

- **4** (1) 5 (2) -5 (3) 0.5 (4) -0.5 (5) $\frac{1}{5}$ (6) $-\frac{1}{5}$
- **5** $(\sqrt{7})^2$ 과 $(-\sqrt{7})^2$, $-\sqrt{(-7)^2}$ 과 $-\sqrt{7^2}$
- **6** (1) ×, 없다. (2) (3) ×, 없다.

 - (4) ×, ±3이다. (5) 〇
- **7** (1) 8 (2) 4 (3) 20 (4) 3

유형 4

- 1 (1) a (2) a (3) -a
- **2** (1) -a (2) -a (3) a (4) a
- 3 (1) -3a (2) -5a (3) 2a

- **4** (1) <, -x+1 (2) >, 1-x

 - (3) < x-1 (4) > 1+x
- 5 (1) x-2 (2) -2+x (3) -x+2
- 6 > x+2 < -x+3, x+2, -x+3, 5

한 걸음 더 연습

P. 9

(4) - a

- **1** (1) 10 (2) 12 (3) 2 (4) $\frac{1}{5}$ (5) 2.6 (6) $\frac{1}{3}$
- **2** (1) ① 2+6+3 ② 11
 - (2) ① -3-7+5-12 ② -17
 - (3) ① $5 \times 6 \div 3$ ② 10
 - (4) ① $6 \times (-0.5) 4 \div \frac{2}{5}$ ② -13
- 3 (1) 3 (2) 3-2x (3) 3 (4) 2x-3
- 4 (1) -2x(2) 2
- **5** (1) a-b (2) 2a-2b (3) 2b
- **6** (1) -b (2) -a (3) ab-a

P. 11

- **1** (1) $\sqrt{9^2}$, 9 (2) $\sqrt{14^2}$, 14 (3) $\sqrt{17^2}$, 17 **2** (1) 1, 4, 9 (2) 1, 6, 9 (3) 1
- **3** (1) 16 (2) 3 **4** (1) 12 (2) 4
- 5 (1) $2^2 \times 3$ (2) 3 (3) 3
- **7** (1) 5 (2) 14 (3) 10 (4) 2
- **6** (1) 2×5^2 (2) 2 (3) 2

- **1** (1) < (2) > (3) < (4) >
- (5) > (6) < (7) < (8) <
- **2** (1) < (2) < (3) < (4) >
- **3** (1) -2, $-\sqrt{3}$, $\frac{1}{4}$, $\sqrt{\frac{1}{8}}$ (2) $-\sqrt{\frac{1}{3}}$, $-\frac{1}{2}$, $\sqrt{15}$, 4

한 걸음 더 연습

P. 13

- 1 製質1 √9, 9, 3, 4, 5, 6, 7, 8 製質2 2, 3, 2, 9, 3, 4, 5, 6, 7, 8
- **2** (1) 1, 2, 3, 4 (2) 3, 4, 5, 6, 7, 8, 9 (3) 8, 9, 10, 11, 12, 13, 14, 15 (4) 7, 8, 9, 10
- **3** (1) 10, 11, 12, 13, 14, 15, 16 (2) 5, 6, 7, 8, 9, 10, 11, 12
- **4** (1) 37H (2) 47H

쌍둥이 기출문제

P. 14~15

- **1** ③ **2** ③ **3** 5 **4** 6 **5** ㄴ, ㄹ
- **6** ④ **7** ③ **8** 50 **9** a-2b
- 102, 과정은 풀이 참조11②125개
- **13** 7 **14** 15 **15** ⓐ **16** b < c < a
- **17** ⑤ **18** ③

○2 무리수와 실수

유형 7

P. 16~17

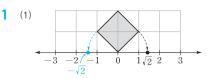
1 (1) 유리수 (2) 유리수 (3) 유리수 (4) 유리수 (5) 무리수 (6) 무리수 (7) 유리수 (8) 무리수 (9) 유리수 (10) 무리수

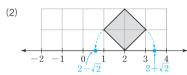
_						
2	$\sqrt{\frac{4}{9}}$	$\sqrt{1.2^2}$	0.1234	$\sqrt{\frac{49}{3}}$	√0.1	
	$(-\sqrt{6})^2$	$-\frac{\sqrt{64}}{4}$	$-\sqrt{17}$	1.414	$\frac{1}{\sqrt{4}}$	
	$\sqrt{2}+3$	0.15	$\frac{\pi}{2}$	$-\sqrt{0.04}$	√169	
	$\sqrt{25}$	$\frac{\sqrt{7}}{7}$	$\sqrt{(-3)^2}$	√100	$-\sqrt{16}$	

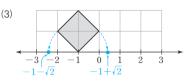
- **3** (1) (2) × (3) (4) × (5) (6) × (7) × (8) (9) (10) ○
- **4** (1) $\sqrt{9} 5$, $\sqrt{36}$ (2) $0.\dot{1}\dot{2}$, $\sqrt{9} 5$, $\frac{2}{3}$, $\sqrt{36}$ (3) $\pi + 1$, $\sqrt{0.4}$, $-\sqrt{10}$ (4) $\pi + 1$, $\sqrt{0.4}$, $0.\dot{1}\dot{2}$, $\sqrt{9} 5$, $\frac{2}{3}$, $\sqrt{36}$, $-\sqrt{10}$
- 5 $\sqrt{1.25}$, $\sqrt{8}$

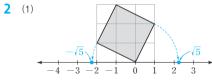
유형 8

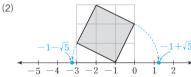
P. 18











- 3 (1) P: $3-\sqrt{2}$, Q: $3+\sqrt{2}$
 - (2) P: $-2-\sqrt{5}$, Q: $-2+\sqrt{5}$
- **4** (1) P: $-2-\sqrt{2}$, Q: $\sqrt{2}$
 - (2) P: $2-\sqrt{2}$, Q: $1+\sqrt{2}$

유형 9

P. 19

- 1 (1) \times (2) \times (3) \times (4) \bigcirc (5) \times (6) \bigcirc
- 2 (1) 유리수 (2) 실수 (3) 정수
- **3 921** 2, $\frac{\sqrt{2}+\sqrt{3}}{2}$ **922** 0.318, $\sqrt{3}$, $\sqrt{3}$

유형 10

- 1 (1) $1-\sqrt{5}$, < , < , < (2) 2, 3, <
- **2** (1) < (2) > (3) < (4) < (5) <
- **3** (1) < (2) < (3) < (4) > (5) <
- 4 $\sqrt{2}-1$, >, >, 3 $-\sqrt{7}$, >, >, >, >, >

유형 11 P. 21

- 1 2, 2, 2
- 2 (1) $\sqrt{3}-1$
 - (2) 2, $\sqrt{8}-2$
 - (3) $3 < \sqrt{11} < 4$, 3, $\sqrt{11} 3$
 - (4) $5 < \sqrt{35} < 6$, 5, $\sqrt{35} 5$
 - (5) $9 < \sqrt{88.8} < 10$, 9, $\sqrt{88.8} 9$
- 3 (1) $\sqrt{2}-1$
 - (2) 1. $2-\sqrt{2}$
 - $(3) \ 2 < \sqrt{5} < 3 \Rightarrow 3 < 1 + \sqrt{5} < 4, 3, \sqrt{5} 2$
 - (4) $2 < \sqrt{7} < 3 \Rightarrow 7 < 5 + \sqrt{7} < 8$, $7, \sqrt{7} 2$
 - (5) $-3 < -\sqrt{7} < -2 \Rightarrow 2 < 5 \sqrt{7} < 3$, 2, $3 \sqrt{7}$

쌍둥이 기출문제

P. 22~23

- 1 ①. ④ **2** 3개 4 기, ㄴ, ㄹ 3 ③
- **5** ②. ④ **6** □. ⊨ **7** 1+√5
- 8 P: $1-\sqrt{10}$, Q: $1+\sqrt{10}$
 - 9 기 리
- **10** ②, ③ **11** ⑤ **12** ⑤ **13** c < a < b
- 14 $M=4+\sqrt{2}, m=\sqrt{8}+1$
- 15 $\sqrt{5}$, 과정은 풀이 참조 16 $\sqrt{2}-6$

Best of Best 문제로 단원 마무리

P. 24~25

- **1** −15, 과정은 풀이 참조 **2** ①, ④ **3** (4)
- **4** 5 **5** 4 **6** 2
- - 7 ③
- 8 $1+\sqrt{3}$, 과정은 풀이 참조

· 근호를 포함한 식의 계산

○ 1 근호를 포함한 식의 계산 (1)

P. 28

- (2) 2, 5, 7, 70 (3) 5, 15 1 (1) 7, 42
- **2** (1) 4, 3, 2, 8, 6 (2) 3, 2, 3, -9, 6
- **3** (1) $\sqrt{40}$ (2) 8 (3) 6 (4) $-\sqrt{7}$
- **4** (1) $6\sqrt{5}$ (2) $6\sqrt{14}$ **5** (1) $\frac{9}{3}$, 3 (2) $\frac{45}{5}$, 9, 3
- **6** (1) 30, 5, $\frac{30}{5}$, 6 (2) 4, $\frac{6}{2}$, 2, 3 (3) $\frac{9}{5}$, $\frac{9}{5}$, 6
- **7** (1) $\sqrt{6}$ (2) -4 (3) $\sqrt{5}$ (4) $\sqrt{10}$
- **8** (1) $2\sqrt{2}$ (2) $3\sqrt{6}$ **9** (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{5}$

유형 2

P. 29

- 1 (1) 2, 2 (2) 3, 3

- **2** (1) $2\sqrt{7}$ (2) $-3\sqrt{6}$ (3) $12\sqrt{2}$ (4) $10\sqrt{10}$
- **3** (1) 4, 4 (2) 100, 10, 10
- **4** (1) $\frac{\sqrt{6}}{5}$ (2) $\frac{\sqrt{17}}{9}$ (3) $\frac{\sqrt{7}}{10}$ (4) $\frac{\sqrt{3}}{5}$

- **5** (1) 3, 90 (2) 5, 50 (3) 10, $\frac{3}{20}$ (4) 2, $\frac{27}{4}$
- **6** (1) $\sqrt{45}$ (2) $-\sqrt{14}$ (3) $\sqrt{5}$ (4) $-\sqrt{\frac{7}{16}}$
- 7 (1) 🕒
- (2) 🖾 (3) 🗇
- (4) (관

- **1** (1) $\sqrt{5}$, $\sqrt{5}$, $\frac{2\sqrt{5}}{5}$ (2) $\sqrt{7}$, $\sqrt{7}$, $\frac{3\sqrt{7}}{7}$

 - (3) $\sqrt{5}$, $\sqrt{5}$, $\frac{\sqrt{15}}{5}$ (4) $\sqrt{2}$, $\sqrt{2}$, $\frac{5\sqrt{2}}{4}$

- 2 (1) $\frac{\sqrt{11}}{11}$ (2) $\sqrt{2}$ (3) $-\frac{5\sqrt{3}}{3}$ (4) $2\sqrt{5}$ 3 (1) $\frac{\sqrt{6}}{2}$ (2) $-\frac{\sqrt{35}}{7}$ (3) $\frac{\sqrt{42}}{6}$ (4) $\frac{\sqrt{22}}{11}$ 4 (1) $\frac{\sqrt{6}}{4}$ (2) $\frac{\sqrt{15}}{6}$ (3) $\frac{\sqrt{6}}{3}$ (4) $\frac{\sqrt{15}}{5}$ 5 (1) $\frac{2\sqrt{3}}{3}$ (2) $\frac{\sqrt{15}}{10}$ (3) $-\frac{5\sqrt{3}}{12}$ (4) $\frac{\sqrt{2}}{4}$
- **6** (1) $2\sqrt{3}$ (2) $2\sqrt{10}$ (3) $\frac{2\sqrt{15}}{3}$ (4) $\frac{\sqrt{6}}{2}$

P. 31

- 1 (1) 2,435 (2) 2,449 (3) 2.478
- (4) 2,512 **2** (1) 6.04 (2) 6.32 (3) 6.41 (4) 5.94
- **3** (1) 100, 10, 10, 26,46 (2) 100, 10, 10, 0,2646
- (3) 10000, 100, 100, 0.02646

- **4** (1) $\sqrt{\frac{30}{10000}} = \frac{\sqrt{30}}{100}, \frac{5.477}{100} = 0.05477$
 - (2) $\sqrt{\frac{3}{100}} = \frac{\sqrt{3}}{10}, \frac{1.732}{10} = 0.1732$
 - (3) $\sqrt{30 \times 100} = 10\sqrt{30}$, $10 \times 5.477 = 54.77$
 - $(4)\sqrt{3\times10000} = 100\sqrt{3}, 100\times1.732 = 173.2$
- **5** (1) 34.64 (2) 10.95 (3) 0.3464 (4) 0.1095
- **6** (1) 2, 2, 2.828 (2) 100, 25, 5, 5, 0.2828

쌍둥이 기출문제 `

P. 32~33

- 1 ③, ⑤ 2 ③ 3 3 4 7, 과정은 풀이 참조
- **5** 4 **6** 3 **7** 4 **8** 3 **9** 2
- 10 6, 과정은 풀이 참조 11 ② 12 ②
- **13** ④ **14** ②

○2 근호를 포함한 식의 계산 (2)

유형 5

P. 34

- 1 (1) (2) (7) (3) (8) (4) (9) (5) (5)
- **2** (1) 0 (2) $8\sqrt{6}$ (3) $-\frac{\sqrt{2}}{15}$
- **3** (1) $6\sqrt{3}$ (2) 0 (3) $5\sqrt{6}$
- 4 (1) $2\sqrt{3} \sqrt{5}$ (2) $-4\sqrt{2} + 3\sqrt{6}$
- 5 (1) $-\sqrt{2}-6\sqrt{3}$ (2) $-5+6\sqrt{6}$
- 6 (1) 3, $2\sqrt{2}$ (2) 2, 5, $-3\sqrt{5}$
- **7** (1) $\sqrt{7} + 3\sqrt{2}$ (2) $2\sqrt{2} + \frac{10\sqrt{3}}{3}$

유형 6

P. 35

- 1 (1) $\sqrt{15} + \sqrt{30}$ (2) $3\sqrt{2} 2\sqrt{6}$ (3) $\sqrt{6} + 5\sqrt{2}$

- **2** (1) $\sqrt{6} + 2$ (2) $2\sqrt{5}$ (3) $8\sqrt{6}$ **3** (1) $4\sqrt{2}$ (2) $7\sqrt{3} 2\sqrt{15}$ (3) $-\sqrt{2} + \sqrt{6}$

- **4** (1) $-\sqrt{5}+\sqrt{7}$ (2) $-\frac{\sqrt{3}}{3}+\frac{3\sqrt{6}}{2}$

- **5** (1) $\sqrt{3}$, $\sqrt{3}$, $\frac{\sqrt{3}+\sqrt{6}}{3}$ (2) $\sqrt{6}$, $\sqrt{6}$, $3\sqrt{6}-3\sqrt{2}$, $\sqrt{6}-\sqrt{2}$
- 6 (1) $\frac{\sqrt{10}-4}{2}$ (2) $\frac{2\sqrt{3}+3\sqrt{2}}{6}$
- **7** (1) $\frac{3-\sqrt{6}}{6}$ (2) $\frac{2\sqrt{6}-\sqrt{2}}{2}$ **8** (7) a-3 (4) 3

유형 7

P. 36

- 1 (1) 2, b^2 (2) $5+2\sqrt{6}$
- **2** (1) *a*, *b* (2) 2
- 3 (1) 4, 1 (2) $7+5\sqrt{3}$
- **4** (1) 2, 3, 2 (2) $10+7\sqrt{2}$
- **5** (1) $9+4\sqrt{5}$ (2) $12-4\sqrt{5}$ **6** (1) 11 (2) 8 **7** (1) $-1+\sqrt{5}$ (2) $-13+\sqrt{7}$ (3) $-4+\sqrt{3}$

 - (4) $9 5\sqrt{6}$
- 8 (1) $12+7\sqrt{6}$ (2) $-2-\sqrt{10}$
- (3) $21 + 7\sqrt{15}$
- (4) $29 13\sqrt{14}$
- 9 (71) a-8 (4) 8

유형 8

P. 37

- 1 (1) $\sqrt{3}+1$, $\sqrt{3}+1$, $\sqrt{3}+1$ (2) $\sqrt{7} - \sqrt{3}$, $\sqrt{7} - \sqrt{3}$, $\sqrt{7} - \sqrt{3}$
- **2** (1) $\frac{3\sqrt{6}-6}{2}$ (2) $\sqrt{2}-1$ (3) $\sqrt{3}+\sqrt{2}$
- **3** (1) $3-2\sqrt{2}$ (2) $\frac{11+4\sqrt{7}}{3}$ (3) $5+2\sqrt{6}$
- **4** (1) $2\sqrt{3}$ (2) $-2\sqrt{15}$ (3) 10
- 5 (1) 5

- (2) $\sqrt{5}$ (3) 4 (4) 16 (5) 34

쌍둥이 기출문제

P. 38~39

- 1 3 2 4 3 4 $10\sqrt{2}$ 5 2
- **6** $8-3\sqrt{6}$, 과정은 풀이 참조 **7** ④ **8** $9-4\sqrt{6}$
- **9** ⑤ **10** −4, 과정은 풀이 참조 **11** ④
- **12** ② **13** ④ **14** 3

Best of Best 문제로 단원 마무리 P. 40~41

- 1 ① 2 $\frac{1}{2}$, 과정은 풀이 참조 3 ④ 4 ①
- 5 ⑤ 6 ② 7 12, 과정은 풀이 참조

III 인수분해

준비 학습

1 (1)
$$ac+ad-2bc-2bd$$
 (2) $2ax-3ay+2bx-3by$

$$2$$
 (1) x^2+4x+4

(2)
$$x^2 - 10x + 25$$

(3)
$$4x^2 - 4x + 1$$

(3)
$$4x^2 - 4x + 1$$
 (4) $\frac{1}{9}x^2 - 2x + 9$

$$x^2-25$$

(2)
$$4x^2 - 1$$

4 (1)
$$x^2 + 11x + 30$$

(2)
$$x^2 + 5x - 14$$

(3)
$$x^2 + 6x - 27$$

(4)
$$x^2 - \frac{7}{6}x + \frac{1}{3}$$

5 (1)
$$3x^2 + 14x + 8$$

(2)
$$10x^2 - 17x + 3$$

(3)
$$8x^2 + 26xy + 15y^2$$

(3)
$$8x^2 + 26xy + 15y^2$$
 (4) $6x^2 + \frac{1}{2}xy - \frac{1}{12}y^2$

6 (1)
$$a^2 + 2ab + b^2 - 4a - 4b + 4$$

(2)
$$9x^2 - 6xy + y^2 + 18x - 6y + 8$$

8 (1) 19 (2)
$$\frac{19}{3}$$

○ 1 다항식의 인수분해

유형 1

P. 45

1 (1)
$$x^2+6x+9$$
 (2) x^2-4 (3) x^2-4x-5

- 2 7, 5, 5, 6
- 3 (1) a, a(x+y-z) (2) 2a, 2a(a+2b)

 - (3) $3x^2$, $3x^2(y-2)$ (4) xy, xy(x-y+1)
- **4** (1) a(x-y)
- (2) -3a(x+3y)
- (3) $5x^2(x-3)$
- (4) $4xy^2(2y-x)$
- 5 (1) x(a-b+3)(3) $a(3a^2+4a-5)$
- (2) 4x(x+y-2)
- 6 (1) ab(a+b-1)
- (4) 2xy(3x-y+2)(2) (x-y)(a+3b)
- (3) (x+y)(a-b) (4) (b-1)(a+1)
- (5) (x-y)(a+2b+1) (6) (x-2)(x+4)

○2 여러 가지 인수분해 공식

유형 2

P. 46

2 (1)
$$(x+7)^2$$
 (2) $(x-8)^2$ (3) $(x+3y)^2$ (4) $(x-5y)^2$

$$(x)^2 (4) (x-5y)^2$$

3 (1)
$$(4x-1)^2$$
 (2) $(3x+2)^2$ (3) $(2x-5y)^2$

(4)
$$(5x+4y)^2$$

4 (1)
$$a(x+1)^2$$
 (2) $3(x-1)^2$ (3) $2(2x-1)^2$ (4) $2(x+3y)^2$

5 (1) 1 (2) 4 (3) 9 (4) 100 (5)
$$\frac{1}{4}$$
 (6) $\frac{1}{25}$

6 (1)
$$\pm 14$$
 (2) $\pm \frac{1}{2}$ (3) ± 12 (4) ± 12

유형 3

P. 47

- 1 (1) 5, 5
- (2) 2y, 3x
- 2 (1) (x+8)(x-8)
 - (2)(2x+3)(2x-3)
 - (3) (3x+5)(3x-5) (4) (8x+y)(8x-y)

3 (1)
$$(1+4x)(1-4x)$$
 (2) $(2x+\frac{3}{4})(2x-\frac{3}{4})$

$$(2) \left(2x + \frac{1}{4}\right) \left(2x - \frac{1}{4}\right)$$

$$\text{(3)} \left(\frac{1}{2} + x \right) \! \left(\frac{1}{2} - x \right) \qquad \text{(4)} \left(\frac{2}{9} x + \frac{1}{6} y \right) \! \left(\frac{2}{9} x - \frac{1}{6} y \right)$$

$$(4) \left(\frac{9}{9}x + \frac{6}{6}y \right) \left(\frac{9}{9}x - \frac{6}{6}y \right)$$

- (3) 3(x+3y)(x-3y) (4) 4y(x+2y)(x-2y)
- 4 (1) 2(x+4)(x-4) (2) 20(x+2)(x-2)
- (5) xy(x+7y)(x-7y)
- 5 (1) \times , (y+x)(y-x) (2) \times , $\left(\frac{a}{3}+b\right)\left(\frac{a}{3}-b\right)$
 - $(3) \bigcirc (4) \times a(x+3y)(x-3y) \quad (5) \bigcirc$

유형 4

P. 48

1 (1)
$$-1$$
, 4 (2) -3 , -2 (3) 2, 5 (4) -11 , 2

- (1) 2, 3, (x+2)(x+3)
 - (2) -4. -6. (x-4)(x-6)
 - (3) -3, 5, (x-3)(x+5)
 - (4) -1, -5, (x-y)(x-5y)
 - (5) 2, -5, (x+2y)(x-5y)
- 3 (1) (x+1)(x+6) (2) (x-5)(x+6)

 - (3) (x-2)(x-10) (4) (x-4y)(x+6y)

 - (5) (x-5y)(x+4y) (6) (x-4y)(x-10y)
- **4** (1) 3(x+1)(x-2) (2) 2b(x-y)(x-2y)
- 5 (1) \times (x+3)(x+6) (2) \bigcirc
 - (3) \times , (x-2y)(x-y) (4) \times , (x-2a)(x+5a)

유형 5

- 1 (1) (차례대로) 1, 3, 1; 1, 3, 3, 1, 2
 - (2) (차례대로) 4, 3; -4, 4, -3, -3

- (3) (차례대로) (x-1)(3x+10); x, -1, -3x, 3x,10, 10x, 7x
- (4) (차례대로) (x-3)(2x+3); x, -3, -6x, 2x3. 3x. -3x
- (5) (차례대로) (x-y)(4x-9y); x, -y, -4xy, 4x, -9y, -9xy, -13xy
- (1)(x+1)(3x+1)
- (2)(2x-7)(3x-2)
- (3)(x-2y)(2x+3y)
- (4) (2x+3y)(3x-2y)
- 3 (1) 2(a-b)(3a+5b) (2) 3y(x-1)(3x+1)
- 4 (1) \times , (x+5)(3x+1)
 - (2) (
 - $(3) \times, (x-2y)(3x+4y) \quad (4) \times, a(x-2)(3x-1)$

한 겨움 더 연습

- **1** (1) 12, 6 (2) 21, 3 (3) 2, 7 (4) 5, 6
- **2** (1) 2, 7, 3 (2) 3, 8, 1 (3) 2, 7, 2 (4) 12, 7, 5
- 3 x+3, x-1, x+3, -x+1, 4 4 -2x+1
- 5 (1) a = -1, b = -12 (2) a = -4, b = 3(3)(x+2)(x-6)
- 6 x^2+x-6 , (x-2)(x+3) 7 x^2+2x+1 , $(x+1)^2$
- 8 x^2+4x+3 , (x+1)(x+3)

쌍둥이 기출문제

P. 51~53

- 1 (2)
- 2 (3) 3 (3)
- **4** a-2b, 2a-b **5** a=2, b=25
- 6 4
- 7 ②
- 8 -2x 2, 과정은 풀이 참조
- 9 2x-5
- 10 2x-2
- 11 (1) $x^2+9x-10$ (2) (x-1)(x+10)
- 12 (x+2)(x-4) 13 2x+3
- **14** 4*x*+10, 과정은 풀이 참조
- **15** A = -11, B = -10
- **16** 2
- **17** ⑤ **18** ④

- 20 7. L. C
- **21** ② **22** ②
- 유형 6

P. 54~55

19 (4)

- 1 (1) 3, 3, 2
- (2) 6, x-2, 6, 3, 4
- (3) 3, 2, 2, a+b, 2
- (4) b-2, a-1, 3, 1
- $(1) (a+b+2)^2$
- (2) (x+1)(x-1)
- (3) x(4x+9)
- (4) (x-2y-2)(x-2y-3)
- (5) (x+4)(x-2)
- (6) 3(x-y)(x+y)

- 3 (1) x-y, b, (x-y)(a-b)
 - (2) y+1, y+1, (x-1)(y+1)

 - (3) (x-2)(y-2) (4) (x-2)(y-z)
 - (5) (a-b)(c+d)
- (6) (x-y)(1-y)
- 4 (1) x-2y, x-2y, (x-2y)(x+2y-1)
 - (2) x+y, 2, (x+y)(x-y+2)

 - (3) (a+b)(a-b-c) (4) (x+4)(y+3)(y-3)
 - (5) (x+1)(x+2)(x-2) (6) (x-1)(a+1)(a-1)
- 5 (1) x+1, (x+y+1)(x-y+1)
 - (2) b+1, (a+b+1)(a-b-1)
 - (3) (x+2y-1)(x-2y+1)
 - (4) (c+a-b)(c-a+b)
 - (5) (3x+y-1)(3x-y-1)
 - (6) (a-3b+5c)(a-3b-5c)

유형 7

- P. 56
- **1** (1) 54, 46, 100, 1700 (2) 53, 53, 4, 440 (3) 2, 2, 20, 20, 2, 1, 82 (4) 2, 100, 10000
- 2 (1) 900 (2) 1100 (3) 100 (4) 99
- **3** (1) 113 (2) 9800 (3) 720 (4) 5000
- **4** (1) 100 (2) 900 (3) 400 (4) 2500
- **5** (1) 250 (2) 238 (3) 100 (4) 60

유형 8

P. 57

- 1 (1) 3, 3, 30, 900
 - (2) x-y, $2-\sqrt{3}$, $2+\sqrt{3}$, $2-\sqrt{3}$, 4, $2\sqrt{3}$, $8\sqrt{3}$
- 2 (1) 8 (2) $2+\sqrt{2}$ (3) $5+5\sqrt{5}$ (4) 4
- **3** (1) 4 (2) 36 (3) $8\sqrt{3}$ **4** (1) 4 (2) $-2\sqrt{2}$ (3) $8\sqrt{3}$
- **5** (1) 30 (2) 90 (3) 60

쌍둥이 기출문제

P. 58~59

- 1 (2)
- **2** −1. 과정은 풀이 참조 4 ②
- 3 (4)
- (x+y+5)(x-y+5)
- 7 ③
- 8 (1) 30 (2) 10000 (3) 990

6 ⑤

- 9 (1)
- 10 16, 과정은 풀이 참조
- **11** (5)
- **12** ③

Best of Best 문제로 단원 마무리 P. 60~61

- 1 ¬, с, в 2 5
- **3** (x+6)(x-4), 과정은 풀이 참조
- **4** ④ **5** ⑤ **6** ②

- 7 ③
- 8 83
- 9 8

IV 이차방정식

○ 1 이차방정식과 그 해 -

유형 1

P. 64

- 1 $a \neq 0$
- 2 (1) $x^2-4x-5=0$
- (2) $2x^2 + 6x 9 = 0$
- (3) $x^2 4 = 0$
- (4) $8x^2 22x 21 = 0$
- 3 7. 口. ㅂ. 人
- **4** (1) = . \bigcirc
- $(2) \neq \times$
- 5 (1) x=0
- (2) x = -1 또는 x = 3
- (3) x = 1
- (4) x = -1

②2 이차방정식의 풀이 (1)

유형 2

P. 65

- 1 (1) x, x-4, 0, 4
 - (2) x+3, x-4, -3, 4
 - (3) x+3, x+3, x-2, -3, 2
 - (4) 2x-3, x+2, 2x-3, -2, $\frac{3}{2}$
- 2 (1) x=0 또는 x=2 (2) x=0 또는 x=-3

 - (3) x=0 또는 x=-4
- 3 (1) x = -4 $\pm \frac{1}{5}$ x = -1 (2) x = 2 $\pm \frac{1}{5}$ x = 5
 - (3) x = -2 또는 x = 4
- **4** (1) $x = \frac{1}{2}$ $\pm \frac{1}{2}$ $\pm \frac{1}{2}$ x = 3 (2) $x = -\frac{1}{2}$ $\pm \frac{1}{2}$

 - (3) $x = \frac{1}{2}$ 또는 $x = \frac{3}{2}$
- 5 (1) x^2+6x+8 , x=-4 $\pm \frac{1}{12}$ x=-2
 - (2) $2x^2 3x 5$, x = -1 $\pm \frac{5}{2}$
- 6 a = -6, x = 5

유형 3

P. 66

- **1** (1) x = -5 (중간) (2) $x = \frac{1}{3}$ (중간)
 - (3) $x = -\frac{3}{2} (\frac{2}{5})$

- **2** (1) x-4, 4 (2) 3x-1, $\frac{1}{3}$ (3) $x+\frac{1}{2}$, $-\frac{1}{2}$
- 3 (1) $x = \frac{4}{3} \left(\frac{27}{6} \right)$ (2) $x = -1 \left(\frac{27}{6} \right)$

 - $(3) x = -3 (\frac{2}{2})$
- **4** (1) 9, 3 (2) 25, 5 (3) $\frac{9}{4}$, $\frac{3}{2}$ (4) $\frac{1}{4}$, $\frac{1}{2}$
- 5 (1) 4. -4 (2) k. ± 2
- 6 (1) -7 (2) ± 6

유형 4 P. 67

- 1 (1) 2 (2) $2\sqrt{3}$
- (3) 24, $2\sqrt{6}$ (4) 18, $3\sqrt{2}$
- 2 (1) $x = \pm \sqrt{5}$ (3) $x = \pm 3\sqrt{3}$
- (2) $x = \pm 9$ (4) $x = \pm 5$
- (5) $x = \pm \frac{\sqrt{13}}{3}$ (6) $x = \pm \frac{\sqrt{42}}{6}$

- 3 (1) $\sqrt{5}$, -4, $\sqrt{5}$ 4 (1) x=8 $\pm \frac{1}{2}$ x=-2 (2) $x=-2\pm 2\sqrt{2}$
 - (2) 2, $\sqrt{2}$, 3, $\sqrt{2}$

- (3) $x = 5 \pm \sqrt{6}$ (4) $x = -3 \pm 3\sqrt{3}$
- (5) x=3 $\pm \frac{1}{5}$ x=-1 (6) $x=-4\pm\sqrt{6}$

유형 5

- 1 (1) $\frac{1}{4}$, $\frac{1}{4}$, $\frac{5}{4}$
 - (2) $\frac{2}{3}$, $\frac{1}{9}$, $\frac{2}{3}$, $\frac{1}{9}$, $\frac{2}{3}$, $\frac{1}{9}$, $\frac{2}{9}$, $\frac{1}{3}$, $\frac{2}{9}$
- 2 1 4, 2 2 4, 2 3 4, 4, 4
 - (4) 2, 6 (5) 2, 6 (6) $2 \pm \sqrt{6}$
- **3** ① $x^2+x-\frac{1}{2}=0$ ② $x^2+x=\frac{1}{2}$

 - $3x^2+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}$ $4(x+\frac{1}{2})^2=\frac{3}{4}$
- (5) $x + \frac{1}{2} = \pm \frac{\sqrt{3}}{2}$ (6) $x = \frac{-1 \pm \sqrt{3}}{2}$ **4** (1) $x = -2 \pm \sqrt{3}$ (2) $x = 3 \pm \sqrt{5}$

- (3) $x=1\pm\sqrt{6}$ (4) $x=-1\pm\frac{\sqrt{6}}{2}$

한번 더 연습

P. 69

- 1 (1) x = -5 또는 x = 1 (2) x = -7 또는 x = 4
 - (3) x = -2 $\pm \frac{1}{5}$ x = 4 (4) x = 3 $\pm \frac{1}{5}$ x = 4
 - (5) $x = -\frac{1}{3}$ E- x = 2 (6) x = -4 $\text{E-} x = \frac{2}{5}$
 - (7) $x = -\frac{5}{2}$ 또는 x = 3 (8) $x = -\frac{1}{6}$ 또는 $x = \frac{2}{3}$
- $2 \quad \text{(1) } x = 5 \left(\frac{\text{Z}}{\text{SL}} \right) \qquad \qquad \text{(2) } x = -\frac{3}{2} \left(\frac{\text{Z}}{\text{SL}} \right)$
 - (3) $x = \frac{3}{4} \left(\frac{Z}{\delta} \right)$ (4) $x = -\frac{1}{10} \left(\frac{Z}{\delta} \right)$
- 3 (1) $x = \pm \sqrt{15}$ (2) $x = \pm 2\sqrt{2}$ (3) $x = \pm 2\sqrt{7}$
- (4) $x = \pm \frac{9}{7}$ (5) $x = -1 \pm 2\sqrt{3}$ (6) $x = 5 \pm \sqrt{10}$
- 4 (1) $x=4\pm\sqrt{11}$ (2) $x=-3\pm\sqrt{10}$ (3) $x=4\pm\frac{\sqrt{70}}{2}$ (4) $x=1\pm\frac{2\sqrt{5}}{5}$
 - (5) $x = \frac{4 \pm \sqrt{13}}{3}$ (6) $x = -2 \pm \frac{\sqrt{30}}{2}$

쌍둥이 기출문제

P. 70~73

- 1 (1) 2 ③ 3 ② 4 (3) **6** ② 7 ② **5** (5) 8 (4)
- 9 (4) **10** (4) **11** ⑤ **12** 2
- **13** ③ **14** 9 **15** ② **16** ②
- **17** ②, ④ **18** ② **19** (1) -1 (2) x=-2
- **20** *x*=7, 과정은 풀이 참조 **21** ⑤ 22 ㄴ, ㅁ
- **24** k = -11, x = 6
- **25** $x=2\pm\sqrt{10}$, 과정은 풀이 참조 **26** ③
- **27** (4) **28** ① **29** ②
- **30** a=4, b=2, c=3

○3 이차방정식의 풀이 (2) ■

유형 6

P. 74

- 1 (1) 1, -3, -2, -3, -3, 1, -2, 1, 3, 17, 2
 - (2) 1, 5, 3, 5, 5, 1, 3, 1, $\frac{-5\pm\sqrt{13}}{2}$
 - (3) 2, 3, -3, 3, 3, 2, -3, 2, $\frac{-3 \pm \sqrt{33}}{4}$
 - (4) 3, -7, 1, -7, -7, 3, 1, 3, $\frac{7 \pm \sqrt{37}}{6}$
- **2** (1) 1, 2, -3, 2, 2, 1, -3, 1, $-2\pm\sqrt{7}$
 - (2) 5, -4, 2, -4, -4, 2, 5, $\frac{4\pm\sqrt{6}}{5}$
- 3 (1) $x = \frac{9 \pm 3\sqrt{13}}{2}$ (2) $x = \frac{7 \pm \sqrt{17}}{8}$
 - (3) $x = 3 \pm \sqrt{2}$ (4) $x = \frac{-2 \pm \sqrt{10}}{2}$

유형 7

P. 75

- 1 (1) 6, 3, 5, 2, 2, 3, 1, -2, $\frac{1}{2}$
 - (2) 10, 10, 3, 1, 5, 1, 2, 1, $-\frac{1}{5}$, $\frac{1}{2}$
 - (3) 2. 17. $1 \pm 3\sqrt{2}$
- 2 (1) $x = \frac{2 \pm \sqrt{10}}{3}$
 - (2) $x = 6 \pm 2\sqrt{7}$
 - (3) x = -1 또는 $x = \frac{2}{3}$ (4) x = -6 또는 x = 2
 - (5) $x = -2 \pm \frac{1}{2}$ (6) $x = \frac{1 \pm \sqrt{5}}{4}$
- **3** 4, 5, 5, 5, -1, 1, 5, 5, 7, 1, 7
- **4** (1) x=5 또는 x=8 (2) x=-5 (중근)
 - (3) x = -2 또는 $x = -\frac{5}{c}$

유형 8

- 1 (1) 서로 다른 두 근
 - (2) a=2, b=1, c=2, $1^2-4\times 2\times 2=-15$, 근이 없다.
 - (3) a=1, b=-4, c=4, $(-4)^2-4\times1\times4=0$, $\frac{27}{21}$
 - (4) a=1, b=-1, c=-2, $(-1)^2-4\times1\times(-2)=9$.
- **2** (1) $-\frac{1}{5}$, $-\frac{7}{5}$ (2) $\frac{5}{2}$, $\frac{1}{2}$ (3) 1, $-\frac{2}{3}$ (4) $-\frac{7}{2}$, $-\frac{1}{2}$
- **3** (1) -5, -3, -8 (2) $\alpha + \beta$, -5, -3, $\frac{5}{3}$
 - (3) $\alpha\beta$, -5, -3, 31 (4) $\alpha^2 + \beta^2$, 31, -3, $-\frac{31}{2}$

유형 9 P. 77

- 1 (1) $x^2 x 6 = 0$
 - (2) x+4, x-3, $x^2+x-12=0$
 - (3) x+5, x-6, $x^2-x-30=0$
 - (4) x+8, $x^2+16x+64=0$
 - (5) 2. x-3. $2x^2-12x+18=0$
 - (6) 2, x-2, x-7, $2x^2-18x+28=0$
 - (7) 3, x+9, x+1, $3x^2+30x+27=0$
- **2** a=-5, b=6 **3** a=-4, b=-6

○ 4 이차방정식의 활용

유형 10 P. 78~79

- 1 식 : $\frac{n(n-3)}{2}$ = 54, 답 : 십이각형
- x+1, 181, -10, 9, 9, 10
- **3** 식: $x^2+(x+1)^2=113$, 답:15
- **4** 식: $(x-1)^2+x^2+(x+1)^2=434$. 답: 11, 12, 13
- **5** 식: x(x-3)=180. 답: 15명
- **6** (1) 식: −5t²+40t=60. 답: 2초 후 또는 6초 후 (2) 식: $-5t^2+40t=0$. 답: 8초 후
- 7 (1) 가로 : (x+2) cm. 세로 : (x-1) cm (2) (x+2)(x-1)=40 (3) 6
- 8 (1) $\pi (5+x)^2 \text{cm}^2$ (2) $x^2+10x-39=0$ (3) 3
- 9 (1) 가로 : (40-x) m, 세로 : (20-x) m
 - (2) (40-x)(20-x)=576 (3) 4
- **10** 식: (30-x)(20-x)=375, 답: 5

한 번 더 연습

- **1** 식: $\frac{n(n+1)}{2}$ =153, 답: 17
- **2** 식: x(x+2)=288. 답: 34
- **3** 식: $(x+1)^2 = 4x+9$, 답: 4, 5
- **4** 식: $-5t^2+30t+80=105$, 답: 1초 후
- 5 (1) 가로 : (x-4) cm. 세로 : (x+2) cm (2) (x-4)(x+2)=112 (3) 12
- **6** 식: (40-x)(30-x)=875, 답: 5

쌍둥이 기출문제

- 1 $x = \frac{-1 \pm \sqrt{5}}{2}$ 2 $x = \frac{5 \pm \sqrt{10}}{3}$ 3 ① 4 38 5 ③ 6 ⑤
- **7** ②. ④ **8** ⑤ **9** ④
- **10** 과정은 풀이 참조 (1) 2 (2) 4 (3) 12
- 11 ③ 12 p=-8, q=-10 13 ③
- 14 ③15 6살16 14명17 ③18 ①19 ③20 6cm, 과정은 풀이 참조
- **21** 4 m **22** 5

Best of Best 문제로 단원 마무리 P. 84~85

- **1** ④ **2** ④ **3** ④

- **4** $a=3, x=\frac{4}{3}$, 과정은 풀이 참조
- **5** ① **6** ② **7** ②

- 9 27, 과정은 풀이 참조 10 ⑤

${f V}$ 이차함수와 그 그래프

○ 기 이차함수의 뜻 ■

유형 1

1 (1) ×

- (2) (3) ×
- (4) (

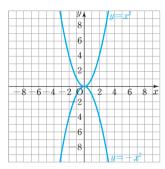
- (5) (6) ×
- $(7) \times$
- $(8) \times$
- 2 (1) 이차함수가 아니다.
 - (2) $3x^2 6x 9$. 이차함수이다.
 - (3) 16x 32, 이차함수가 아니다.
 - (4) $x^2 x 2$, 이차함수이다.
- 3 이차함수인 것: (2). (4)
 - (1) y = 3x (2) $y = 2x^2$ (3) $y = \frac{1}{4}x$ (4) $y = 10\pi x^2$
- **4** (1) 1 (2) 0 (3) $\frac{1}{4}$ (4) $\frac{9}{4}$ (5) 5 (6) 5

\bigcirc 2 이차함수 $y=ax^2$ 의 그래프

유형 2

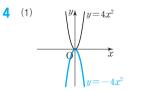
P. 89

\boldsymbol{x}	 -3	-2	-1	0	1	2	3	
x^2	 9	4	1	0	1	4	9	
$-x^2$	 -9	-4	-1	0	-1	-4	-9	

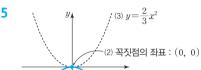


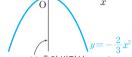
- 2 (1) (0, 0), 아래로 볼록 (2) (0, 0), 위로 볼록
- **3** 그래프 위에 있는 점 : (1), (4) $(1) = (2) \neq (3) \neq (4) =$

- **3** (1) ①, ①, ©
- (2) 🗈, 🕒, 🗇



- $\Rightarrow y = \frac{1}{3}x^2$



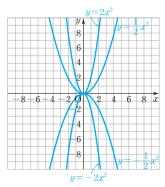


(4) 감소한다.

- 6 그래프 위에 있는 점: (1), (3)
 - $(1) = (2) \neq (3) = (4) \neq$

유형 3 P. 90~91

\boldsymbol{x}		-2	-1	0	1	2	
$2x^2$		8	2	0	2	8	
$-2x^{2}$		-8	-2	0	-2	-8	
$\frac{1}{2}x^2$		2	$\frac{1}{2}$	0	$\frac{1}{2}$	2	
$-\frac{1}{2}x^2$	•••	-2	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-2	



2 (1) (0, 0), 아래로 볼록 (2) (0, 0), 위로 볼록 (3) (0, 0), 아래로 볼록 (4) (0, 0), 위로 볼록

쌍둥이 기출문제

P. 92~93

- **1** ③ **2** 3개 **3** ¬, = **4** ⑤
- 5 ⑤ 6 10, 과정은 풀이 참조 7 $\frac{1}{2}$ 8 1
- 9 4 10 3 11 $a > \frac{1}{3}$
- 12 ⑦, ⓒ, ⓒ, ⑫, Ə 13 ③ 14 ㄴ과ㄷ, ㄹ과ㅂ 15 ③, ⑤

- **16** ④

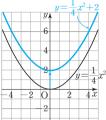
\bigcirc 3 이차함수 $y=a(x-p)^2+q$ 의 그래프 -

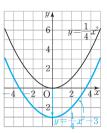
유형 4

P. 94~95

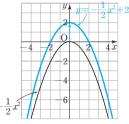
- 1 (1) $y = 3x^2 + 5$, $y = 3x^2 7$
- (2) $y = -\frac{1}{2}x^2 + 4$, $y = -\frac{1}{2}x^2 3$
- 2 (1) $y = \frac{1}{3}x^2$, -5 (2) $y = 2x^2$, 1 (3) $y = -3x^2$, $-\frac{1}{3}$ (4) $y = -\frac{5}{2}x^2$, 3

3 (1)

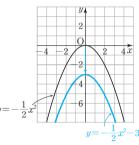




4 (1)



(2)



- **5** ②, ③
- 6 (1) 아래로 볼록, x=0, (0, -3)

(2) 아래로 볼록,

(3) 위로 볼록. x=0, (0, -1)

(4) 위로 볼록, x=0, (0, 5)

7 (1) x=0 (2) (0, 2) (3) $a=\frac{1}{3}$, q=2

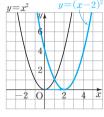
유형 5

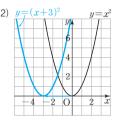
P. 96~97

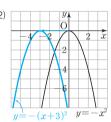
1 (1) $y=3(x-5)^2$, $y=3(x+7)^2$

(2)
$$y = -\frac{1}{2}(x-4)^2$$
, $y = -\frac{1}{2}(x+3)^2$

- 2 (1) $y=2x^2$, -3
 - (2) $y = -x^2$, 5
 - (3) $y = -2x^2, -4$
 - (4) $y = \frac{1}{4}x^2$, $\frac{1}{2}$
- 3 (1) y=x







- **5** ④
- 6 (1) 아래로 볼록, x=2, (2, 0)

(2) 아래로 볼록, x=-5, (-5, 0)

(3) 위로 볼록,

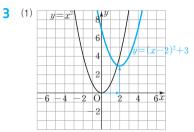
$$x=\frac{4}{5},\left(\frac{4}{5},0\right)$$

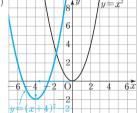
(4) 위로 볼록, x=-4, (-4, 0)

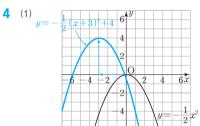
7 (1) x = -3 (2) (-3, 0) (3) a = 2, p = -3

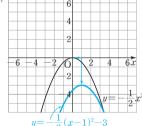
P. 98~99

- 1 (1) $y=3(x-1)^2+2$, $y=3(x+2)^2-3$
 - (2) $y = -\frac{1}{2}(x-3)^2 2$, $y = -\frac{1}{2}(x+4)^2 + 1$
- 2 (1) $y = \frac{1}{2}x^2$, 2, -1
 - (2) $y=2x^2, -2, 3$
 - (3) $y = -x^2$. 5. -3
 - (4) $y = -\frac{1}{3}x^2$, $-\frac{3}{2}$, $-\frac{3}{4}$

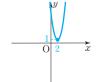








- **5** ④
- 6 (1) 아래로 볼록. x=2, (2, 1)



(2) 위로 볼록,

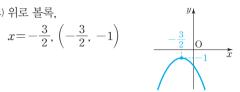
$$x=-2, (-2, -5)$$

(3) 아래로 볼록,

$$x=2, (2, 4)$$

(4) 위로 볼록,

$$x = -\frac{3}{2}, \left(-\frac{3}{2}, -1\right)$$



7 (1) x=3 (2) (3, -1) (3) $a=\frac{1}{4}$, p=3, q=-1

유형 7

P. 100

1 (1) 2, 3, 0, -1, $\frac{1}{2}$, $y = \frac{1}{2}(x-2)^2 - 3$

(2)
$$y = -5(x+1)^2 + 5$$

- **2** 1, 3, 1, 3, 0, 4, 1, $y=(x-1)^2+3$
- **3** (1) 1, 4, 16, $-\frac{1}{4}$, 4, $y = -\frac{1}{4}(x-1)^2 + 4$

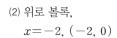
(2)
$$y=3(x+3)^2-1$$

4 2, 2, 4, 6, 4, 4, 16, $-\frac{1}{3}$, $\frac{16}{3}$,

$$y = -\frac{1}{3}(x-2)^2 + \frac{16}{3}$$

한번 더 연습

- (3) $y = \frac{1}{2}(x-5)^2 3$ (4) $y = -5(x+2)^2 + 4$
- 2 (1) 아래로 볼록,
 - x=0, (0, 1)



(3) 아래로 볼록, x=2, (2, -5)

(4) 위로 볼록. x=-1, (-1, -3)

3 (1)
$$y=5(x-1)^2-3$$

3 (1)
$$y=5(x-1)^2-3$$
 (2) $y=\frac{1}{2}(x-2)^2-1$

4 (1)
$$y = \frac{5}{4}(x+2)^2 - 1$$
 (2) $y = -(x+1)^2 + 4$

(2)
$$y = -(x+1)^2 + 4$$

유형 8

P. 102

- 1 (1) >, >, >
- (2) 위, <, 3, <, <
- (3) > . > . <
- (4) > . < . <
- (5) < . < . >
- (6) < . > . <

쌍둥이 기출문제

P. 103~105

- **1** ④ **2** ① **3** ① **4** ③ **5** c, =

- **6** ⓐ **7** ⓐ **8** ③ **9** -2 **10** $\frac{5}{2}$ **11** 7

- **12** 1 **13** ⑤ **14** ① **15** $y = -3(x-1)^2 + 3$

- **16** 5 **17** 1 **18** $y = -\frac{1}{3}(x+3)^2 + 2$
- 19 $y=2(x+2)^2+1$ 20 8, 과정은 풀이 참조
- **21** a < 0, p > 0, q > 0
- **22** ③

Best of Best 문제로 단원 마무리

P. 106~107

- 1 (4)
- **2** 4
- **3** 4, 과정은 풀이 참조
- 4 3
- **5** -1 **6** L, E, D
- 8 (3)

old VI 이차함수 $y = ax^2 + bx + c$ 의 그래프

이 이 이 하함수 $y=ax^2+bx+c$ 의 그래프

P. 110~111

1 (1) 9, 9, 9, 18, 3, 19

(2)
$$-3(x^2-x)-5$$
, $-3\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)-5$, $-3\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}-5$, $-3\left(x-\frac{1}{2}\right)^2-\frac{17}{4}$

- (3) 8, 8, 16, 16, 8, 16, 8, 4, 10
- (4) $\frac{1}{6}(x^2+2x)-1$, $\frac{1}{6}(x^2+2x+1-1)-1$,

$$\frac{1}{6}(x^2+2x+1)-\frac{1}{6}-1, \frac{1}{6}(x+1)^2-\frac{7}{6}$$

(1) (-2, -1), (0, 3),아래로 볼록

(2) $(1, 3), (0, \frac{5}{2}),$ 위로 볼록

- **3** (1) (-2, 0), (4, 0) (2) (-3, 0), (1, 0)
 - (3) (-5, 0), (2, 0) (4) (-2, 0), (3, 0)
- **4** (1) 3, 3, 3, 2, -2, 3, 5, 1, 1, -4, $y=x^2-4x+3$ (2) $y = \frac{1}{4}x^2 + x - 3$
- **5** (1) 2, 5, 2, -1, $-\frac{1}{2}$, $-\frac{1}{2}$, 2, 5, $y = -\frac{1}{2}x^2 + \frac{7}{2}x 5$ (2) $y = 2x^2 + 4x - 6$

- 1 (1) >, >, >, < (2) 위, <, 오른, <, >, 위, >
 - (3) > . < . > (4) < . < . >
 - (5) < , > , <
- (6) >, >, >

쌍둥이 기출문제

P. 113~114

- 1 (2, 9) 2 x=3, (3, -4)
- **3** (5)

- **4** ③ **5** -3 **6** 21 **7** ⑤ **8** ④
- 9 (1) A(-1, 0), B(5, 0), C(2, 9) (2) 27
- 10 2 11 1 12 2
- **13** a < 0, b < 0, c < 0, 과정은 풀이 참조
- **14** a > 0, b < 0, c > 0

유형 4

P. 117

- 1 x+12, x+12, 6, 36, -6, -36, -36, -6, 6
- 2 (1) $y = -x^2 + 30x$ (2) 225 cm^2 (3) 15 cm
- **3** (1) 가로 : 40+4x. 세로 : 40-2x
 - (2) $y = -8x^2 + 80x + 1600$
 - $(3)\ 1800$
- 4 a=2, b=50

이차함수의 최댓값과 최솟값

유형 3

P. 115

- 1 (1) 0. 0
 - (2) 최댓값 : x=2에서 0
 - 최솟값 : 없다.
 - (3) 최댓값: x = -1에서 4
 - 최솟값: 없다.
- 2 (1) 최댓값: x=0에서 0
 - 최솟값 : 없다.
 - (2) 최댓값 : 없다.
 - 최솟값: x=-3에서 0
 - (3) 최댓값 : 없다.
 - 최솟값: x=-1에서 7
 - (4) 최댓값: x = -2에서 $-\frac{1}{3}$
 - 최솟값: 없다.
- **3** (1) 1, $\frac{5}{2}$, 없다, $-\frac{5}{2}$
 - (2) $-2(x+1)^2+4$, 4, 없다.
 - $(3) \frac{1}{4}$, 없다.
 - (4) 없다. -18

쌍둥이 기출문제

- **1** ③ **2** ④ **3** 5 **4** 1 **5** ① **6** ②
- 7 55 m, 과정은 풀이 참조 **8** ④
- Best of Best 문제로 단원 마무리 P. 119~120

- **1** -28 **2** ③ **3** ⑤

- 4 27
- **5** (3, 4), 과정은 풀이 참조 **6** ⑤
- 7 ③

8 18

한 개유 더 연습

- 1 2, -2, -4, -4, 6
- 2 (1) $y = -3(x-1)^2 + 3 + k$ (2) 3
- 3 1, 3, 2, 1, 3, $2x^2-4x+5$
- **4** -2, -4, -2, 2, 4, $-2x^2-8x-12$, -8, -12

○ 제곱근의 뜻과 성질

유형 1

P. 6

- 1 (1) ± 2 (2) ± 7 (3) ± 9 (4) ± 0.1 (5) $\pm \frac{1}{4}$
- **2** (1) ± 4 (2) ± 8 (3) ± 12 (4) ± 0.9 (5) $\pm \frac{10}{2}$
- **3** 36, 36, 6
- 4 (1) 0 (2) ± 1 (3) ± 3 (4) ± 10 (5) 없다. (6) 없다. (7) ± 0.3 (8) ± 0.4 (9) $\pm \frac{1}{2}$ (10) $\pm \frac{5}{2}$
- **5** (1) 0 (2) 1 (3) 2
- **6** (1) 9, ± 3 (2) 16, ± 4
 - (3) $\frac{1}{9}$, $\pm \frac{1}{3}$ (4) 0.04, ± 0.2
- $(1) 2^2 = 4 \cdot (-2)^2 = 4$ 이므로 ±2
 - (2) $7^2 = 49$ $(-7)^2 = 49$ 이므로 ± 7
 - (3) 92=81. (-9)2=81이므로 ±9
 - (4) (0.1)2=0.01. (-0.1)2=0.01이므로 ±0.1

(5)
$$\left(\frac{1}{4}\right)^2 = \frac{1}{16}$$
, $\left(-\frac{1}{4}\right)^2 = \frac{1}{16}$ 이므로 $\pm \frac{1}{4}$

- 2 (1) 4²=16, (-4)²=16이므로 x=±4
 - (2) 8²=64. (-8)²=64이므로 $x=\pm 8$
 - (3) 12²=144. (-12)²=144이므로 x=±12
 - (4) $0.9^2 = 0.81$, $(-0.9)^2 = 0.81$ 이므로 $x = \pm 0.9$

$$(5)\left(\frac{10}{3}\right)^2 = \frac{100}{9}, \left(-\frac{10}{3}\right)^2 = \frac{100}{9}$$
이므로 $x = \pm \frac{10}{3}$

- 4 (1) 0²=0이므로 0의 제곱근은 0뿐이다
 - (2) $1^2 = (-1)^2 = 1$ 이므로 1의 제곱근은 ±1이다.
 - (3) $3^2 = (-3)^2 = 9$ 이므로 9의 제곱근은 ±3이다.
 - (4) $10^2 = (-10)^2 = 100$ 이므로 100의 제곱근은 ± 10 이다.
 - (5), (6) -1, -9는 음수이므로 제곱근이 없다.
 - (7) $0.3^2 = (-0.3)^2 = 0.09$ 이므로 0.09의 제곱근은 ± 0.3 이다.
 - (8) $0.4^2 = (-0.4)^2 = 0.16$ 이므로 0.16의 제곱근은 ± 0.4 이다.
 - (9) $\left(\frac{1}{2}\right)^2 = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}$ 이므로 $\frac{1}{4}$ 의 제곱근은 $\pm \frac{1}{2}$ 이다.
 - (10) $\left(\frac{5}{8}\right)^2 = \left(-\frac{5}{8}\right)^2 = \frac{25}{64}$ 이므로 $\frac{25}{64}$ 의 제곱근은 $\pm\frac{5}{8}$ 이다.
- 5 (1) 제곱하여 음수가 되는 수는 없으므로 음수의 제곱근은 0개이다.
 - (2) 제곱하여 0이 되는 수는 0뿐이므로 0의 제곱근은 0의 1개 이다.
 - (3) 양수 a에 대하여 $a \times a = a^2$, $(-a) \times (-a) = a^2$ 이므로 양수의 제곱근은 절댓값이 같고 부호가 다른 두 수로 2개이다.

- 6 (1) 3²=9이므로 제곱근은 ±3이다.
 - (2) $(-4)^2 = 16$ 이므로 제곱근은 ±4이다.
 - (3) $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$ 이므로 제곱근은 $\pm \frac{1}{3}$ 이다.
 - $(4)(-0.2)^2 = 0.04$ 이므로 제곱근은 ± 0.2 이다.

유형 2

P 7

- 1 (1) $\pm \sqrt{5}$ (2) $\pm \sqrt{10}$ (3) $\pm \sqrt{21}$ (4) $\pm \sqrt{123}$ (5) $\pm \sqrt{0.1}$ (6) $\pm \sqrt{3.6}$ (7) $\pm \sqrt{\frac{2}{3}}$ (8) $\pm \sqrt{\frac{35}{6}}$
- 2 (1) 1 (2) ± 6 (3) 2 (4) -7 (5) -0.5 (6) 1.1 (7) $\frac{2}{3}$ (8) $\pm \frac{7}{8}$
- **3** (1) $\pm \sqrt{6}$ (2) $\sqrt{17}$ (3) $\pm \sqrt{0.8}$ (4) $-\sqrt{\frac{2}{5}}$
- **4** (1) $\pm\sqrt{2}$, $\sqrt{2}$ (2) $\pm\sqrt{23}$, $\sqrt{23}$ (3) ±8 , 8 (4) ±12 , 12
- 5 (1) $\sqrt{7}$ (2) $\pm \sqrt{7}$ (3) $-\sqrt{7}$ (4) $\sqrt{7}$
- 6 (1) 5 (2) ± 5 (3) -5 (4) 5

유형 3

- 1 (1) 2 (2) 5 (3) 0.1 (4) $\frac{3}{4}$
- **2** (1) 5 (2) -5 (3) 0.7 (4) -0.7 (5) $\frac{3}{5}$ (6) $-\frac{3}{5}$
- 3 (1) 11 (2) $\frac{1}{3}$ (3) -0.9 (4) $-\frac{2}{5}$
- **4** (1) 5 (2) -5 (3) 0.5 (4) -0.5 (5) $\frac{1}{5}$ (6) $-\frac{1}{5}$
- **5** $(\sqrt{7})^2$ 과 $(-\sqrt{7})^2$, $-\sqrt{(-7)^2}$ 과 $-\sqrt{7^2}$
- 6 (1) ×, 없다. (2) (3) ×, 없다. (4) ×, ±3이다. (5) ○
- **7** (1) 8 (2) 4 (3) 20 (4) 3
- 4 (1) $\sqrt{(-5)^2} = \sqrt{5^2} = 5$ (2) $\sqrt{(-5)^2} = 5$ 이 므로 $-\sqrt{(-5)^2} = -5$ (3) $\sqrt{(-0.5)^2} = \sqrt{0.5^2} = 0.5$ (4) $\sqrt{(-0.5)^2} = 0.5$ 이 므로 $-\sqrt{(-0.5)^2} = -0.5$

$$(5)\sqrt{\left(-\frac{1}{5}\right)^2} = \sqrt{\left(\frac{1}{5}\right)^2} = \frac{1}{5}$$

(6)
$$\sqrt{\left(-\frac{1}{5}\right)^2} = \frac{1}{5}$$
이므로 $-\sqrt{\left(-\frac{1}{5}\right)^2} = -\frac{1}{5}$

5
$$(\sqrt{7})^2 = 7$$
, $-\sqrt{(-7)^2} = -7$, $-\sqrt{7^2} = -7$, $(-\sqrt{7})^2 = 7$

- (1) −9는 음수이므로 제곱근은 없다.
 - (2) (제곱근 16)= $\sqrt{16}$ =4
 - (3) $-\sqrt{5^2} = -5$ 이고. -5는 음수이므로 제곱근은 없다
 - (4) √81=9이므로 9의 제곱근은 ±3이다.
 - $(5)\sqrt{(-2)^2} = \sqrt{2^2} = 2$ 이므로 2의 제곱그은 $\pm \sqrt{2}$ 이다.
- 7 (1) (주어진 식)=3+5=8
 - (2) (주어진 식)=7-3=4
 - (3) (주어진 식)=5×4=20
 - (4) (주어진 식)=18÷6=3

유형 4

- **1** (1) a
- (2) a (3) -a
- (4) a

P. 9

- (1) a
- (2) -a
- (3) a(4) a
- 3 (1) -3a (2) -5a (3) 2a
- 4 (1) < -x+1 (2) > 1-x
- (3) < x-1 (4) > -1+x**5** (1) x-2 (2) -2+x (3) -x+2
- **6** > x+2, < -x+3, x+2, -x+3, 5
- **2** a < 0일 때, -a > 0이므로

 - (1) $\sqrt{a^2} = -a$ (2) $\sqrt{(-a)^2} = -a$

 - (3) $-\sqrt{a^2} = -(-a) = a$ (4) $-\sqrt{(-a)^2} = -(-a) = a$
- 3 (1) a < 0일 때, 3a < 0이므로 $\sqrt{(3a)^2} = -3a$
 - (2) a < 0일 때. -5a > 0이므로 $\sqrt{(-5a)^2} = -5a$
 - (3) $\sqrt{(3a)^2} \sqrt{(-5a)^2} = -3a (-5a) = 2a$
- 4 (1) x<1일 때, x-1<0이므로

$$\sqrt{(x-1)^2} = -(x-1) = -x+1$$

- (2) x<1일 때, 1-x>0이므로
 - $\sqrt{(1-x)^2} = 1-x$
- $(3)\sqrt{(x-1)^2} = -x+1$ 이므로

$$-\sqrt{(x-1)^2} = -(-x+1) = x-1$$

$$(4)\sqrt{(1-x)^2} = 1-x$$
이旦로

$$-\sqrt{(1-x)^2} = -(1-x) = -1+x$$

5 (1) x>2일 때, x-2>0이므로 $\sqrt{(x-2)^2} = x-2$

(2) x > 2일 때, 2-x < 0이므로

$$\sqrt{(2-x)^2} = -(2-x) = -2+x$$

$$(3)\sqrt{(x-2)^2}=x-2$$
이旦로

$$-\sqrt{(x-2)^2} = -(x-2) = -x+2$$

6 −2< x< 3일 때

$$x+2>0$$
이므로 $\sqrt{(x+2)^2}=x+2$

$$x-3 < 0$$
이므로 $\sqrt{(x-3)^2} = -(x-3) = -x+3$

$$\therefore \sqrt{(x+2)^2} + \sqrt{(x-3)^2} = (x+2) + (-x+3) = 5$$

한 걸음 더 연습

- 1 (1) 10 (2) 12 (3) 2 (4) $\frac{1}{5}$ (5) 2.6 (6) $\frac{1}{3}$

- **2** (1) ① 2+6+3 ② 11
 - $(2) \ \widehat{)} \ -3 7 + 5 12 \ \widehat{)} \ 2 17$
 - (3) (1) $5 \times 6 \div 3$ (2) 10
 - (4) (1) $6 \times (-0.5) 4 \div \frac{2}{5}$ (2) -13
- **3** (1) 3
- (2) 3-2x (3) 3
- (4) 2x-3
- $\frac{4}{}$ (1) -2x(2) 2
- 5 (1) a-b
- (2) 2a-2b (3) 2b
- (1) -b
 - (2) a
- (3) ab-a
- (1) (주어진 식)=4+6=10
 - (2) (주어진 식)=7+5=12
 - (3) (주어진 식)=11-9=2
 - (4) (주어진 식)= $\frac{3}{10}$ - $\frac{1}{10}$ = $\frac{2}{10}$ = $\frac{1}{5}$
 - (5) (주어진 식)=1.3×2=2.6
 - (6) (주어진 식)= $\frac{1}{2}$ ÷ $\frac{3}{2}$ = $\frac{1}{2}$ × $\frac{2}{2}$ = $\frac{1}{2}$
- (1) (주어진 식)=2+6+3=11
 - (2) (주어진 식)=<u>-3-7+5-12</u>=<u>-17</u>
 - (3) (주어진 식)=5×6÷3=10
 - (4) (주어진 식)= $6 \times (-0.5) 4 \div \frac{2}{5} = -13$
- 3 0<x<3일 때. x>0. -x<0. x-3<0. 3-x>0이므로
 - (1) (주어진 식)=(3-x)+x=3
 - (2) (주어진 식)=(3-x)-x=3-2x
 - (3) (주어진 식)=-(x-3)-(-x)
 - =-x+3+x=3
 - (4) (주어진 식)= $-(-x)-\{-(x-3)\}$ =x+x-3=2x-3

- $4 \quad x < -1$ 일 때 x+1 < 0, 1-x > 0이므로
 - (1) (주어진 식)=-(x+1)+(1-x)
 - =-x-1+1-x=-2x
 - (2) (주어진 식)= $(1-x)-\{-(x+1)\}=1-x+x+1=2$
 - [참고] (양수)-(음수)=(양수)이므로
 - x < -1일 때, 1 x > 0
 - 예 x=-2일 때, 1-x=1-(-2)=1+2=3>0
 - (양수)—(음수)
- **5** a>0, b<0일 때, a-b>0이므로
 - (2) (주어진 식)=a+(-b)+(a-b)=2a-2b
 - (3) (주어진 식)=a-(-b)-(a-b)=a+b-a+b=2b
- **6** a<0, ab>0일 때, b<0이다.
 - (1) a+b < 0. a < 0이므로

(주어진 식)=
$$-(a+b)-(-a)=-a-b+a=-b$$

(2) 2*a*<0. -*b*>0. *a*+*b*<0이므로

(주어진 식)=
$$\sqrt{(2a)^2} + \sqrt{(-b)^2} - \sqrt{(a+b)^2}$$

= $-2a + (-b) - \{-(a+b)\}$
= $-2a - b + a + b = -a$

(3) ab>0, -2b>0, a+2b<0이므로

(주어진 식)=
$$ab-(-2b)-(a+2b)$$

= $ab+2b-a-2b=ab-a$

유형 5

- 1 (1) $\sqrt{9^2}$ 9
- (2) $\sqrt{14^2}$. 14
- (3) $\sqrt{17^2}$ 17
- 2 (1) 1, 4, 9
- (2) 1, 6, 9
- (3) 1
- **3** (1) 16 (2) 3 **4** (1) 12
- (2) 4
- 5 (1) $2^2 \times 3$ (2) 3 (3) 3
- **6** (1) 2×5^2 (2) 2 (3) 2
- **7** (1) 5 (2) 14 (3) 10 (4) 2
- 2 (1) 10보다 작은 제곱수는 1, 4, 9이다.
 - (2) 10-x가 제곱수 1, 4, 9가 되도록 하는 자연수 x의 값은
 - 10-x=1일 때. x=9
 - 10-x=4일 때. x=6
 - 10-x=9일 때 x=1
 - (3) (2)에서 가장 작은 자연수 *x*의 값은 1이다.
- **3** (1) 13보다 큰 제곱수는 16, 25, 36, …이므로 13보다 큰 제 곱수 중 가장 작은 수는 16이다.
 - (2) (1)에서 13보다 큰 제곱수 중 가장 작은 수는 16이므로 13+x=16 : x=3
- 4 (1) 48보다 작은 제곱수 중 가장 큰 수는 36이므로 48 - x = 36 : x = 12
 - (2) 21보다 큰 제곱수 중 가장 작은 수는 25이므로 21+x=25 : x=4

- 5 (1) 12를 소인수분해하면 12=2²×3
 - (2) (1)에서 지수가 홀수인 소인수는 3이다.
 - (3) (2)에서 $x=3\times ($ 자연수)²의 꼴이어야 하므로 구하는 가장 작은 자연수 x의 값은 3이다.
- 6 (1) 50을 소인수분해하면 50=2×5²
 - (2) (1)에서 지수가 홀수인 소인수는 2이다.
 - (3) $\sqrt{\frac{50}{3}} = \sqrt{\frac{2 \times 5^2}{3}}$ 이 자연수가 되려면 분자의 소인수의 지 수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 2이다
- 7 (1)~(2) 근호 안의 수에서 소인수의 지수가 모두 짝수가 되 도록 하는 가장 작은 자연수 x의 값을 구한다
 - $(1)\sqrt{45x} = \sqrt{3^2 \times 5 \times x}$ 이므로 x=5
 - $(2)\sqrt{56x} = \sqrt{2^3 \times 7 \times x}$ 이므로 $x = 2 \times 7 = 14$
 - (3)~(4) 근호 안의 수에서 분자의 소인수의 지수가 모두 짝 수가 되도록 하는 가장 작은 자연수 x의 값을 구한다.
 - (3) $\sqrt{\frac{40}{x}} = \sqrt{\frac{2^3 \times 5}{x}}$ 이므로 $x = 2 \times 5 = 10$
 - (4) $\sqrt{\frac{72}{r}} = \sqrt{\frac{2^3 \times 3^2}{r}}$ 이므로 x = 2

유형 6

P. 12

- (1) (2) (3) (4) (4)
 - (5) > (6) < (7) < (8) <
- **2** (1) < (2) < (3) < (4) >
- **3** (1) -2, $-\sqrt{3}$, $\frac{1}{4}$, $\sqrt{\frac{1}{8}}$ (2) $-\sqrt{\frac{1}{3}}$, $-\frac{1}{2}$, $\sqrt{15}$, 4
- 1 (3) $\sqrt{0.2} = \sqrt{\frac{2}{10}} = \sqrt{\frac{1}{5}} \circ | \Box \neq \sqrt{0.2} < \sqrt{\frac{3}{5}}$
 - (4) 3=√9이므로 3>√8
 - (5) 6=√36이므로 6>√35
 - (6) 7=√49이므로 √48 < 7
 - $(7) \frac{1}{2} = \sqrt{\frac{1}{4}}$ 이므로 $\frac{1}{2} < \sqrt{\frac{3}{4}}$
 - (8) 0.3=√0.09 이므로 0.3<√0.9
- **2** $(2)\frac{1}{2} = \sqrt{\frac{1}{4}}$ 이고 $\sqrt{\frac{2}{3}} > \sqrt{\frac{1}{4}}$ 이므로 $-\sqrt{\frac{2}{3}} < -\sqrt{\frac{1}{4}}$ $\therefore -\sqrt{\frac{2}{3}} < -\frac{1}{2}$
 - (3) 8= $\sqrt{64}$ 이고 $\sqrt{64}$ > $\sqrt{56}$ 이므로 $-\sqrt{64}$ < $-\sqrt{56}$ $-8 < -\sqrt{56}$
 - $(4) 0.2 = \sqrt{0.04}$ 이고 $\sqrt{0.04} < \sqrt{0.4}$ 이므로

3 (1) $-2 = -\sqrt{4}$ 이코 $-\sqrt{3} > -\sqrt{4}$ 이므로 $-\sqrt{3} > -2$ $\frac{1}{4} = \sqrt{\frac{1}{16}} \circ | 코 \sqrt{\frac{1}{16}} < \sqrt{\frac{1}{8}} \circ | \Box \cancel{\exists} \frac{1}{4} < \sqrt{\frac{1}{8}}$ $\therefore -2 < -\sqrt{3} < \frac{1}{4} < \sqrt{\frac{1}{8}}$ (2) $-\frac{1}{2} = -\sqrt{\frac{1}{4}} \circ | \boxed{\cancel{\exists}} -\sqrt{\frac{1}{3}} < -\sqrt{\frac{1}{4}} \circ | \Box \cancel{\exists} \cancel{\exists}$ $-\sqrt{\frac{1}{3}} < -\frac{1}{2}$ $4 = \sqrt{16} \circ | \cancel{\exists} \sqrt{15} < \sqrt{16} \circ | \Box \cancel{\exists} \sqrt{15} < 4$ $\therefore -\sqrt{\frac{1}{3}} < -\frac{1}{2} < \sqrt{15} < 4$

한 걸음 더 연습

P. 13

- 1 ♥♥1 √9, 9, 3, 4, 5, 6, 7, 8 ♥♥2 2, 3, 2, 9, 3, 4, 5, 6, 7, 8
- **2** (1) 1, 2, 3, 4 (2) 3, 4, 5, 6, 7, 8, 9 (3) 8, 9, 10, 11, 12, 13, 14, 15 (4) 7, 8, 9, 10
- **3** (1) 10, 11, 12, 13, 14, 15, 16 (2) 5, 6, 7, 8, 9, 10, 11, 12
- **4** (1) 37 (2) 47
- 1 방법 1 √2<√x<3에서 √2<√x<√9 ∴ 2<x< 9 따라서 구하는 자연수 x의 값은 3, 4, 5, 6, 7, 8이다.
 - 방법 2 √2 < √x < 3에서 (√2)² < (√x)²² < 3²²
 ∴ 2 < x < 9
 따라서 구하는 자연수 x의 값은
 3, 4, 5, 6, 7, 8이다.
- 2 (1) $0 < \sqrt{x} \le 2$ 에서 $0 < \sqrt{x} \le \sqrt{4}$ 이므로 $0 < x \le 4$ $\therefore x = 1, 2, 3, 4$ (2) $1.5 \le \sqrt{x} \le 3$ 에서 $\sqrt{2.25} \le \sqrt{x} \le \sqrt{9}$ 이므로 $2.25 \le x \le 9$ $\therefore x = 3, 4, 5, 6, 7, 8, 9$ (3) $\sqrt{8} \le \sqrt{x} < 4$ 에서 $\sqrt{8} \le \sqrt{x} < \sqrt{16}$ 이므로 $8 \le x < 16$ $\therefore x = 8, 9, 10, 11, 12, 13, 14, 15$
 - (4) $2.5 < \sqrt{x} < \sqrt{11}$ 에서 $\sqrt{6.25} < \sqrt{x} < \sqrt{11}$ 이므로 6.25 < x < 11 $\therefore x = 7, 8, 9, 10$
- 3 (1) $-4 \le -\sqrt{x} < -3$ 에서 $3 < \sqrt{x} \le 4$ $\sqrt{9} < \sqrt{x} \le \sqrt{16}$, $9 < x \le 16$ $\therefore x = 10$, 11, 12, 13, 14, 15, 16(2) $3 < \sqrt{2x} \le 5$ 에서 $\sqrt{9} < \sqrt{2x} \le \sqrt{25}$ 이므로 $9 < 2x \le 25$, $\frac{9}{2} < x \le \frac{25}{2}$ $\therefore x = 5$, 6, 7, 8, 9, 10, 11, 12

- 4 (1) √3 < x < √20 에서 3 < x² < 20이고 x는 자연수이므로 x²=4, 9, 16
 따라서 자연수 x는 2, 3, 4의 3개이다.
 (2) √2 < x ≤ √25 에서 2 < x² ≤ 25이고 x는 자연수이므로
 - (2) √2 < x ≤ √25 에서 2 < x² ≤ 25이고 x는 자연수이므로
 x²=4, 9, 16, 25
 따라서 자연수 x는 2, 3, 4, 5의 4개이다.

쌍둥이 기출문제

P. 14~15

- **1** ③ **2** ③ **3** 5 **4** 6 **5** ㄴ, ㄹ
- **6** ④ **7** ③ **8** 50 **9** a-2b
- 10 2, 과정은 풀이 참조 11 ② 12 5개
- **13** 7 **14** 15 **15** ⓐ **16** b < c < a
- **17** ⑤ **18** ③

[1~6] 제곱근의 뜻과 표현

- (1) a>0일 때, a의 양의 제곱근 $\Rightarrow \sqrt{a}$ a의 음의 제곱근 $\Rightarrow -\sqrt{a}$ a의 제곱근 $\Rightarrow \pm \sqrt{a}$
 - (참고) $a \ge 0$ 일 때, 제곱근 $a \Rightarrow \sqrt{a}$
- (2) 제곱근의 개수
 - ① 양수 a의 제곱근 $\Rightarrow \pm \sqrt{a}$ (2개)
 - ② 음수 a의 제곱근 \Rightarrow 없다.(0개)
 - ③ 0의 제곱근 ⇒ 0(1개)
- 1 4의 제곱근은 $\pm \sqrt{4}$ 즉 ± 2 이다
- 2 $\sqrt{25} = 5$ 이므로 5의 제곱근은 $\pm \sqrt{5}$ 이다.
- **3** 64의 양의 제곱근 $a=\sqrt{64}=8$ $(-3)^2=9$ 의 음의 제곱근 $b=-\sqrt{9}=-3$ $\therefore a+b=8+(-3)=5$
- **4** $(-4)^2 = 16$ 의 양의 제곱근 $A = \sqrt{16} = 4$ $\sqrt{16} = 4$ 의 음의 제곱근 $B = -\sqrt{4} = -2$ $\therefore A - B = 4 - (-2) = 6$
- 기. 0의 제곱근은 0의 1개이다.다. -16은 음수이므로 제곱근이 없다.
- 6 ④ 양수의 제곱근은 2개, 0의 제곱근은 1개, 음수의 제곱근은 없다.

[7~10] 제곱근의 성질

- (2) a > 0 \subseteq \subseteq $\sqrt{(-a)^2} = \sqrt{a^2} = a$
- 7 (주어진 식)=3-6+2=-1

- **8** (주어진 식)=1+7÷ $\frac{1}{7}$ =1+7×7=50
- 9 a>0, ab<0일 때, b<0, a-b>0이므로 $\sqrt{(a-b)^2}=a-b$, $\sqrt{b^2}=-b$ $\therefore \sqrt{(a-b)^2}+\sqrt{b^2}=(a-b)+(-b)=a-2b$
- 10 0 < a < 1일 때, a 1 < 0, 1 + a > 0이므로 \cdots (i) $\sqrt{(a 1)^2} = -(a 1) = -a + 1$, $\sqrt{(1 + a)^2} = 1 + a \cdots$ (ii) $\therefore \sqrt{(a 1)^2} + \sqrt{(1 + a)^2} = (-a + 1) + (1 + a)$ $= 2 \cdots$ (iii)

채점 기준	배점
(i) $a-1$, $1+a$ 의 부호 판단하기	40 %
$\overline{\mathrm{(ii)}\sqrt{(a-1)^2},\sqrt{(1+a)^2}}$ 을 근호를 사용하지 않고 나타내기	40 %
(iii) 주어진 식을 간단히 하기	20 %

[11~14] \sqrt{A} 가 자연수가 될 조건

- (1) A가 제곱수이어야 한다.
- (2) A를 소인수분해하였을 때. 소인수의 지수가 모두 짝수이어야 한다.
- 11 √17+x가 자연수가 되려면
 17+x는 17보다 큰 제곱수이어야 한다.
 이때 17보다 큰 제곱수 중 가장 작은 수는 25이므로
 17+x=25 ∴ x=8
- 12 √28-x가 자연수가 되려면 28-x는 28보다 작은 제곱수이어야 하므로 28-x=1, 4, 9, 16, 25 ∴ x=3, 12, 19, 24, 27 따라서 구하는 자연수 x의 개수는 5개이다.
- 13 $\sqrt{28x} = \sqrt{2^2 \times 7 \times x}$ 가 자연수가 되려면 자연수 x는 $7 \times ($ 자연수) 2 의 꼴이어야 한다. 따라서 구하는 가장 작은 자연수 x의 값은 7이다.
- 14 $\sqrt{\frac{60}{x}} = \sqrt{\frac{2^2 \times 3 \times 5}{x}}$ 가 자연수가 되려면 분자의 소인수의 지수가 모두 짝수이어야 하므로 구하는 가장 작은 자연수 x의 값은 $x=3 \times 5=15$

[15~16] 제곱근의 대소 비교 $a>0,\ b>0$ 일 때, a< b이면 $\sqrt{a}<\sqrt{b}$ $\sqrt{a}<\sqrt{b}$ 이면 a< b

15 ① $4=\sqrt{16}$ 이고 $\sqrt{16}<\sqrt{18}$ 이므로 $4<\sqrt{18}$ ② $\sqrt{6}>\sqrt{5}$ 이므로 $-\sqrt{6}<-\sqrt{5}$ ③ $\frac{1}{2}=\sqrt{\frac{1}{4}}$ 이고 $\sqrt{\frac{1}{4}}<\sqrt{\frac{1}{3}}$ 이므로 $\frac{1}{2}<\sqrt{\frac{1}{3}}$ ④ $0.2=\sqrt{0.04}$ 이고 $\sqrt{0.04}<\sqrt{0.2}$ 이므로 $0.2<\sqrt{0.2}$

16
$$a = \sqrt{\frac{2}{3}} = -\sqrt{\frac{8}{12}}, b = \frac{1}{2} = \sqrt{\frac{1}{4}} = \sqrt{\frac{3}{12}}, c = \sqrt{\frac{7}{12}}$$
이고,
$$\sqrt{\frac{3}{12}} < \sqrt{\frac{7}{12}} < \sqrt{\frac{8}{12}}$$
이므로 $b < c < a$

[17~18] 제곱근을 포함하는 부등식

a>0, b>0, x>0일 때, $a<\sqrt{x}<b \Rightarrow \sqrt{a^2}<\sqrt{x}<\sqrt{b^2}$ $\Rightarrow a^2< x< b^2$

- 17 2<√x≤3에서 √4<√x≤√9이므로 4<x≤9 따라서 자연수 x의 값은 5, 6, 7, 8, 9이므로 구하는 합은 5+6+7+8+9=35
- 18 3<√x+1<4에서 √9<√x+1<√16이므로 9<x+1<16 ∴ 8<x<15 따라서 자연수 x는 9, 10, 11, 12, 13, 14의 6개이다.

○2 무리수와 실수

유형 7

P. 16~17

- 1 (1) 유리수 (2) 유리수 (3) 유리수 (4) 유리수 (5) 무리수 (6) 무리수 (7) 유리수 (8) 무리수 (9) 유리수 (10) 무리수
- 2 풀이 참조
- **4** (1) $\sqrt{9} 5$, $\sqrt{36}$ (2) $0.\dot{1}\dot{2}$, $\sqrt{9} 5$, $\frac{2}{3}$, $\sqrt{36}$ (3) $\pi + 1$, $\sqrt{0.4}$, $-\sqrt{10}$ (4) $\pi + 1$, $\sqrt{0.4}$, $0.\dot{1}\dot{2}$, $\sqrt{9} 5$, $\frac{2}{3}$, $\sqrt{36}$, $-\sqrt{10}$
- 5 $\sqrt{1.25}$, $\sqrt{8}$
- 1 분수 $\frac{a}{b}(a, b$ 는 정수, $b \neq 0$)의 꼴로 나타낼 수 있는 수를 유리수라 하고, 유리수가 아닌 수를 무리수라 한다.
 - (1), (2), (7), (9) 0, -1, $\sqrt{4}$ = 2, $\sqrt{36}$ -2 = 6 -2 = 4는 $\frac{(정 +)}{(00)}$ 의 꼴로 나타낼 수 있으므로 유리수이다.
 - (3) $2.33 = \frac{233}{100}$
 - (4) $1.\dot{2}34\dot{5} = \frac{12345 1}{9999} = \frac{12344}{9999}$

따라서 (1), (2), (3), (4), (7), (9)는 유리수이고, (5), (6), (8), (10)은 무리수이다.

<u>참고</u> • 정수는 유리수이다.

□ (1), (2), (7), (9)

- 유한소수와 순환소수는 유리수이다.
- ⇒ (3). (4)
- 근호를 사용해야만 나타낼 수 있는 수는 무리수이다

⇒ (6) (8)

- π 와 순환하지 않는 무한소수는 무리수이다. ⇒ (5). (10)
- 2 $\sqrt{1.2^2}$ 0.1234... $\sqrt{0.1}$ $\frac{1}{\sqrt{4}}$ $\sqrt{64}$ $(-\sqrt{6})^2$ $-\sqrt{17}$ 1,414 $\sqrt{2} + 3$ $0.1\dot{5}$ $-\sqrt{0.04}$ $\sqrt{169}$ $\sqrt{7}$ $\sqrt{(-3)^2}$ $\sqrt{25}$ $-\sqrt{16}$ $\sqrt{100}$

$$\sqrt{\frac{4}{9}} = \frac{2}{3}, \sqrt{1,2^2} = 1.2, (-\sqrt{6})^2 = 6, -\frac{\sqrt{64}}{4} = -\frac{8}{4} = -2,$$

$$\frac{1}{\sqrt{4}} = \frac{1}{2}, 0.1\dot{5} = \frac{15-1}{90} = \frac{14}{90} = \frac{7}{45}, -\sqrt{0.04} = -0.2,$$

$$\sqrt{169} = 13, \sqrt{25} = 5, \sqrt{(-3)^2} = 3, \sqrt{100} = 10, -\sqrt{16} = -4$$
는 유리수이다.

- 3 (2) 무한소수 중 순화소수는 유리수이다
 - (4) 무한소수 중 순화하지 않는 무한소수도 있다.
 - (7), (8) 근호를 사용하여 나타낸 수가 모두 무리수인 것은 아 니다. 근호 안의 수가 어떤 유리수의 제곱인 수는 유리수 이다.
- **4** π+1 ⇒ 무리수. 실수 $\sqrt{0.4}$ \Rightarrow 무리수. 실수 $0.\dot{1}\dot{2} = \frac{12}{99} = \frac{4}{33}$ \Rightarrow 유리수, 실수 $\sqrt{9}-5=3-5=-2$ \Rightarrow 정수, 유리수, 실수

 $\frac{2}{2}$ \Rightarrow 유리수, 실수

 $\sqrt{36} = 6$ \Rightarrow 정수, 유리수, 실수 $-\sqrt{10}$ \Rightarrow 무리수. 실수

5 □ 안의 수에 해당하는 것은 무리수이다.

3.14, 0, $\sqrt{0.1} = \sqrt{\frac{1}{9}} = \frac{1}{3}$, $\sqrt{(-2)^2} = 2$ 의 유리수 $\sqrt{1.25}$. $\sqrt{8}$ \Rightarrow 무리수

유형 8

P. 18

1~2 풀이 참조

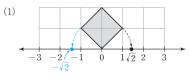
3 (1) P: $3-\sqrt{2}$, Q: $3+\sqrt{2}$

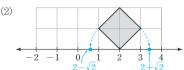
(2) P: $-2-\sqrt{5}$. Q: $-2+\sqrt{5}$

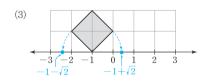
4 (1) P: $-2-\sqrt{2}$, Q: $\sqrt{2}$

(2) P: $2-\sqrt{2}$, Q: $1+\sqrt{2}$

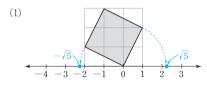
주어진 정사각형의 넓이는 $2 \times 2 - 4 \times \left(\frac{1}{2} \times 1 \times 1\right) = 2$ 이므 로 정사각형의 한 변의 길이는 √2이다.

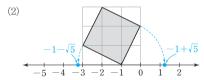






2 주어진 정사각형의 넓이는 $3 \times 3 - 4 \times \left(\frac{1}{2} \times 1 \times 2\right) = 5$ 이므 로 정사각형의 한 변의 길이는 √5이다.





f 4 한 변의 길이가 1인 정사각형의 대각선의 길이는 $\sqrt{2}$ 이므로

(1) P: $-2-\sqrt{2}$, Q: $\sqrt{2}$

(2) P: $2-\sqrt{2}$. Q: $1+\sqrt{2}$

P. 19

- 1 (1) × (2) × (3) × (4) ($(5) \times$
- 2 (1) 유리수 (2) 실수 (3) 정수

3 방법 1 2, $\frac{\sqrt{2}+\sqrt{3}}{2}$ 방법 2 0.318, $\sqrt{3}$, $\sqrt{3}$

- (1) 모든 실수는 각각 수직선 위의 한 점에 대응하므로 $1+\sqrt{2}$ 에 대응하는 점은 수직선 위에 나타낼 수 있다.
 - (2) 0과 1 사이에는 무수히 많은 무리수가 있다.
 - $(3)\sqrt{3}$ 과 $\sqrt{7}$ 사이에는 무수히 많은 유리수가 있다.
 - (5) 수직선은 정수와 무리수에 대응하는 점들로는 완전히 메 울 수 없다. 수직선은 유리수와 무리수, 즉 실수에 대응 하는 점들로 완전히 메울 수 있다.

2 (3) $\sqrt{2} = 1.414 \cdots$ 이므로 1과 $\sqrt{2}$ 사이에는 정수가 존재하지 않는다.

유형 10

P. 20

- 1 (1) $1-\sqrt{5}$, <, <, <, < (2) 2, 3, <
- (1) < (2) > (3) < (4) < (5) <
- (1) < (2) < (3) < (4) > (5) <
- 4 $\sqrt{2}-1, >, >, >, 3-\sqrt{7}, >, >, >, >$
- 2 (1) $(5-\sqrt{6})-3=2-\sqrt{6}=\sqrt{4}-\sqrt{6}<0$
 - $\therefore 5-\sqrt{6} \le 3$
 - (2) $(\sqrt{12}-2)-1=\sqrt{12}-3=\sqrt{12}-\sqrt{9}>0$
 - $\therefore \sqrt{12}-2 > 1$
 - (3) $(\sqrt{15}+7)-11=\sqrt{15}-4=\sqrt{15}-\sqrt{16}<0$
 - $1.0 \cdot \sqrt{15} + 7 < 11$
 - (4) $2 (\sqrt{11} 1) = 3 \sqrt{11} = \sqrt{9} \sqrt{11} < 0$
 - $\therefore 2 \boxed{\sqrt{11}-1}$
 - (5) $5 (\sqrt{17} + 1) = 4 \sqrt{17} = \sqrt{16} \sqrt{17} < 0$
 - $\therefore 5 \boxed{\sqrt{17}+1}$

다른 풀이

- $(1) 5 \sqrt{6} 3 \Rightarrow 5 \sqrt{6} 3$
- $(3)\ \underline{\sqrt{15}} + 7 \ \boxed{} \ 11 \Rightarrow \sqrt{15} + 7 \ \boxed{} \ 11$
- $(4) \ 2 \quad \boxed{\sqrt{11} 1} \Rightarrow 2 \quad \boxed{\sqrt{11} 1}$
- (5) 5 $\sqrt{17}+1 \Rightarrow 5 < \sqrt{17}+1$
- 3 (1) $2 < \sqrt{5}$ 이므로 양변에서 $\sqrt{2}$ 를 빼면 $2 \sqrt{2}$
 - (2) $3 < \sqrt{10}$ 이므로 양변에 $\sqrt{6}$ 을 더하면 $3 + \sqrt{6}$ $< \sqrt{10} + \sqrt{6}$
 - $(3)\sqrt{15} < 4$ 이므로 양변에서 $\sqrt{8}$ 을 빼면 $\sqrt{15} \sqrt{8}$ $< 4 \sqrt{8}$
 - (4) 5<√26이므로 -5>-√26

양변에 $\sqrt{11}$ 을 더하면 $\sqrt{11}-5$ $> \sqrt{11}-\sqrt{26}$

(5) $\frac{1}{2}$ < $\sqrt{\frac{2}{3}}$ 이므로 양변에서 $\sqrt{5}$ 를 빼면 $\frac{1}{2} - \sqrt{5} \le \sqrt{\frac{2}{3}} - \sqrt{5}$

유형 11

P. 21

- 1 2, 2, 2
- 2~3 풀이 참조

2	무리수	n<(무리수) <n+1< td=""><td>정수 부분</td><td>소수 부분</td></n+1<>	정수 부분	소수 부분
	(1) √3	$1 < \sqrt{3} < 2$	1	$\sqrt{3} - 1$
	(2) √8	$2 < \sqrt{8} < 3$	2	$\sqrt{8}-2$
	(3) √11	$3 < \sqrt{11} < 4$	3	$\sqrt{11} - 3$
	(4) √35	$5 < \sqrt{35} < 6$	5	$\sqrt{35} - 5$
	(5) √88.8	$9 < \sqrt{88.8} < 10$	9	$\sqrt{88.8} - 9$

_				
3	무리수	n<(무리수) <n+1< td=""><td>정수 부분</td><td>소수 부분</td></n+1<>	정수 부분	소수 부분
	(1) $2+\sqrt{2}$	$1 < \sqrt{2} < 2$ $\Rightarrow 3 < 2 + \sqrt{2} < 4$	3	$\sqrt{2} - 1$
	(2) $3-\sqrt{2}$	$-2 < -\sqrt{2} < -1$ $\Rightarrow 1 < 3 - \sqrt{2} < 2$	1	$2 - \sqrt{2}$
	(3) $1+\sqrt{5}$	$2 < \sqrt{5} < 3$ $\Rightarrow 3 < 1 + \sqrt{5} < 4$	3	$\sqrt{5} - 2$
	(4) $5+\sqrt{7}$	$2 < \sqrt{7} < 3$ $\Rightarrow 7 < 5 + \sqrt{7} < 8$	7	$\sqrt{7}-2$
	(5) 5 − √7	$-3 < -\sqrt{7} < -2$ $\Rightarrow 2 < 5 - \sqrt{7} < 3$	2	3-√7

쌍둥이 기출문제

P. 22~23

- 1 (1), (4) **2** 3개 5 2, 4 **6** □, □ **7** 1+√5
- **3** (3)
- 4 기. 나. ㄹ
- 8 P: $1-\sqrt{10}$, Q: $1+\sqrt{10}$
- 9 7. 2 **13** c < a < b
- **14** $M=4+\sqrt{2}$, $m=\sqrt{8}+1$
- 15 $\sqrt{5}$. 과정은 풀이 참조 16 $\sqrt{2}-6$

10 ②. ③ **11** ⑤ **12** ⑤

[1~4] 유리수와 무리수

- (1) 유리수
 - (정수) ① (성수) 의 꼴로 나 (0이 아닌 정수) 타낼 수 있는 수
 - ② 정수, 유한소수, 순환소수
 - ③ 근호가 있을 때, 근호를 사용 하지 않고 나타낼 수 있는 수
- (2) 무리수
 - (정수) ① (성수) 의 꼴로 나 타낼 수 없는 수
- ② 순환하지 않는 무한소수
- ③ 근호가 있을 때, 근호를 사 용해야만 나타낼 수 있는 수
- $\sqrt{\frac{1}{9}} = \frac{1}{3}$, 3.65, $\sqrt{(-7)^2} = 7$ 다 유리수 $\sqrt{1.6}$, $\sqrt{48}$ \Rightarrow 무리수
- 2 -3, $0.\dot{8} = \frac{8}{9}$, $\sqrt{\frac{16}{25}} = \frac{4}{5}$ \Rightarrow 유리수
 - $-\sqrt{15}$, $\frac{\pi}{3}$, $\sqrt{40}$ \Rightarrow 무리수

소수로 나타내었을 때, 순환하지 않는 무한소수가 되는 것은 무리수이므로 그 개수는 3개이다.

① 유리수를 소수로 나타내면 순환소수. 즉 무한소수가 되 는 경우도 있다.

- ② 무한소수 중 순환소수는 유리수이다.
- ④ 유리수이면서 무리수인 수는 없다.
- ⑤ √3은 무리수이고, 무리수는 분모, 분자가 정수인 분수로 나타낼 수 없다.
- 4 c. 근호 안의 수가 어떤 유리수의 제곱인 수는 유리수이다.

[5~6] 실수의 분류

- √121=11, √1.96=1.4, √9/2 = 3/2, √4-1=1 ⇒ 유리수
 √6.4, √20 ⇒ 무리수
 이때 유리수가 아닌 실수는 무리수이므로 ㄷ, ㅂ이다.

[7~8] 무리수를 수직선 위에 나타내기

- ① 정사각형의 한 변의 길이 \sqrt{a} 를 구한다.
- ② 기준점(p)에서 $\left\{ egin{array}{ll} \mathbf{오른\mathbf{X}} & \Leftrightarrow p+\sqrt{a} \\ \mathbf{2}\mathbf{X} & \Leftrightarrow p-\sqrt{a} \end{array} \right.$

- 7 $\square ABCD = 3 \times 3 4 \times \left(\frac{1}{2} \times 1 \times 2\right) = 5$ $\therefore \overline{AP} = \overline{AB} = \sqrt{5}$ 따라서 점 P에 대응하는 수는 $1 + \sqrt{5}$ 이다.
- 8 $\Box ABCD = 4 \times 4 4 \times \left(\frac{1}{2} \times 1 \times 3\right) = 10$ $\therefore \overline{AP} = \overline{AD} = \sqrt{10}, \ \overline{AQ} = \overline{AB} = \sqrt{10}$ 따라서 두 점 P, Q에 대응하는 수는 각각 $1 - \sqrt{10}, 1 + \sqrt{10}$ 이다.

[9~10] 실수와 수직선

- (1) 모든 실수는 각각 수직선 위의 한 점에 대응하고, 또한 수직선 위의 한 점에는 한 실수가 반드시 대응한다.
- (2) 서로 다른 두 유리수 사이에는 무수히 많은 유리수, 무리수가 있다.
- (3) 서로 다른 두 무리수 사이에는 무수히 많은 유리수, 무리수가 있다.
- (4) 수직선은 실수, 즉 유리수와 무리수에 대응하는 점들로 완전히 메울수 있다.

- 9 ㄴ. 1과 1000 사이의 정수는 2, 3, 4, ···, 999로 998개가 있다.
 - $c. \pi 는 무리수이므로 수직선 위의 점에 대응시킬 수 있다.$
- **10** ② 1과 2 사이에는 무수히 많은 무리수가 있다.
 - ③ 수직선은 유리수와 무리수, 즉 실수에 대응하는 점들로 완전히 메울 수 있다.

[11~14] 실수의 대소 관계

- (1) 두 수의 차를 이용한다.
 - a, b가 실수일 때
 - (i) a-b>00 | 면 a>b
 - (ii) a-b=0이면 a=b
 - (iii) a-b < 0이면 a < b
- (2) 부등식의 성질을 이용한다.

$$2+\sqrt{5}$$
 $\sqrt{3}+\sqrt{5}$ $\xrightarrow{2>\sqrt{3}$ 이므로 $2+\sqrt{5}$ $\sqrt{3}+\sqrt{5}$ 양변에 $+\sqrt{5}$

(3) 제곱근의 값을 이용한다.

$$\underbrace{\sqrt{2} + 2 \bigsqcup_{1,414\cdots} \underbrace{\sqrt{3}}_{1,732\cdots} + 1} \xrightarrow{3.414\cdots \ge 2.732\cdots} \underbrace{\sqrt{2} + 2 \bigotimes_{1} \sqrt{3} + 1}$$

- 11 ② $(6-\sqrt{5})-4=2-\sqrt{5}=\sqrt{4}-\sqrt{5}<0$ $\therefore 6-\sqrt{5}<4$
 - $32 (\sqrt{2} + 1) = 1 \sqrt{2} < 0$ $\therefore 2 < \sqrt{2} + 1$
 - ⑤ $(\sqrt{10}+1)-4=\sqrt{10}-3=\sqrt{10}-\sqrt{9}>0$ ∴ $\sqrt{10}+1>4$

다른 풀이

- $(5) \frac{\sqrt{10}}{3.\cdots} + 1 \boxed{ } 4 \Rightarrow \frac{\sqrt{10} + 1}{4.\cdots} > 4$
- 12 ① $4-(2+\sqrt{2})=2-\sqrt{2}=\sqrt{4}-\sqrt{2}>0$ $\therefore 4>2+\sqrt{2}$
 - ② $4-(\sqrt{3}+3)=1-\sqrt{3}<0$: $4<\sqrt{3}+3$
 - ③ $(3-\sqrt{2})-(3-\sqrt{3})=-\sqrt{2}+\sqrt{3}>0$ ∴ $3-\sqrt{2}>3-\sqrt{3}$

 - ⑤ $2>\sqrt{3}$ 이므로 양변에 $\sqrt{5}$ 를 더하면 $2+\sqrt{5}>\sqrt{3}+\sqrt{5}$

다른 풀이

- **13** $a-b=(3-\sqrt{5})-1=2-\sqrt{5}=\sqrt{4}-\sqrt{5}<0$ $\therefore a< b$ $a-c=(3-\sqrt{5})-(3-\sqrt{6})=-\sqrt{5}+\sqrt{6}>0$ $\therefore a>c$ $\therefore c< a< b$

14 $(\sqrt{8}+1)-5=\sqrt{8}-4=\sqrt{8}-\sqrt{16}<0$ $\therefore \sqrt{8}+1<5$ $(4+\sqrt{2})-5=\sqrt{2}-1>0$: $4+\sqrt{2}>5$ 따라서 $\sqrt{8} + 1 < 5 < 4 + \sqrt{2}$ 이므로 $M = 4 + \sqrt{2}$, $m = \sqrt{8} + 1$

[15~16] 무리수의 정수 부분과 소수 부분 무리수 \sqrt{A} 의 정수 부분이 a이면 \Rightarrow 소수 부분은 $\sqrt{A} - a$

15 $1 < \sqrt{3} < 2$ 이므로 $\sqrt{3}$ 의 정수 부분 a = 1... (i) $2 < \sqrt{5} < 3$ 이므로 $\sqrt{5}$ 의 정수 부분은 2.

> 소수 부분 $b=\sqrt{5}-2$... (ii)

 $\therefore 2a+b=2\times 1+(\sqrt{5}-2)=\sqrt{5}$... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) 2a+b의 값 구하기	20 %

16 $1 < \sqrt{2} < 2$ 이므로 $5 < 4 + \sqrt{2} < 6$ 따라서 $4+\sqrt{2}$ 의 정수 부분 a=5. 소수 부분 $b = (4+\sqrt{2})-5=\sqrt{2}-1$ $b-a=(\sqrt{2}-1)-5=\sqrt{2}-6$

Best of Best 문제로 단원 마무리

P. 24~25

- **1** −15, 과정은 풀이 참조 **2** ①, ④ **3** (4) 7 ③ **4** (5) **5** (4)
- 8 $1+\sqrt{3}$. 과정은 풀이 참조
- $\sqrt{81} = 9$ 의 음의 제곱근 $a = -\sqrt{9} = -3$... (i) $(-5)^2 = 25$ 의 양의 제곱근 $b = \sqrt{25} = 5$... (ii) $\therefore ab = -3 \times 5 = -15$... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

2 ② 0.9의 제곱근은 ±√0.9이다. ③ 제곱근 $\frac{16}{9}$ 은 $\sqrt{\frac{16}{9}} = \frac{4}{3}$ 이다. $(5)\sqrt{(-11)^2}=11$ 의 제곱근은 $\pm\sqrt{11}$ 이다.

- 3 4<x<5일 때 x-4>0 x-5<0이므로 $\sqrt{(x-4)^2} = x-4$ $\sqrt{(x-5)^2} = -(x-5) = -x+5$ $\therefore \sqrt{(x-4)^2} - \sqrt{(x-5)^2} = (x-4) - (-x+5)$ =x-4+x-5=2x-9
- $\sqrt{120x} = \sqrt{2^3 \times 3 \times 5 \times x}$ 가 자연수가 되려면 자연수 x는 $2 \times 3 \times 5 \times ($ 자연수 $)^2$ 의 꼴이어야 한다. 따라서 구하는 가장 작은 자연수 x의 값은 $x=2\times3\times5=30$
- **5** $\sqrt{1.44} = 1.2, 8.\dot{5} = \frac{85 8}{9} = \frac{77}{9}$ 다 유리수 $\sqrt{27}$, 1.121231234…, $-\pi$, $3-\sqrt{3}$, $\sqrt{\frac{14}{9}}$ \Rightarrow 무리수 따라서 무리수의 개수는 5개이다.
- $\Box ABCD = 3 \times 3 4 \times \left(\frac{1}{2} \times 2 \times 1\right) = 5$ 이므로 $\overline{AP} = \overline{AD} = \sqrt{5}$ 따라서 점 P에 대응하는 수는 $-3-\sqrt{5}$ 이다. \Box EFGH= $2\times2-4\times\left(\frac{1}{2}\times1\times1\right)=2$ 이므로 $\overline{EQ} = \overline{EF} = \sqrt{2}$ 따라서 점 Q에 대응하는 수는 $2+\sqrt{2}$ 이다
- 7 ① $(2-\sqrt{18})-(-2)=4-\sqrt{18}=\sqrt{16}-\sqrt{18}<0$ $\therefore 2 - \sqrt{18} < -2$
 - ② $\sqrt{6}$ < $\sqrt{7}$ 이므로 양변에 $\sqrt{10}$ 을 더하면 $\sqrt{10} + \sqrt{6} < \sqrt{7} + \sqrt{10}$
 - $(3)(\sqrt{5}+3)-5=\sqrt{5}-2=\sqrt{5}-\sqrt{4}>0$ $\therefore \sqrt{5} + 3 > 5$
 - ④ $3 < \sqrt{11}$ 이므로 양변에서 $\sqrt{2}$ 를 빼면 $3-\sqrt{2} < \sqrt{11}-\sqrt{2}$
 - $(5)(\sqrt{7}-2)-1=\sqrt{7}-3=\sqrt{7}-\sqrt{9}<0$ $\therefore \sqrt{7} - 2 \left| < \right| 1$
- 8 $1<\sqrt{3}<2$ 이므로 $-2<-\sqrt{3}<-1$ 에서 $3 < 5 - \sqrt{3} < 4$ 따라서 $5-\sqrt{3}$ 의 정수 부분 a=3. ... (i) 소수 부분 $b = (5 - \sqrt{3}) - 3 = 2 - \sqrt{3} \cdots$ (ii) $a-b=3-(2-\sqrt{3})=1+\sqrt{3}$... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) $a-b$ 의 값 구하기	20 %

구호를 포함한 식의 계산(1)

P. 28

- **1** (1) 7, 42 (2) 2, 5, 7, 70
- **2** (1) 4, 3, 2, 8, 6 (2) 3, 2, 3, -9, 6
- 3 (1) $\sqrt{40}$ (2) 8 (3)6
- 4 (1) $6\sqrt{5}$ (2) $6\sqrt{14}$
- 5 (1) $\frac{9}{2}$, 3 (2) $\frac{45}{5}$, 9, 3
- **6** (1) 30, 5, $\frac{30}{5}$, 6 (2) 4, $\frac{6}{2}$, 2, 3 (3) $\frac{9}{5}$, $\frac{9}{5}$, 6
- **7** (1) $\sqrt{6}$ (2) -4 (3) $\sqrt{5}$
- **8** (1) $2\sqrt{2}$ (2) $3\sqrt{6}$ **9** (1) $\sqrt{\frac{3}{2}}$ (2) $\sqrt{5}$
- (1) $\sqrt{5}\sqrt{8} = \sqrt{5 \times 8} = \sqrt{40}$
 - (2) $\sqrt{2}\sqrt{32} = \sqrt{2 \times 32} = \sqrt{64} = 8$
 - (3) $\sqrt{2}\sqrt{3}\sqrt{6} = \sqrt{2\times3\times6} = \sqrt{36} = 6$
 - (4) $-\sqrt{5} \times \sqrt{\frac{7}{2}} \times \sqrt{\frac{2}{5}} = -\sqrt{5 \times \frac{7}{2} \times \frac{2}{5}} = -\sqrt{7}$
- 4 (1) $2\sqrt{\frac{3}{5}} \times 3\sqrt{\frac{25}{2}} = (2 \times 3) \times \sqrt{\frac{3}{5} \times \frac{25}{2}} = 6\sqrt{5}$
 - (2) $3\sqrt{10} \times 2\sqrt{\frac{7}{5}} = (3 \times 2) \times \sqrt{10 \times \frac{7}{5}} = 6\sqrt{14}$
- 7 (1) $\frac{\sqrt{42}}{\sqrt{7}} = \sqrt{\frac{42}{7}} = \sqrt{6}$
 - $(2) \frac{\sqrt{32}}{\sqrt{2}} = -\sqrt{\frac{32}{2}} = -\sqrt{16} = -4$
 - (3) $(-\sqrt{40}) \div (-\sqrt{8}) = \frac{-\sqrt{40}}{-\sqrt{8}} = \sqrt{\frac{40}{8}} = \sqrt{5}$
 - $(4) \sqrt{35} \div \sqrt{7} \div \frac{1}{\sqrt{2}} = \sqrt{35} \times \frac{1}{\sqrt{7}} \times \sqrt{2}$ $= \sqrt{35 \times \frac{1}{7} \times 2} = \sqrt{10}$
- **8** (1) $4\sqrt{14} \div 2\sqrt{7} = \frac{4}{2} \sqrt{\frac{14}{7}} = 2\sqrt{2}$
 - (2) $3\sqrt{\frac{4}{5}} \div \sqrt{\frac{2}{15}} = 3\sqrt{\frac{4}{5}} \times \sqrt{\frac{15}{2}}$ $=3\sqrt{\frac{4}{5}}\times\frac{15}{2}=3\sqrt{6}$
- 9 (1) $\sqrt{6} \times \sqrt{3} \div \sqrt{12} = \sqrt{6} \times \sqrt{3} \times \frac{1}{\sqrt{12}}$ $=\sqrt{6\times3\times\frac{1}{12}}=\sqrt{\frac{3}{2}}$ (2) $\int \frac{6}{5} \div \sqrt{2} \times \int \frac{25}{3} = \int \frac{6}{5} \times \frac{1}{\sqrt{2}} \times \int \frac{25}{3}$ $=\sqrt{\frac{6}{5}\times\frac{1}{2}\times\frac{25}{3}}=\sqrt{5}$

유형 2

P. 29

- 1 (1) 2, 2 (2) 3. 3
- 2 (1) $2\sqrt{7}$
- (2) $-3\sqrt{6}$
 - (3) $12\sqrt{2}$
- **3** (1) 4, 4 (2) 100, 10, 10
- 4 (1) $\frac{\sqrt{6}}{5}$ (2) $\frac{\sqrt{17}}{9}$ (3) $\frac{\sqrt{7}}{10}$
- (4) √3

 $(4)\ 10\sqrt{10}$

5 (1) 3, 90

6 (1) √45

- (2) 5, 50 (3) 10, $\frac{3}{20}$ (4) 2, $\frac{27}{4}$
 - (3) √5
- $(4) \sqrt{\frac{7}{16}}$

- 7 (1) 🗀
- (2) $-\sqrt{14}$ (2) 🗀
- (3) (7)
- (4) (코)
- 2 (1) $\sqrt{28} = \sqrt{2^2 \times 7} = 2\sqrt{7}$
 - (2) $-\sqrt{54} = -\sqrt{3^2 \times 6} = -3\sqrt{6}$
 - (3) $\sqrt{288} = \sqrt{12^2 \times 2} = 12\sqrt{2}$
 - (4) $\sqrt{1000} = \sqrt{10^2 \times 10} = 10\sqrt{10}$
- 4 (1) $\sqrt{\frac{6}{25}} = \sqrt{\frac{6}{5^2}} = \frac{\sqrt{6}}{5}$
 - (2) $\sqrt{\frac{17}{81}} = \sqrt{\frac{17}{9^2}} = \frac{\sqrt{17}}{9}$
 - (3) $\sqrt{0.07} = \sqrt{\frac{7}{100}} = \sqrt{\frac{7}{10^2}} = \frac{\sqrt{7}}{10}$
 - $(4)\sqrt{0.12} = \sqrt{\frac{12}{100}} = \sqrt{\frac{3}{25}} = \sqrt{\frac{3}{5^2}} = \frac{\sqrt{3}}{5}$
- 5 (1) $3\sqrt{10} = \sqrt{3^2}\sqrt{10} = \sqrt{3^2 \times 10} = \sqrt{9 \times 10} = \sqrt{90}$
 - (2) $-5\sqrt{2} = -\sqrt{5^2}\sqrt{2} = -\sqrt{5^2} \times 2 = -\sqrt{25 \times 2} = -\sqrt{50}$
 - (3) $\frac{\sqrt{15}}{10} = \frac{\sqrt{15}}{\sqrt{10^2}} = \sqrt{\frac{15}{100^2}} = \sqrt{\frac{15}{100}} = \sqrt{\frac{3}{20}}$
 - $(4) \frac{3\sqrt{3}}{2} = \frac{\sqrt{3^2}\sqrt{3}}{\sqrt{2^2}} = \sqrt{\frac{3^2 \times 3}{2}} = \sqrt{\frac{27}{4}}$
- 6 (1) $3\sqrt{5} = \sqrt{3^2 \times 5} = \sqrt{45}$
 - $(2) -2\sqrt{\frac{7}{2}} = -\sqrt{2^2 \times \frac{7}{2}} = -\sqrt{14}$
 - (3) $\frac{\sqrt{45}}{3} = \sqrt{\frac{45}{2^2}} = \sqrt{\frac{45}{9}} = \sqrt{5}$
 - (4) $-\frac{\sqrt{7}}{4} = -\sqrt{\frac{7}{4^2}} = -\sqrt{\frac{7}{16}}$
- 7 (1) $\sqrt{12} = \sqrt{2^2 \times 3} = (\sqrt{2})^2 \times \sqrt{3} = a^2b$
 - (2) $\sqrt{24} = \sqrt{2^3 \times 3} = (\sqrt{2})^3 \times \sqrt{3} = a^3b$
 - (3) $\sqrt{54} = \sqrt{2 \times 3^3} = \sqrt{2} \times (\sqrt{3})^3 = ab^3$
 - (4) $\sqrt{72} = \sqrt{2^3 \times 3^2} = (\sqrt{2})^3 \times (\sqrt{3})^2 = a^3 b^2$

유형 3 P. 30

1 (1)
$$\sqrt{5}$$
, $\sqrt{5}$, $\frac{2\sqrt{5}}{5}$ (2) $\sqrt{7}$, $\sqrt{7}$, $\frac{3\sqrt{7}}{7}$

(3)
$$\sqrt{5}$$
, $\sqrt{5}$, $\frac{\sqrt{15}}{5}$ (4) $\sqrt{2}$, $\sqrt{2}$, $\frac{5\sqrt{2}}{4}$

2 (1)
$$\frac{\sqrt{11}}{11}$$
 (2) $\sqrt{2}$ (3) $-\frac{5\sqrt{3}}{3}$ (4) $2\sqrt{5}$

3 (1)
$$\frac{\sqrt{6}}{2}$$
 (2) $-\frac{\sqrt{35}}{7}$ (3) $\frac{\sqrt{42}}{6}$ (4) $\frac{\sqrt{22}}{11}$

4 (1)
$$\frac{\sqrt{6}}{4}$$
 (2) $\frac{\sqrt{15}}{6}$ (3) $\frac{\sqrt{6}}{3}$ (4) $\frac{\sqrt{15}}{5}$
5 (1) $\frac{2\sqrt{3}}{3}$ (2) $\frac{\sqrt{15}}{10}$ (3) $-\frac{5\sqrt{3}}{12}$ (4) $\frac{\sqrt{2}}{4}$

5 (1)
$$\frac{2\sqrt{3}}{3}$$
 (2) $\frac{\sqrt{15}}{10}$ (3) $-\frac{5\sqrt{3}}{12}$ (4) $\frac{\sqrt{2}}{4}$

6 (1)
$$2\sqrt{3}$$
 (2) $2\sqrt{10}$ (3) $\frac{2\sqrt{15}}{3}$ (4) $\frac{\sqrt{6}}{2}$

2 (1)
$$\frac{1}{\sqrt{11}} = \frac{1 \times \sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{11}}{11}$$

(2)
$$\frac{2}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$

(3)
$$-\frac{5}{\sqrt{3}} = -\frac{5 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = -\frac{5\sqrt{3}}{3}$$

$$(4) \frac{10}{\sqrt{5}} = \frac{10 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5}$$

3 (1)
$$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$$

(2)
$$-\frac{\sqrt{5}}{\sqrt{7}} = -\frac{\sqrt{5} \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = -\frac{\sqrt{35}}{7}$$

(3)
$$\frac{\sqrt{7}}{\sqrt{6}} = \frac{\sqrt{7} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{\sqrt{42}}{6}$$

$$(4) \frac{\sqrt{2}}{\sqrt{11}} = \frac{\sqrt{2} \times \sqrt{11}}{\sqrt{11} \times \sqrt{11}} = \frac{\sqrt{22}}{11}$$

4 (1)
$$\frac{3}{2\sqrt{6}} = \frac{3 \times \sqrt{6}}{2\sqrt{6} \times \sqrt{6}} = \frac{3\sqrt{6}}{12} = \frac{\sqrt{6}}{4}$$

$$(2) \frac{\sqrt{5}}{2\sqrt{3}} = \frac{\sqrt{5} \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{15}}{6}$$

(3)
$$\frac{2\sqrt{3}}{3\sqrt{2}} = \frac{2\sqrt{3} \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}$$

$$(4) \frac{3}{\sqrt{3}\sqrt{5}} = \frac{3}{\sqrt{15}} = \frac{3 \times \sqrt{15}}{\sqrt{15} \times \sqrt{15}} = \frac{3\sqrt{15}}{15} = \frac{\sqrt{15}}{5}$$

5 (1)
$$\frac{4}{\sqrt{12}} = \frac{4}{2\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$(2) \frac{\sqrt{3}}{\sqrt{20}} = \frac{\sqrt{3}}{2\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{10}$$

$$(3) \quad -\frac{5}{\sqrt{48}} = -\frac{5}{4\sqrt{3}} = -\frac{5 \times \sqrt{3}}{4\sqrt{3} \times \sqrt{3}} = -\frac{5\sqrt{3}}{12}$$

$$(4) \frac{4}{\sqrt{128}} = \frac{4}{8\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1 \times \sqrt{2}}{2\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{4}$$

6 (1)
$$6 \times \frac{1}{\sqrt{3}} = \frac{6}{\sqrt{3}} = \frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$$

(2)
$$10\sqrt{2} \times \frac{1}{\sqrt{5}} = \frac{10\sqrt{2}}{\sqrt{5}} = \frac{10\sqrt{2} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$$
$$= \frac{10\sqrt{10}}{5} = 2\sqrt{10}$$

(3)
$$4\sqrt{5} \div 2\sqrt{3} = \frac{4\sqrt{5}}{2\sqrt{3}} = \frac{2\sqrt{5}}{\sqrt{3}} = \frac{2\sqrt{5} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{15}}{3}$$

$$(4)\sqrt{\frac{2}{5}} \div \sqrt{\frac{4}{15}} = \sqrt{\frac{2}{5} \times \frac{15}{4}} = \sqrt{\frac{3}{2}}$$
$$= \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$$

유형 4

P. 31

- 1 (1) 2,435 (2) 2.449
 - (3) 2.478

(3) 6.41

- (4) 2.512(4)5.94
- 2 (1) 6.04 (2)6.32

3 (1) 100, 10, 10, 26.46

- (2) 100, 10, 10, 0.2646
- (3) 10000, 100, 100, 0.02646

4 (1)
$$\sqrt{\frac{30}{10000}} = \frac{\sqrt{30}}{100}, \frac{5.477}{100} = 0.05477$$

(2)
$$\sqrt{\frac{3}{100}} = \frac{\sqrt{3}}{10}, \frac{1.732}{10} = 0.1732$$

- (3) $\sqrt{30 \times 100} = 10\sqrt{30}$, $10 \times 5.477 = 54.77$
- $(4)\sqrt{3\times10000} = 100\sqrt{3}$, $100\times1.732 = 173.2$
- 5 (1) 34.64
 - (2) 10.95 (3) 0.3464 (4) 0.1095
- **6** (1) 2, 2, 2,828
- (2) 100, 25, 5, 5, 0,2828
- (1) 5.9의 가로줄과 3의 세로줄 ⇒ 2.435
 - (2) 6.0의 가로줄과 0의 세로줄 ⇒ 2.449
 - (3) 6.1의 가로줄과 4의 세로줄 ⇒ 2.478
 - (4) 6.3의 가로줄과 1의 세로줄 ⇒ 2.512
- (1) 2.458이 적혀 있는 칸의 가로줄의 수는 6.0이고, 세로줄 의 수는 4이므로 a=6.04
 - (2) 2.514가 적혀 있는 칸의 가로줄의 수는 6.3이고, 세로줄 의 수는 2이므로 a=6.32
 - (3) 2.532가 적혀 있는 칸의 가로줄의 수는 6.4이고, 세로줄 의 수는 1이므로 a = 6.41
 - (4) 2.437이 적혀 있는 칸의 가로줄의 수는 5.9이고, 세로줄 의 수는 4이므로 a=5.94

4 (1)
$$\sqrt{0.003} = \sqrt{\frac{30}{10000}} = \frac{\sqrt{30}}{100} = \frac{5.477}{100} = 0.05477$$

$$(2)\sqrt{0.03} = \sqrt{\frac{3}{100}} = \frac{\sqrt{3}}{10} = \frac{1.732}{10} = 0.1732$$

- (3) $\sqrt{3000} = \sqrt{30 \times 100} = 10\sqrt{30} = 10 \times 5.477 = 54.77$
- $(4)\sqrt{30000} = \sqrt{3 \times 10000} = 100\sqrt{3} = 100 \times 1.732 = 173.2$

- 5 (1) $\sqrt{1200} = \sqrt{12 \times 100} = 10\sqrt{12} = 10 \times 3.464 = 34.64$
 - (2) $\sqrt{120} = \sqrt{1.2 \times 100} = 10\sqrt{1.2} = 10 \times 1.095 = 10.95$
 - (3) $\sqrt{0.12} = \sqrt{\frac{12}{100}} = \frac{\sqrt{12}}{10} = \frac{3.464}{10} = 0.3464$
 - (4) $\sqrt{0.012} = \sqrt{\frac{1.2}{100}} = \frac{\sqrt{1.2}}{10} = \frac{1.095}{10} = 0.1095$

쌍둥이 기출문제

P. 32~33

- 1 3, 5 2 3

- **3** ③ **4** 7, 과정은 풀이 참조

- **5** 4 **6** 3 **7** 4 **8** 3 **9** 2

- 10 6, 과정은 풀이 참조
- **11** ② **12** ②
- **13** ④ **14** ②

[1~2] 제곱근의 곱셈과 나눗셈

a>0, b>0이고 m, n이 유리수일 때

- (2) $m\sqrt{a} \times n\sqrt{b} = mn\sqrt{ab}$
- (3) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
- (4) $m\sqrt{a} \div n\sqrt{b} = \frac{m}{n}\sqrt{\frac{a}{b}}$ (단, $n \neq 0$)
- (3) $\sqrt{2}\sqrt{5}\sqrt{40} = \sqrt{2\times5\times40} = \sqrt{400} = 20$
 - $5\sqrt{12} \times \frac{1}{\sqrt{3}} = \frac{\sqrt{12}}{\sqrt{3}} = \sqrt{\frac{12}{3}} = \sqrt{4} = 2$
- 2 $\frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{2}} \div \frac{1}{\sqrt{6}} = \frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{2}} \times \sqrt{6} = \frac{2\sqrt{6}}{\sqrt{6}} = 2$

[3~6] 근호가 있는 식의 변형

a>0, b>0일 때

- (1) $\sqrt{a^2b} = a\sqrt{b}$
- (2) $\sqrt{\frac{a}{b^2}} = \frac{\sqrt{a}}{b}$
- 3 $\sqrt{50} = \sqrt{5^2 \times 2} = 5\sqrt{2}$
- $\sqrt{300} = \sqrt{10^2 \times 3} = 10\sqrt{3}$ 이므로

$$a=10$$

... (i)

 $\sqrt{75} = \sqrt{5^2 \times 3} = 5\sqrt{3}$ 이므로

a-b=10-3=7

... (ii) ... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) b의 값 구하기	40 %
(iii) $a-b$ 의 값 구하기	20 %

- $\sqrt{90} = \sqrt{2 \times 3^2 \times 5} = 3 \times \sqrt{2} \times \sqrt{5} = 3ab$
- $\sqrt{18} = \sqrt{2 \times 3^2} = \sqrt{2} \times (\sqrt{3})^2 = ab^2$

[7~10] 분모의 유리화

(1)
$$\frac{1}{\sqrt{a}} = \frac{1 \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{\sqrt{a}}{a}$$
 (단, $a > 0$)

(2)
$$\frac{b}{\sqrt{a}} = \frac{b \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{b\sqrt{a}}{a}$$
 (Et, $a > 0$)

(1)
$$\frac{1}{\sqrt{a}} = \frac{1 \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{\sqrt{a}}{a} \text{ (Et, } a > 0)$$
(2)
$$\frac{b}{\sqrt{a}} = \frac{b \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{b\sqrt{a}}{a} \text{ (Et, } a > 0)$$
(3)
$$\frac{\sqrt{b}}{\sqrt{a}} = \frac{\sqrt{b} \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{\sqrt{ab}}{a} \text{ (Et, } a > 0, b > 0)$$

(4)
$$\frac{c}{b\sqrt{a}} = \frac{c \times \sqrt{a}}{b\sqrt{a} \times \sqrt{a}} = \frac{c\sqrt{a}}{ab}$$
 (단, $a > 0$, $b \neq 0$)

7
$$4\frac{\sqrt{8}}{\sqrt{12}} = \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{6}}{3}$$

8 ①
$$\frac{6}{\sqrt{6}} = \frac{6 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{6\sqrt{6}}{6} = \sqrt{6}$$

$$2 \frac{\sqrt{2}}{\sqrt{7}} = \frac{\sqrt{2} \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{14}}{7}$$

$$4 - \frac{7}{3\sqrt{5}} = -\frac{7 \times \sqrt{5}}{3\sqrt{5} \times \sqrt{5}} = -\frac{7\sqrt{5}}{15}$$

$$\boxed{5} \frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}} = \frac{2 \times \sqrt{3}}{3\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{9}$$

9
$$\frac{5}{3\sqrt{2}} = \frac{5 \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{5\sqrt{2}}{6}$$
이므로 $a = \frac{5}{6}$

$$\frac{1}{2\sqrt{3}} = \frac{1 \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{6}$$
이므로 $b = \frac{1}{6}$

$$a+b=\frac{5}{6}+\frac{1}{6}=1$$

$$10 \ \frac{6\sqrt{2}}{\sqrt{3}} = \frac{6\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{6\sqrt{6}}{3} = 2\sqrt{6}$$
이므로

$$\sqrt{3}$$
 $\sqrt{3} \times \sqrt{3}$ 5

$$\frac{15\sqrt{3}}{\sqrt{5}} = \frac{15\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{15\sqrt{15}}{5} = 3\sqrt{15}$$
이므로

$$b=3$$
 ···· (ii)

... (i)

$$\therefore ab = 2 \times 3 = 6$$
 ... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) b의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

[11~12] 제곱근표에 있는 수의 제곱근의 값 구하기

1.00부터 9.99까지의 수 및 10.0부터 99.9까지의 수의 양의 제곱근의 값은 제곱근표를 이용하여 구한다.

- ⇨ 제곱근표에서 처음 두 자리 수의 가로줄과 끝자리 수의 세로줄이 만 나는 칸에 적혀 있는 수를 구한다.
- 11 제곱근표에서

 $\sqrt{2.4}$ =1.549이므로 a=1.549

 $\sqrt{2.22} = 1.490$ 이므로 b = 1.490

a+b=1.549+1.490=3.039

12 제곱근표에서

$$\sqrt{4.71}$$
=2.170이므로 a =2.170
 $\sqrt{4.84}$ =2.200이므로 b =4.84
 \therefore 1000 a -100 b =1000×2.170-100×4.84
=2170-484=1686

[13~14] 제곱근표에 없는 수의 제곱근의 값 구하기

- (1) 근호 안의 수가 100보다 큰 경우
 - □ 근호 안의 수를 10^2 , 10^4 , 10^6 , …과의 곱으로 나타낸 후 $\sqrt{a^2b} = a\sqrt{b}$ 임을 이용한다.
- (2) 근호 안의 수가 0보다 크고 1보다 작은 경우 \Rightarrow 근호 안의 수를 $\frac{1}{10^2}$, $\frac{1}{10^4}$, $\frac{1}{10^6}$, …과의 곱으로 나타낸 후

$$\sqrt{\frac{a}{h^2}} = \frac{\sqrt{a}}{h}$$
임을 이용한다.

13 ①
$$\sqrt{0.0005} = \sqrt{\frac{5}{10000}} = \frac{\sqrt{5}}{100} = \frac{2.236}{100} = 0.02236$$

- (3) $\sqrt{20} = \sqrt{2^2 \times 5} = 2\sqrt{5} = 2 \times 2.236 = 4.472$
- $\bigcirc \sqrt{5000} = \sqrt{50 \times 100} = 10\sqrt{50}$
- $\sqrt{50000} = \sqrt{5 \times 10000} = 100\sqrt{5}$ $=100\times2.236=223.6$

14 ①
$$\sqrt{200} = \sqrt{2 \times 100} = 10\sqrt{2} = 10 \times 1.414 = 14.14$$

$$2\sqrt{2000} = \sqrt{20 \times 100} = 10\sqrt{20} = 10 \times 4.472 = 44.72$$

$$\sqrt[3]{\sqrt{0.2}} = \sqrt{\frac{20}{100}} = \frac{\sqrt{20}}{10} = \frac{4.472}{10} = 0.4472$$

(5)
$$\sqrt{0.002} = \sqrt{\frac{20}{10000}} = \frac{\sqrt{20}}{100} = \frac{4.472}{100} = 0.04472$$

○ 2 근호를 포함한 식의 계산 (2)

유형 5

P. 34

2 (1) 0 (2)
$$8\sqrt{6}$$
 (3) $-\frac{\sqrt{2}}{15}$

3 (1)
$$6\sqrt{3}$$
 (2) 0 (3) $5\sqrt{6}$

4 (1)
$$2\sqrt{3} - \sqrt{5}$$
 (2) $-4\sqrt{2} + 3\sqrt{6}$

5 (1)
$$-\sqrt{2}-6\sqrt{3}$$
 (2) $-5+6\sqrt{6}$

6 (1) 3,
$$2\sqrt{2}$$
 (2) 2, 5, $-3\sqrt{5}$

7 (1)
$$\sqrt{7} + 3\sqrt{2}$$
 (2) $2\sqrt{2} + \frac{10\sqrt{3}}{3}$

2 (3)
$$\frac{3\sqrt{2}}{5} - \frac{2\sqrt{2}}{3} = \left(\frac{3}{5} - \frac{2}{3}\right)\sqrt{2} = \left(\frac{9}{15} - \frac{10}{15}\right)\sqrt{2} = -\frac{\sqrt{2}}{15}$$

3 (1)
$$\sqrt{3} + \sqrt{12} + \sqrt{27} = \sqrt{3} + 2\sqrt{3} + 3\sqrt{3}$$

= $(1+2+3)\sqrt{3} = 6\sqrt{3}$

(2)
$$\sqrt{7} + \sqrt{28} - \sqrt{63} = \sqrt{7} + 2\sqrt{7} - 3\sqrt{7}$$

= $(1+2-3)\sqrt{7} = 0$

(3)
$$\sqrt{54} - \sqrt{24} + \sqrt{96} = 3\sqrt{6} - 2\sqrt{6} + 4\sqrt{6}$$

= $(3-2+4)\sqrt{6} = 5\sqrt{6}$

4 (1)
$$4\sqrt{3} - 2\sqrt{3} + \sqrt{5} - 2\sqrt{5} = (4-2)\sqrt{3} + (1-2)\sqrt{5}$$

 $= 2\sqrt{3} - \sqrt{5}$
(2) $3\sqrt{2} - 2\sqrt{6} - 7\sqrt{2} + 5\sqrt{6} = (3-7)\sqrt{2} + (-2+5)\sqrt{6}$
 $= -4\sqrt{2} + 3\sqrt{6}$

5 (1)
$$\sqrt{8} - \sqrt{12} - \sqrt{18} - \sqrt{48} = 2\sqrt{2} - 2\sqrt{3} - 3\sqrt{2} - 4\sqrt{3}$$

$$= -\sqrt{2} - 6\sqrt{3}$$
(2) $\sqrt{144} + \sqrt{150} - \sqrt{289} + \sqrt{6} = 12 + 5\sqrt{6} - 17 + \sqrt{6}$

$$= -5 + 6\sqrt{6}$$

6 (1)
$$\frac{6}{\sqrt{2}} - \sqrt{2} = \frac{6\sqrt{2}}{2} - \sqrt{2} = \boxed{3}\sqrt{2} - \sqrt{2} = \boxed{2\sqrt{2}}$$

(2) $\sqrt{20} - \frac{25}{\sqrt{5}} = 2\sqrt{5} - \frac{25\sqrt{5}}{5} = \boxed{2}\sqrt{5} - \boxed{5}\sqrt{5} = \boxed{-3\sqrt{5}}$

7 (1)
$$\sqrt{63} - \frac{14}{\sqrt{7}} - \sqrt{8} + \frac{10}{\sqrt{2}} = 3\sqrt{7} - \frac{14\sqrt{7}}{7} - 2\sqrt{2} + \frac{10\sqrt{2}}{2}$$

 $= 3\sqrt{7} - 2\sqrt{7} - 2\sqrt{2} + 5\sqrt{2}$
 $= \sqrt{7} + 3\sqrt{2}$
(2) $\sqrt{50} - \frac{6}{\sqrt{2}} + \sqrt{48} - \frac{4}{\sqrt{12}} = 5\sqrt{2} - \frac{6\sqrt{2}}{2} + 4\sqrt{3} - \frac{4}{2\sqrt{3}}$
 $= 5\sqrt{2} - 3\sqrt{2} + 4\sqrt{3} - \frac{2\sqrt{3}}{3}$
 $= 2\sqrt{2} + \frac{10\sqrt{3}}{3}$

유형 6

P. 35

1 (1)
$$\sqrt{15} + \sqrt{30}$$
 (2) $3\sqrt{2} - 2\sqrt{6}$ (3) $\sqrt{6} + 5\sqrt{2}$

$$(2) \ 3\sqrt{2} - 2\sqrt{6}$$

(3)
$$\sqrt{6} \pm 5\sqrt{2}$$

$$\frac{2}{6} + 2$$

(2)
$$2\sqrt{5}$$

(2)
$$2\sqrt{5}$$
 (3) $8\sqrt{6}$

3 (1)
$$4\sqrt{2}$$

(2)
$$7\sqrt{3} - 2\sqrt{15}$$
 (3) $-\sqrt{2} + \sqrt{6}$

$$\sqrt{3}$$
 $3\sqrt{6}$

4 (1)
$$-\sqrt{5}+\sqrt{7}$$
 (2) $-\frac{\sqrt{3}}{3}+\frac{3\sqrt{6}}{2}$

5 (1)
$$\sqrt{3}$$
, $\sqrt{3}$, $\frac{\sqrt{3}+\sqrt{6}}{3}$ (2) $\sqrt{6}$, $\sqrt{6}$, $3\sqrt{6}-3\sqrt{2}$, $\sqrt{6}-\sqrt{2}$

6 (1)
$$\frac{\sqrt{10}-4}{2}$$
 (2) $\frac{2\sqrt{3}+3\sqrt{2}}{6}$

$$(2) \frac{2\sqrt{3} + 3\sqrt{2}}{6}$$

7 (1)
$$\frac{3-\sqrt{6}}{6}$$
 (2) $\frac{2\sqrt{6}-\sqrt{2}}{2}$

(2)
$$\frac{2\sqrt{6}-\sqrt{2}}{2}$$

1 (2)
$$(\sqrt{6} - \sqrt{8})\sqrt{3} = \sqrt{18} - \sqrt{24} = 3\sqrt{2} - 2\sqrt{6}$$

(3) $(3\sqrt{2} + 5\sqrt{6}) \div \sqrt{3} = \frac{3\sqrt{2}}{\sqrt{3}} + \frac{5\sqrt{6}}{\sqrt{3}}$
 $= \frac{3\sqrt{6}}{3} + 5\sqrt{\frac{6}{3}} = \sqrt{6} + 5\sqrt{2}$

2 (1)
$$\sqrt{2} \times \sqrt{3} + \sqrt{12} \div \sqrt{3} = \sqrt{6} + \sqrt{4} = \sqrt{6} + 2$$

(2) $\sqrt{3} \times \sqrt{15} - \sqrt{30} \times \frac{1}{\sqrt{6}} = \sqrt{45} - \sqrt{5} = 3\sqrt{5} - \sqrt{5} = 2\sqrt{5}$
(3) $2\sqrt{3} \times 5\sqrt{2} - \sqrt{3} \div \frac{1}{2\sqrt{2}} = 10\sqrt{6} - \sqrt{3} \times 2\sqrt{2}$
 $= 10\sqrt{6} - 2\sqrt{6} = 8\sqrt{6}$

$$(2)\sqrt{5}(\sqrt{15}+\sqrt{3})-\sqrt{3}(3\sqrt{5}-2)$$

$$=\sqrt{75}+\sqrt{15}-3\sqrt{15}+2\sqrt{3}$$

$$=5\sqrt{3}+\sqrt{15}-3\sqrt{15}+2\sqrt{3}$$

$$=7\sqrt{3}-2\sqrt{15}$$

$$(3)\sqrt{3}(\sqrt{6}-\sqrt{2})+(\sqrt{48}-\sqrt{64})\div\sqrt{2}$$

$$=\sqrt{18}-\sqrt{6}+\frac{\sqrt{48}}{\sqrt{2}}-\frac{\sqrt{64}}{\sqrt{2}}$$

$$=\sqrt{18}-\sqrt{6}+\sqrt{24}-\sqrt{32}$$

$$=3\sqrt{2}-\sqrt{6}+2\sqrt{6}-4\sqrt{2}=-\sqrt{2}+\sqrt{6}$$

3 (1) $(2\sqrt{3}+4)\sqrt{2}-2\sqrt{6}=2\sqrt{6}+4\sqrt{2}-2\sqrt{6}=4\sqrt{2}$

5 (1)
$$\frac{1+\sqrt{2}}{\sqrt{3}} = \frac{(1+\sqrt{2})\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}} = \frac{\sqrt{3}+\sqrt{6}}{3}$$
(2) $\frac{3-\sqrt{3}}{\sqrt{6}} = \frac{(3-\sqrt{3})\times\sqrt{6}}{\sqrt{6}\times\sqrt{6}} = \frac{3\sqrt{6}-\sqrt{18}}{6}$

$$= \frac{3\sqrt{6}-3\sqrt{2}}{6} = \frac{\sqrt{6}-\sqrt{2}}{2}$$

6 (1)
$$\frac{\sqrt{5} - \sqrt{8}}{\sqrt{2}} = \frac{(\sqrt{5} - \sqrt{8}) \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{10} - \sqrt{16}}{2} = \frac{\sqrt{10} - 4}{2}$$
(2) $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{6}} = \frac{(\sqrt{2} + \sqrt{3}) \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{\sqrt{12} + \sqrt{18}}{6} = \frac{2\sqrt{3} + 3\sqrt{2}}{6}$

7 (1)
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{12}} = \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{3}} = \frac{(\sqrt{3} - \sqrt{2}) \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{3 - \sqrt{6}}{6}$$
(2) $\frac{\sqrt{108} - 3}{\sqrt{18}} = \frac{6\sqrt{3} - 3}{3\sqrt{2}} = \frac{2\sqrt{3} - 1}{\sqrt{2}}$

$$= \frac{(2\sqrt{3} - 1) \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{6} - \sqrt{2}}{2}$$

유형 7 P. 36

1 (1) 2,
$$b^2$$
 (2) $5+2\sqrt{6}$ **2** (1) a , b (2) 2

3 (1) 4, 1 (2)
$$7+5\sqrt{3}$$

4 (1) 2, 3, 2 (2)
$$10 + 7\sqrt{2}$$

5 (1)
$$9+4\sqrt{5}$$
 (2) $12-4\sqrt{5}$ **6** (1) 11 (2) 8

7 (1)
$$-1+\sqrt{5}$$
 (2) $-13+\sqrt{7}$ (3) $-4+\sqrt{3}$ (4) $9-5\sqrt{6}$

8 (1)
$$12+7\sqrt{6}$$
 (2) $-2-\sqrt{10}$ (3) $21+7\sqrt{15}$ (4) $29-13\sqrt{14}$

5 (1) (주어진 식)=
$$(\sqrt{5})^2+2\times\sqrt{5}\times2+2^2$$

= $5+4\sqrt{5}+4=9+4\sqrt{5}$
(2) (주어진 식)= $(\sqrt{10})^2-2\times\sqrt{10}\times\sqrt{2}+(\sqrt{2})^2$
= $10-2\sqrt{20}+2=12-4\sqrt{5}$

7 (1) (주어진 식) =
$$(\sqrt{5})^2 + (-2+3)\sqrt{5} + (-2) \times 3$$

= $5+\sqrt{5}-6$
= $-1+\sqrt{5}$
(2) (주어진 식) = $(\sqrt{7})^2 + (5-4)\sqrt{7} + 5 \times (-4)$
= $7+\sqrt{7}-20$
= $-13+\sqrt{7}$
(3) (주어진 식) = $(1\times2)(\sqrt{3})^2 + (5-4)\sqrt{3} + (-2) \times 5$
= $6+\sqrt{3}-10$
= $-4+\sqrt{3}$
(4) (주어진 식) = $(2\times1)(\sqrt{6})^2 + (-6+1)\sqrt{6} + 1 \times (-3)$
= $12-5\sqrt{6}-3$
= $9-5\sqrt{6}$

8 (1) (주어진 식)
$$= (1 \times 3)(\sqrt{2})^2 + (1+6)\sqrt{2}\sqrt{3} + 2\sqrt{3} \times \sqrt{3}$$
$$= 6+7\sqrt{6}+6$$
$$= 12+7\sqrt{6}$$
(2) (주어진 식)
$$= (2 \times 1)(\sqrt{5})^2 + (-4+3)\sqrt{5}\sqrt{2} + 3\sqrt{2} \times (-2\sqrt{2})$$
$$= 10-\sqrt{10}-12$$
$$= -2-\sqrt{10}$$
(3) (주어진 식)
$$= (3 \times 2)(\sqrt{5})^2 + (9-2)\sqrt{5}\sqrt{3} + (-\sqrt{3}) \times 3\sqrt{3}$$
$$= 30+7\sqrt{15}-9$$
$$= 21+7\sqrt{15}$$
(4) (주어진 식)
$$= (4 \times 1)(\sqrt{2})^2 + (-12-1)\sqrt{2}\sqrt{7} + (-\sqrt{7}) \times (-3\sqrt{7})$$
$$= 8-13\sqrt{14}+21$$

 $=29-13\sqrt{14}$

유형 8 P. 37

1 (1)
$$\sqrt{3}+1$$
, $\sqrt{3}+1$, $\sqrt{3}+1$
(2) $\sqrt{7}-\sqrt{3}$, $\sqrt{7}-\sqrt{3}$, $\sqrt{7}-\sqrt{3}$

2 (1)
$$\frac{3\sqrt{6}-6}{2}$$
 (2) $\sqrt{2}-1$ (3) $\sqrt{3}+\sqrt{2}$

3 (1)
$$3-2\sqrt{2}$$
 (2) $\frac{11+4\sqrt{7}}{3}$ (3) $5+2\sqrt{6}$

4 (1)
$$2\sqrt{3}$$
 (2) $-2\sqrt{15}$ (3) 10

5 (1) 5 (2)
$$\sqrt{5}$$
 (3) 4 (4) 16 (5) 34

1 (1)
$$\frac{2}{\sqrt{3}-1} = \frac{2 \times (\sqrt{3}+1)}{(\sqrt{3}-1) \times (\sqrt{3}+1)}$$

= $\frac{2(\sqrt{3}+1)}{(\sqrt{3})^2 - 1^2} = \frac{2(\sqrt{3}+1)}{2}$
= $\sqrt{3}+1$

$$(2) \frac{4}{\sqrt{7} + \sqrt{3}} = \frac{4 \times (\sqrt{7} - \sqrt{3})}{(\sqrt{7} + \sqrt{3}) \times (\sqrt{7} - \sqrt{3})}$$
$$= \frac{4(\sqrt{7} - \sqrt{3})}{(\sqrt{7})^2 - (\sqrt{3})^2} = \frac{4(\sqrt{7} - \sqrt{3})}{4} = \sqrt{7} - \sqrt{3}$$

$$2 \quad \text{(1)} \ \frac{3}{\sqrt{6}+2} = \frac{3 \times (\sqrt{6}-2)}{(\sqrt{6}+2) \times (\sqrt{6}-2)}$$

$$= \frac{3(\sqrt{6}-2)}{(\sqrt{6})^2 - 2^2} = \frac{3\sqrt{6}-6}{2}$$

$$\text{(2)} \ \frac{\sqrt{2}}{2+\sqrt{2}} = \frac{\sqrt{2} \times (2-\sqrt{2})}{(2+\sqrt{2}) \times (2-\sqrt{2})} = \frac{\sqrt{2}(2-\sqrt{2})}{2^2 - (\sqrt{2})^2}$$

(3)
$$\frac{\sqrt{3}}{3-\sqrt{6}} = \frac{\sqrt{3} \times (3+\sqrt{6})}{(3-\sqrt{6}) \times (3+\sqrt{6})} = \frac{\sqrt{3}(3+\sqrt{6})}{3^2-(\sqrt{6})^2}$$
$$= \frac{3\sqrt{3}+3\sqrt{2}}{3} = \sqrt{3}+\sqrt{2}$$

 $=\frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$

3 (1)
$$\frac{\sqrt{2}-1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)\times(\sqrt{2}-1)}{(\sqrt{2}+1)\times(\sqrt{2}-1)}$$

= $\frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2-1^2} = 3-2\sqrt{2}$

$$(2) \frac{\sqrt{7}+2}{\sqrt{7}-2} = \frac{(\sqrt{7}+2) \times (\sqrt{7}+2)}{(\sqrt{7}-2) \times (\sqrt{7}+2)} = \frac{(\sqrt{7}+2)^2}{(\sqrt{7})^2 - 2^2} = \frac{11+4\sqrt{7}}{3}$$

(3)
$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{(\sqrt{3} + \sqrt{2}) \times (\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} + \sqrt{2})}$$
$$= \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2} = 5 + 2\sqrt{6}$$

4 (1) (주어진 식)
$$= \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} + \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}$$

$$= (\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2}) = 2\sqrt{3}$$

(2) (주어진 식)
$$= \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} - \frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}$$

$$= \frac{(\sqrt{5} - \sqrt{3})^2}{2} - \frac{(\sqrt{5} + \sqrt{3})^2}{2}$$

$$= \frac{8 - 2\sqrt{15}}{2} - \frac{8 + 2\sqrt{15}}{2} = -\frac{4\sqrt{15}}{2} = -2\sqrt{15}$$
(3) (주어진 식)
$$= \frac{(1 - \sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} + \frac{(1 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}$$

$$= (5 - 3\sqrt{3}) + (5 + 3\sqrt{3}) = 10$$

5 (1)
$$x=1+\sqrt{6}$$
에서 $x-1=\sqrt{6}$ 이므로
이 식의 양변을 제곱하면
 $(x-1)^2=(\sqrt{6})^2, x^2-2x+1=6$
 $\therefore x^2-2x=5$

다른 풀이

$$x^{2}-2x = (1+\sqrt{6})^{2}-2(1+\sqrt{6})$$
$$= 1+2\sqrt{6}+6-2-2\sqrt{6}=5$$

(2)
$$x = \frac{1}{\sqrt{5} - 2} = \frac{\sqrt{5} + 2}{(\sqrt{5} - 2)(\sqrt{5} + 2)} = \sqrt{5} + 2$$
이므로 $x - 2 = (\sqrt{5} + 2) - 2 = \sqrt{5}$

$$(3) \frac{1}{x} + \frac{1}{y} = \frac{1}{2 + \sqrt{3}} + \frac{1}{2 - \sqrt{3}}$$

$$= \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} + \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})}$$

$$= (2 - \sqrt{3}) + (2 + \sqrt{3}) = 4$$

$$\begin{aligned} \text{(4)} \ \frac{y}{x} + \frac{x}{y} &= \frac{3 - \sqrt{7}}{3 + \sqrt{7}} + \frac{3 + \sqrt{7}}{3 - \sqrt{7}} \\ &= \frac{(3 - \sqrt{7})(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})} + \frac{(3 + \sqrt{7})(3 + \sqrt{7})}{(3 - \sqrt{7})(3 + \sqrt{7})} \\ &= \frac{(3 - \sqrt{7})^2}{2} + \frac{(3 + \sqrt{7})^2}{2} \\ &= \frac{16 - 6\sqrt{7}}{2} + \frac{16 + 6\sqrt{7}}{2} = 16 \end{aligned}$$

(5)
$$x = \frac{1}{3+2\sqrt{2}} = \frac{3-2\sqrt{2}}{(3+2\sqrt{2})(3-2\sqrt{2})} = 3-2\sqrt{2},$$

 $y = \frac{1}{3-2\sqrt{2}} = \frac{3+2\sqrt{2}}{(3-2\sqrt{2})(3+2\sqrt{2})} = 3+2\sqrt{2}$ 이므로
 $x+y=(3-2\sqrt{2})+(3+2\sqrt{2})=6$
 $xy=(3-2\sqrt{2})(3+2\sqrt{2})=3^2-(2\sqrt{2})^2=1$
 $\therefore x^2+y^2=(x+y)^2-2xy=6^2-2\times 1=34$

쌍둥이 기출문제

P. 38~39

1 ③ 2 ④ 3 ④ 4 $10\sqrt{2}$ 5 ② 6 $8-3\sqrt{6}$, 과정은 풀이 참조 7 ④ 8 $9-4\sqrt{6}$

9 ⑤ 10 -4, 과정은 풀이 참조 11 ④

12 ② **13** ④ **14** 3

[1~2] 제곱근의 덧셈과 뺄셈

l, m, n이 유리수이고 a > 0일 때

- (1) $m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$
- (2) $m\sqrt{a} n\sqrt{a} = (m-n)\sqrt{a}$
- (3) $m\sqrt{a} + n\sqrt{a} l\sqrt{a} = (m+n-l)\sqrt{a}$

1
$$2\sqrt{3} - \sqrt{3} + 4\sqrt{3} = (2 - 1 + 4)\sqrt{3}$$

= $5\sqrt{3}$

2
$$4\sqrt{5} + 3\sqrt{20} - \frac{\sqrt{20}}{2} = 4\sqrt{5} + 6\sqrt{5} - \frac{2\sqrt{5}}{2}$$

= $4\sqrt{5} + 6\sqrt{5} - \sqrt{5}$
= $(4+6-1)\sqrt{5}$
= $9\sqrt{5}$

[3~4] 근호를 포함한 식의 분배법칙

a>0, b>0, c>0일 때

A=9

- $(1)\sqrt{a}(\sqrt{b}+\sqrt{c})=\sqrt{ab}+\sqrt{ac}$
- (2) $(\sqrt{a} + \sqrt{b})\sqrt{c} = \sqrt{ac} + \sqrt{bc}$

$$\sqrt{6}(3\sqrt{3}-2\sqrt{2})=3\sqrt{18}-2\sqrt{12}=9\sqrt{2}-4\sqrt{3}$$

4
$$(2\sqrt{6} + 4\sqrt{24}) \div \sqrt{3} = \frac{2\sqrt{6}}{\sqrt{3}} + \frac{4\sqrt{24}}{\sqrt{3}} = 2\sqrt{\frac{6}{3}} + 4\sqrt{\frac{24}{3}}$$

= $2\sqrt{2} + 4\sqrt{8} = 2\sqrt{2} + 8\sqrt{2} = 10\sqrt{2}$

[5~6] 근호를 포함한 식의 혼합 계산

- (1) 괄호가 있으면 분배법칙을 이용하여 괄호를 푼다.
- (2) 근호 안에 제곱인 인수가 있으면 근호 밖으로 꺼내고, 분모에 무리수가 있으면 분모를 유리화한다.
- (3) 곱셈. 나눗셈을 먼저 한 후 덧셈. 뺄셈을 한다.

5
$$\sqrt{3}\left(\sqrt{6} - \frac{6}{\sqrt{3}}\right) - \sqrt{2}\left(\frac{1}{\sqrt{2}} + 2\right) = \sqrt{18} - 6 - 1 - 2\sqrt{2}$$

= $3\sqrt{2} - 6 - 1 - 2\sqrt{2}$
= $\sqrt{2} - 7$

$$\begin{array}{ll} \pmb{6} & \frac{6}{\sqrt{3}}(\sqrt{3}-\sqrt{2})+\frac{1}{\sqrt{2}}(\sqrt{8}-2\sqrt{3}) \\ & = 6-\frac{6\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}-\frac{2\sqrt{3}}{\sqrt{2}} & \cdots \text{(i)} \\ & = 6-\frac{6\sqrt{6}}{3}+\sqrt{4}-\frac{2\sqrt{6}}{2} & \cdots \text{(ii)} \\ & = 6-2\sqrt{6}+2-\sqrt{6} \\ & = 8-3\sqrt{6} & \cdots \text{(iii)} \end{array}$$

채점 기준	배점
(i) 분배법칙을 이용하여 괄호 풀기	30 %
(ii) 분모를 유리화하기	40 %
(iii) 답 구하기	30 %

[7~8] 곱셈 공식을 이용한 근호를 포함한 식의 계산 제곱근을 문자로 생각하고, 곱셈 공식을 이용하여 전개한 후 계산한다.

7
$$(2\sqrt{3}+3)(3\sqrt{3}-7)=18+(-14+9)\sqrt{3}-21$$

= $-3-5\sqrt{3}$
따라서 $a=-3,\ b=-5$ 이므로
 $a-b=-3-(-5)=2$

[9~10] 제곱근의 계산 결과가 유리수가 될 조건

- a. b가 유리수이고 \sqrt{m} 이 무리수일 때
- (1) $a\sqrt{m}$ 이 유리수가 되려면 $\Rightarrow a=0$
- (2) $a+b\sqrt{m}$ 이 유리수가 되려면 $\Rightarrow b=0$

9
$$\sqrt{50} + 3a - 6 - 2a\sqrt{2} = 5\sqrt{2} + 3a - 6 - 2a\sqrt{2}$$

 $= (3a - 6) + (5 - 2a)\sqrt{2}$
이 식이 유리수가 되려면
 $5 - 2a = 0$
 $-2a = -5$ $\therefore a = \frac{5}{2}$

10
$$(a-4\sqrt{5})(3-3\sqrt{5})=3a+(-3a-12)\sqrt{5}+60$$

= $(3a+60)+(-3a-12)\sqrt{5}$ ··· (i)
이 식이 유리수가 되려면
 $-3a-12=0$ ··· (ii)

$$-3a=12$$
 $\therefore a=-4$ \cdots (iii)

채점 기준	배점
(i) 주어진 식을 계산하기	40 %
(ii) 주어진 식이 유리수가 되기 위한 a 의 조건 구하기	40 %
(iii) a의 값 구하기	20 %

[11~14] 곱셈 공식을 이용한 분모의 유리화

곱셈 공식 $(a+b)(a-b)=a^2-b^2$ 을 이용하여 분모를 유리화한다.

$$\Rightarrow \frac{c}{\sqrt{a}+\sqrt{b}} = \frac{c\times(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})} = \frac{c(\sqrt{a}-\sqrt{b})}{a-b}$$
 (Et. $a>0,\ b>0,\ a\neq b$)

11
$$\frac{4}{3-\sqrt{5}} = \frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{4(3+\sqrt{5})}{4} = 3+\sqrt{5}$$

12
$$\frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}$$

따라서 $A=2$, $B=1$ 이므로 $A+B=2+1=3$

13
$$x + \frac{1}{x} = \sqrt{5} + 2 + \frac{1}{\sqrt{5} + 2}$$

 $= \sqrt{5} + 2 + \frac{\sqrt{5} - 2}{(\sqrt{5} + 2)(\sqrt{5} - 2)}$
 $= \sqrt{5} + 2 + \sqrt{5} - 2$
 $= 2\sqrt{5}$

14
$$x = \frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{-1} = -1+\sqrt{2},$$

$$y = \frac{1}{1-\sqrt{2}} = \frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})} = \frac{1+\sqrt{2}}{-1} = -1-\sqrt{2}$$
o) $\exists \exists$

$$x+y=(-1+\sqrt{2})+(-1-\sqrt{2})=-2$$

$$xy=(-1+\sqrt{2})(-1-\sqrt{2})=1-2=-1$$

$$\therefore x^2+y^2+3xy=(x+y)^2+xy$$

$$=(-2)^2+(-1)$$

$$=3$$

Best of Best 문제로 단원 마무리

P. 40~41

- 2 $\frac{1}{2}$, 과정은 풀이 참조

- **4** ①

- 6 2
- 7 12. 과정은 풀이 참조
- $\sqrt{45} = \sqrt{3^2 \times 5} = (\sqrt{3})^2 \times \sqrt{5} = a^2 b$
- $a = \frac{5}{12}$... (i)

$$\frac{6\sqrt{2}}{\sqrt{10}} = \frac{6}{\sqrt{5}} = \frac{6 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{6\sqrt{5}}{5}$$
이므로

$$b = \frac{6}{5}$$
 ... (ii)

$$ab = \frac{5}{12} \times \frac{6}{5} = \frac{1}{2}$$
 ... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

- ① $\sqrt{53000} = \sqrt{5.3 \times 10000} = 100\sqrt{5.3}$ $=100 \times 2.302$ =230.2
 - $(2)\sqrt{5300} = \sqrt{53 \times 100} = 10\sqrt{53}$ $=10 \times 7.280$ =72.80
 - $3\sqrt{530} = \sqrt{5.3 \times 100} = 10\sqrt{5.3}$ $=10 \times 2.302$ =23.02
 - $4\sqrt{0.53} = \sqrt{\frac{53}{100}} = \frac{\sqrt{53}}{10} = \frac{7.280}{10} = 0.7280$
 - $\sqrt{0.053} = \sqrt{\frac{5.3}{100}} = \frac{\sqrt{5.3}}{10} = \frac{2.302}{10} = 0.2302$
- 4 $6\sqrt{3} + \sqrt{45} \sqrt{75} \sqrt{5} = 6\sqrt{3} + 3\sqrt{5} 5\sqrt{3} \sqrt{5}$ $=\sqrt{3}+2\sqrt{5}$ 따라서 a=1. b=2이므로 a+b=1+2=3
- **5** (주어진 식)= $5\sqrt{3}+9-\frac{(6-2\sqrt{3})\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$ $=5\sqrt{3}+9-\frac{6\sqrt{3}-6}{3}$ $=5\sqrt{3}+9-(2\sqrt{3}-2)$ $=5\sqrt{3}+9-2\sqrt{3}+2$ $=3\sqrt{3}+11$
- 6 $\sqrt{2}(\sqrt{2}+2\sqrt{5})-\sqrt{2}(a\sqrt{5}-\sqrt{2})$ $=2+2\sqrt{10}-a\sqrt{10}+2$ $=4+(2-a)\sqrt{10}$ 이 식이 유리수가 되려면 2 - a = 0 $\therefore a=2$
- 7 $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} + \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}$ $=\frac{(\sqrt{7}+\sqrt{5})^2}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})}+\frac{(\sqrt{7}-\sqrt{5})^2}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}$ $=\frac{12+2\sqrt{35}}{2}+\frac{12-2\sqrt{35}}{2}$... (i) $=(6+\sqrt{35})+(6-\sqrt{35})$... (ii) =12

채점 기준	배점
(i) 분모를 유리화하기	60 %
(ii) 답 구하기	40 %

라이트 Ⅲ 인수분해

준비 학습

1 (1)
$$ac+ad-2bc-2bd$$
 (2) $2ax-3ay+2bx-3by$

$$(1) x^2 + 4x + 4$$

(2)
$$x^2 - 10x + 25$$

(3)
$$4x^2 - 4x + 1$$

(3)
$$4x^2 - 4x + 1$$
 (4) $\frac{1}{9}x^2 - 2x + 9$

$$x^2-25$$

(2)
$$4x^2 - 1$$

4 (1)
$$x^2 + 11x + 30$$

(2)
$$x^2 + 5x - 14$$

(3)
$$x^2 + 6x - 27$$

(4)
$$x^2 - \frac{7}{6}x + \frac{1}{2}$$

5 (1)
$$3x^2 + 14x + 8$$

(2)
$$10x^2 - 17x + 3$$

(3)
$$8x^2 + 26xy + 15x$$

(3)
$$8x^2 + 26xy + 15y^2$$
 (4) $6x^2 + \frac{1}{2}xy - \frac{1}{12}y^2$

6 (1)
$$a^2+2ab+b^2-4a-4b+4$$

(2)
$$9x^2 - 6xy + y^2 + 18x - 6y + 8$$

8 (1) 19 (2)
$$\frac{19}{3}$$

2 (2)
$$(-x+5)^2 = (-x)^2 + 2 \times (-x) \times 5 + 5^2$$

= $x^2 - 10x + 25$

(3)
$$(2x-1)^2 = (2x)^2 - 2 \times 2x \times 1 + 1^2$$

$$=4x^{2}-4x+1$$

(4)
$$\left(\frac{1}{3}x - 3\right)^2 = \left(\frac{1}{3}x\right)^2 - 2 \times \frac{1}{3}x \times 3 + 3^2$$

= $\frac{1}{9}x^2 - 2x + 9$

3 (2)
$$(2x+1)(2x-1)=(2x)^2-1^2=4x^2-1$$

4 (4)
$$\left(x - \frac{1}{2}\right)\left(x - \frac{2}{3}\right)$$

= $x^2 + \left(-\frac{1}{2} - \frac{2}{3}\right)x + \left(-\frac{1}{2}\right) \times \left(-\frac{2}{3}\right)$
= $x^2 - \frac{7}{6}x + \frac{1}{3}$

5 (3)
$$(4x+3y)(2x+5y) = 8x^2 + (20+6)xy + 15y^2$$

= $8x^2 + 26xy + 15y^2$

$$(4) \left(2x + \frac{1}{3}y\right) \left(3x - \frac{1}{4}y\right) = 6x^2 + \left(-\frac{1}{2} + 1\right)xy - \frac{1}{12}y^2$$
$$= 6x^2 + \frac{1}{2}xy - \frac{1}{12}y^2$$

6 (2)
$$3x-y=A$$
로 놓으면 $(3x-y+2)(3x-y+4)$ $= (A+2)(A+4)$ $= A^2+6A+8$ $= (3x-y)^2+6(3x-y)+8$ $= 9x^2-6xy+y^2+18x-6y+8$

7 (1)
$$95^2 = (100-5)^2$$

= $100^2 - 2 \times 100 \times 5 + 5^2$
= $10000 - 1000 + 25 = 9025$

(2)
$$203^2 = (200 + 3)^2$$

$$=200^2+2\times200\times3+3^2$$

$$=40000+1200+9=41209$$

$${\scriptstyle (3)\ 58\times 62=(60-2)(60+2)}$$

$$=60^2-2^2$$

$$=3600-4=3596$$

$$(4) 92 \times 87 = (90 + 2)(90 - 3)$$

$$= 90^2 \! + (2 \! - \! 3) \! \times \! 90 \! + \! 2 \! \times \! (-3)$$

$$=8100-90-6=8004$$

$$(1) x^2 + y^2 = (x+y)^2 - 2xy$$

$$=5^{2}-2\times3$$

$$(2) \frac{y}{x} + \frac{x}{y} = \frac{x^2 + y^2}{xy} = \frac{19}{3}$$

○ 1 다항식의 인수분해

1 (1)
$$x^2+6x+9$$
 (2) x^2-4 (3) x^2-4x-5

3 (1)
$$a, a(x+y-z)$$

(2)
$$2a$$
, $2a(a+2b)$

(3)
$$3x^2$$
, $3x^2(y-2)$

(4)
$$xy$$
, $xy(x-y+1)$

4 (1)
$$a(x-y)$$
 (3) $5x^2(x-3)$

(2)
$$-3a(x+3y)$$

5 (1)
$$x(a-b+3)$$

(4)
$$4xy^2(2y-x)$$

$$(1) x(u-v+3)$$

(2)
$$4x(x+y-2)$$

(3)
$$a(3a^2+4a-5)$$

(4)
$$2xy(3x-y+2)$$

(2) $(x-y)(a+3b)$

6 (1)
$$ab(a+b-1)$$

$$(a) (b-1)(a+1)$$

(3)
$$(x+y)(a-b)$$

(4)
$$(b-1)(a+1)$$

(5)
$$(x-y)(a+2b+1)$$
 (6) $(x-2)(x+4)$

4 (1)
$$ax-ay=a\times x-a\times y=a(x-y)$$

$$(2) -3ax -9ay = -3a \times x + (-3a) \times 3y = -3a(x+3y)$$

(3)
$$5x^3 - 15x^2 = 5x^2 \times x - 5x^2 \times 3 = 5x^2(x-3)$$

(4)
$$8xy^3 - 4x^2y^2 = 4xy^2 \times 2y - 4xy^2 \times x = 4xy^2(2y - x)$$

- (1) $ax-bx+3x=x\times a-x\times b+x\times 3$ =x(a-b+3)
 - (2) $4x^2 + 4xy 8x = 4x \times x + 4x \times y 4x \times 2$ =4x(x+y-2)
 - (3) $3a^3 + 4a^2 5a = a \times 3a^2 + a \times 4a a \times 5$ $=a(3a^2+4a-5)$
 - (4) $6x^2y 2xy^2 + 4xy = 2xy \times 3x 2xy \times y + 2xy \times 2$ =2xy(3x-y+2)
- (1) $ab(a+b)-ab=ab(a+b)-ab\times 1$ =ab(a+b-1)
 - (2) a(x-y)+3b(x-y)=(x-y)(a+3b)
 - (3) (x+y)a-(x+y)b=(x+y)(a-b)
 - (4) a(b-1)-(1-b)=a(b-1)+(b-1) $=a(b-1)+1\times(b-1)$ =(b-1)(a+1)
 - (5) (x-y)+(a+2b)(x-y) $=1\times(x-y)+(a+2b)(x-y)$ =(x-y)(a+2b+1)
 - (6) (x-1)(x-2)+5(x-2)=(x-2)(x-1+5)=(x-2)(x+4)

여러 가지 인수분해 공식

유형 2

P. 46

- 1 (1) 4, 4, 4
- (2) 6, 6, 6
- $(1)(x+7)^2$
- (2) $(x-8)^2$
- (3) $(x+3y)^2$
- $(4) (x-5y)^2$
- $(1)(4x-1)^2$
- (2) $(3x+2)^2$
- (3) $(2x-5y)^2$
- $(4) (5x+4y)^2$
- 4 (1) $a(x+1)^2$
- $(2) 3(x-1)^2$
- $(3) \ 2(2x-1)^2$
- $(4) 2(x+3y)^2$
- **5** (1) 1 (2) 4 (3) 9 (4) 100 (5) $\frac{1}{4}$ (6) $\frac{1}{25}$

- **6** (1) ± 14 (2) $\pm \frac{1}{2}$ (3) ± 12 (4) ± 12
- 4 (1) $ax^2+2ax+a=a(x^2+2x+1)=a(x+1)^2$
 - (2) $3x^2-6x+3=3(x^2-2x+1)=3(x-1)^2$
 - (3) $8x^2 8x + 2 = 2(4x^2 4x + 1) = 2(2x 1)^2$
 - (4) $2x^2+12xy+18y^2=2(x^2+6xy+9y^2)=2(x+3y)^2$

- 5 x^2+ax+ 가 완전제곱식이 되려면
 - $x^2+ax+\square=x^2+2\times x\times \frac{a}{2}+\square$
 - $\square = \left(\frac{a}{2}\right)^2$ 이어야 하므로

 - $(1) \square = \left(\frac{2}{2}\right)^2 = 1 \qquad (2) \square = \left(\frac{-4}{2}\right)^2 = 4$

 - (3) $\square = \left(\frac{6}{2}\right)^2 = 9$ (4) $\square = \left(\frac{-20}{2}\right)^2 = 100$

 - (5) $\square = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ (6) $\square = \left(-\frac{2}{5} \times \frac{1}{2}\right)^2 = \frac{1}{25}$
- 6 $(1) x^2 + [-x + 49] = x^2 + [-x + (\pm 7)^2]$ = 2 $\square = 2 \times (\pm 7) = \pm 14$
 - (2) $x^2 + \Box x + \frac{1}{16} = x^2 + \Box x + \left(\pm \frac{1}{4}\right)^2$ 이므로
 - $\square = 2 \times \left(\pm \frac{1}{4}\right) = \pm \frac{1}{2}$
 - (3) $36x^2 + \Box x + 1 = (6x)^2 + \Box x + (\pm 1)^2$ 이므로
 - $\square = 2 \times 6 \times (\pm 1) = \pm 12$
 - (4) $4x^2 + \Box xy + 9y^2 = (2x)^2 + \Box xy + (\pm 3y)^2$ 이므로
 - $\square = 2 \times 2 \times (\pm 3) = \pm 12$

유형 3

P. 47

- 1 (1) 5, 5
- (2) 2y, 3x
- (1)(x+8)(x-8)
- (2)(2x+3)(2x-3)
- (3)(3x+5)(3x-5)
- (4) (8x+y)(8x-y)
- 3 (1) (1+4x)(1-4x) (2) $\left(2x+\frac{3}{4}\right)\left(2x-\frac{3}{4}\right)$

 - (3) $\left(\frac{1}{2} + x\right) \left(\frac{1}{2} x\right)$ (4) $\left(\frac{2}{9}x + \frac{1}{6}y\right) \left(\frac{2}{9}x \frac{1}{6}y\right)$
- 4 (1) 2(x+4)(x-4)
- (2) 20(x+2)(x-2)

- (3) 3(x+3y)(x-3y) (4) 4y(x+2y)(x-2y)
- (5) xy(x+7y)(x-7y)
- **5** (1) \times , (y+x)(y-x) (2) \times , $(\frac{a}{3}+b)(\frac{a}{3}-b)$
 - (3) 🔘
- $(4) \times , a(x+3y)(x-3y)$
- (5) (
- 3 (1) $1-16x^2=1^2-(4x)^2=(1+4x)(1-4x)$
 - (2) $4x^2 \frac{9}{16} = (2x)^2 \left(\frac{3}{4}\right)^2 = \left(2x + \frac{3}{4}\right)\left(2x \frac{3}{4}\right)$
 - (3) $-x^2 + \frac{1}{4} = -x^2 + \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2 x^2$
 - $=\left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right)$
 - (4) $\frac{4}{81}x^2 \frac{1}{36}y^2 = \left(\frac{2}{9}x\right)^2 \left(\frac{1}{6}y\right)^2$ $=\left(\frac{2}{9}x + \frac{1}{6}y\right)\left(\frac{2}{9}x - \frac{1}{6}y\right)$

4 (1)
$$2x^2-32=2(x^2-16)=2(x^2-4^2)$$

= $2(x+4)(x-4)$

(2)
$$20x^2 - 80 = 20(x^2 - 4) = 20(x^2 - 2^2)$$

= $20(x+2)(x-2)$

$$(3) 3x^2 - 27y^2 = 3(x^2 - 9y^2) = 3\{x^2 - (3y)^2\}$$
$$= 3(x + 3y)(x - 3y)$$

(4)
$$4x^2y - 16y^3 = 4y(x^2 - 4y^2) = 4y\{x^2 - (2y)^2\}$$

= $4y(x+2y)(x-2y)$

(5)
$$x^3y - 49xy^3 = xy(x^2 - 49y^2) = xy\{x^2 - (7y)^2\}$$

= $xy(x+7y)(x-7y)$

5 (1)
$$-x^2+y^2=y^2-x^2=(y+x)(y-x)$$

$$(2) \frac{a^2}{9} - b^2 = \left(\frac{a}{3}\right)^2 - b^2 = \left(\frac{a}{3} + b\right) \left(\frac{a}{3} - b\right)$$

(3)
$$\frac{9}{4}x^2 - 16y^2 = \left(\frac{3}{2}x\right)^2 - (4y)^2$$

= $\left(\frac{3}{2}x + 4y\right)\left(\frac{3}{2}x - 4y\right)$

(4)
$$ax^2 - 9ay^2 = a(x^2 - 9y^2) = a\{x^2 - (3y)^2\}$$

= $a(x+3y)(x-3y)$

(5)
$$x^2y-y^3=y(x^2-y^2)=y(x+y)(x-y)$$

유형 4

1 (1) -1, 4 (2) -3, -2 (3) 2, 5 (4) -11, 2

$$(1)$$
 2, 3, $(x+2)(x+3)$

$$(2)$$
 -4 , -6 , $(x-4)(x-6)$

$$(3) -3, 5, (x-3)(x+5)$$

$$(4)$$
 -1 , -5 , $(x-y)(x-5y)$

(5) 2,
$$-5$$
, $(x+2y)(x-5y)$

3 (1)
$$(x+1)(x+6)$$
 (2) $(x-5)(x+6)$

$$(2)(x-5)(x+6)$$

(3)
$$(x-2)(x-10)$$
 (4) $(x-4y)(x+6y)$

(4)
$$(x-4y)(x+6y)$$

(5)
$$(x-5y)(x+4y)$$
 (6) $(x-4y)(x-10y)$

4 (1)
$$3(x+1)(x-2)$$
 (2) $2b(x-y)(x-2y)$

$$2) 2h(x-y)(x-2y)$$

5 (1)
$$\times$$
, $(x+3)(x+6)$ (2) \bigcirc

$$(3) \times (x-2y)(x-y) (4) \times (x-2a)(x+5a)$$

1 (1

1) 곱이 -4인 두 정수		두 정수의 합	
	-1, 4	3	
	1, -4	-3	
	-2, 2	0	

(2)	곱이 6인 두 정수	두 정수의 합
	-1, -6	-7
	1, 6	7
	-2, -3	-5
	2, 3	5

4 - 3			
(3)	곱이 10인 두 정수	두 정수의 합	
	-1, -10	-11	
	1, 10	11	
	-2, -5	-7	
	2, 5	7	

(4)	곱이 -22인 두 정수	두 정수의 합
	-1, 22	21
	1, -22	-21
	-2, 11	9
	2, -11	-9

2 (

P. 48

(1)	곱이 6인 두 정수	두 정수의 합
	-1, -6	-7
	1, 6	7
	-2, -3	-5
	2, 3	5

따라서 곱이 6이고 합이 5인 두 정수는 2와 3이므로 주어진 이차식을 인수분해하면 $x^2+5x+6=(x+2)(x+3)$

곱이 24인 두 정수	두 정수의 합	
-1, -24	-25	
1, 24	25	
-2, -12	-14	
2, 12	14	
-3, -8	-11	
3, 8	11	
-4, -6	-10	
4, 6	10	
	-1, -24 1, 24 -2, -12 2, 12 -3, -8 3, 8 -4, -6	

따라서 곱이 24이고 합이 -10인 두 정수는 -4와 -6이므로 주어진 이차식을 인수분해하면 $x^2-10x+24=(x-4)(x-6)$

(3)	곱이 -15인 두 정수	두 정수의 합
	-1, 15	14
	1, -15	-14
	-3, 5	2
	35	-2

따라서 곱이 -15이고 합이 2인 두 정수는 -3과 5이므로 주어진 이차식을 인수분해하면 $x^2+2x-15=(x-3)(x+5)$

(4) 곱이 5인 두 정수		두 정수의 합	
	-1, -5	-6	
	1, 5	6	

따라서 곱이 5이고 합이 -6인 두 정수는 -1과 -5이 므로 주어진 이차식을 인수분해하면 $x^2-6xy+5y^2=(x-y)(x-5y)$

(=)		
(5)	곱이 -10 인 두 정수	두 정수의 합
	-1, 10	9
	1, -10	-9
	-2, 5	3
	2, -5	-3

따라서 곱이 -10이고 합이 -3인 두 정수는 2와 -5이 므로 주어진 이차식을 인수분해하면 $x^2-3xy-10y^2=(x+2y)(x-5y)$

- **3** (1) 곱이 6이고 합이 7인 두 정수는 1과 6이므로 $x^2+7x+6=(x+1)(x+6)$
 - (2) 곱이 -30이고 합이 1인 두 정수는 -5와 6이므로 $x^2+x-30=(x-5)(x+6)$
 - (3) 곱이 20이고 합이 -12인 두 정수는 -2와 -10이므로 $x^2-12x+20=(x-2)(x-10)$
 - (4) 곱이 -24이고 합이 2인 두 정수는 -4와 6이므로 $x^2+2xy-24y^2=(x-4y)(x+6y)$
 - (5) 곱이 -20이고 합이 -1인 두 정수는 -5와 4이므로 $x^2 - xy - 20y^2 = (x - 5y)(x + 4y)$
 - (6) 곱이 40이고 합이 -14인 두 정수는 -4와 -10이므로 $x^2-14xy+40y^2=(x-4y)(x-10y)$
- 4 (1) $3x^2-3x-6=3(x^2-x-2)$ 곱이 -2이고 합이 -1인 두 정수는 1과 -2이므로 (주어진 식)= $3(x^2-x-2)$ =3(x+1)(x-2)
 - (2) $2bx^2 6bxy + 4by^2 = 2b(x^2 3xy + 2y^2)$ 곱이 2이고 합이 -3인 두 정수는 -1과 -2이므로 (주어진 식)= $2b(x^2-3xy+2y^2)$ =2b(x-y)(x-2y)
- 5 (1) 곱이 18이고 합이 9인 두 정수는 3과 6이므로 $x^2+9x+18=(x+3)(x+6)$
 - (2) 곱이 -28이고 합이 -3인 두 정수는 -7과 4이므로 $a^2-3a-28=(a-7)(a+4)$
 - (3) 곱이 2이고 합이 -3인 두 정수는 -2와 -1이므로 $x^2-3xy+2y^2=(x-2y)(x-y)$
 - (4) 곱이 -10이고 합이 3인 두 정수는 -2와 5이므로 $x^2+3ax-10a^2=(x-2a)(x+5a)$

유형 5

1 풀이 참조

- (1)(x+1)(3x+1)
- (2)(2x-7)(3x-2)
- (3) (x-2y)(2x+3y)
- (4) (2x+3y)(3x-2y)

P. 49

- (1) 2(a-b)(3a+5b)
- (2) 3y(x-1)(3x+1)
- 4 (1) \times , (x+5)(3x+1)
- (2) (
- $(3) \times (x-2y)(3x+4y)$ $(4) \times a(x-2)(3x-1)$

1 (1)
$$6x^2 + 5x + 1 = (2x + 1)(3x + 1)$$

$$\begin{array}{c|c}
2x & \boxed{1} = \boxed{3} x \\
\hline
3 & x & \boxed{1} = \boxed{2} x & \boxed{+} \\
\hline
5x & \boxed{1} & \boxed{2} & \boxed{1}
\end{array}$$

(2) $4x^2 - 7xy + 3y^2 = (x - y)(\boxed{4}x - \boxed{3}y)$

$$\begin{array}{c|c}
x & -y = \boxed{-4} xy \\
\hline
4 & x & \boxed{-3} y = \boxed{-3} xy + \boxed{+7} xy
\end{array}$$

(3) $3x^2+7x-10=(x-1)(3x+10)$

$$\begin{array}{c|c}
x & -1 = -3x \\
3x & 10 = \underline{10x} (+ \\
\hline
7x
\end{array}$$

(4) $2x^2-3x-9=(x-3)(2x+3)$

$$\begin{array}{c}
x \\
2x
\end{array}$$

$$\begin{array}{c}
-3 = -6x \\
3 = 3x \\
-3x
\end{array}$$

(5) $4x^2 - 13xy + 9y^2 = (x - y)(4x - 9y)$

$$\begin{array}{cccc}
x & -y & -4xy \\
4x & -9y & -9xy & + \\
\hline
& -13xy & + \\
\end{array}$$

3 (1) (주어진 식)= $2(3a^2+2ab-5b^2)=2(a-b)(3a+5b)$

$$\begin{array}{ccc}
 & a & -b & = -3ab \\
3a & & 5b & = \underline{5ab} (+ & 2ab)
\end{array}$$

(2) (주어진 식)= $3y(3x^2-2x-1)=3y(x-1)(3x+1)$

$$\begin{array}{ccc}
x & -1 & = -3x \\
3x & 1 & = \underbrace{x}_{-2x} (+ & & & \\
\end{array}$$

4 (1) $3x^2+16x+5=(x+5)(3x+1)$

(2) $2x^2-7x-4=(x-4)(2x+1)$

$$\begin{array}{c|c}
x & -4 & -8x \\
2x & 1 & \underline{x} & + \\
 & -7x & \end{array}$$

(3) $3x^2-2xy-8y^2=(x-2y)(3x+4y)$

한 걸음 더 연습

P. 50

- **1** (1) 12, 6 (2) 21, 3 (3) 2, 7 (4) 5, 6
- **2** (1) 2, 7, 3 (2) 3, 8, 1 (3) 2, 7, 2 (4) 12, 7, 5
- 3 x+3, x-1, x+3, -x+1, 4
- 4 -2x+1
- 5 (1) a=-1, b=-12 (2) a=-4, b=3 (3) (x+2)(x-6)
- 6 x^2+x-6 , (x-2)(x+3)
- 7 $x^2+2x+1, (x+1)^2$
- 8 x^2+4x+3 , (x+1)(x+3)
- 1 (1) $x^2 8x + \boxed{A} = (x-2)(x \boxed{B})$ = $x^2 - (\boxed{B} + 2)x + 2\boxed{B}$

x의 계수에서 -8=-(B+2) $\therefore B=6$ 상수항에서 $A=2B=2\times 6=12$

(2) $a^2 + 10a + \boxed{A} = (a + \boxed{B})(a+7)$ = $a^2 + (7 + \boxed{B})a + 7 \boxed{B}$

a의 계수에서 10=7+B $\therefore B=3$ 상수항에서 $A=7B=7\times 3=21$

(3) $x^2 + \boxed{A}xy - 35y^2 = (x - 5y)(x + \boxed{B}y)$ = $x^2 + (\boxed{B} - 5)xy - 5\boxed{B}y^2$

 y^2 의 계수에서 -35 = -5B $\therefore B = 7$ xy의 계수에서 A = B - 5 = 7 - 5 = 2

(4) $a^2 - \boxed{A}ab - 6b^2 = (a+b)(a-\boxed{B}b)$ = $a^2 + (-\boxed{B}+1)ab - \boxed{B}b^2$

 b^2 의 계수에서 -6=-B $\therefore B=6$ ab의 계수에서 -A=-B+1=-6+1=-5 $\therefore A=5$

2 (1) $\boxed{A}x^2 + \boxed{B}x + 6 = (x+2)(2x + \boxed{C})$ $= 2x^2 + (\boxed{C} + 4)x + 2\boxed{C}$ x^2 의 계수에서 A = 2

 x^2 의 계수에서 A=2상수항에서 6=2C $\therefore C=3$ x의 계수에서 B=C+4=3+4=7

(2) $\boxed{A}a^2 - 23a - \boxed{B} = (3a + \boxed{C})(a - 8)$ = $3a^2 + (-24 + \boxed{C})a - 8\boxed{C}$ a^2 의 계수에서 A = 3a의 계수에서 -23 = -24 + C $\therefore C = 1$ 상수항에서 $-B = -8C = -8 \times 1 = -8$ $\therefore B = 8$ (3) $\boxed{A} x^2 - \boxed{B} xy + 6y^2 = (x - \boxed{C} y)(2x - 3y)$ $= 2x^2 - (3 + 2 \boxed{C})xy + 3 \boxed{C} y^2$ $x^2 의 계수에서 A = 2$ $y^2 의 계수에서 6 = 3C \qquad \therefore C = 2$ xy 의 계수에서

 $-B = -(3+2C) = -(3+2\times2) = -7$: B = 7

(4) $\boxed{A}a^2 + \boxed{B}ab - 10b^2 = (3a - 2b)(4a + \boxed{C}b)$ = $12a^2 + (3\boxed{C} - 8)ab - 2\boxed{C}b^2$

 a^2 의 계수에서 A=12 b^2 의 계수에서 -10=-2C $\therefore C=5$ ab의 계수에서 $B=3C-8=3\times 5-8=7$

- 4 -1 < x < 2에서 x+1>0, x-2<0이므로 $\sqrt{x^2-4x+4}-\sqrt{x^2+2x+1}=\sqrt{(x-2)^2}-\sqrt{(x+1)^2}$ =-(x-2)-(x+1)=-x+2-x-1=-2x+1
- 5 (1) $(x+3)(x-4)=x^2-x-12$ $\therefore a=-1, b=-12$
 - (2) $(x-1)(x-3)=x^2-4x+3$ $\therefore a=-4, b=3$
 - (3) 처음의 이차식 $x^2 + ax + b$ 에서 민이는 상수항을 제대로 보았고, 솔이는 x의 계수를 제대로 보았으므로 a = -4, b = -12따라서 처음의 이차식 $x^2 - 4x - 12$ 이므로
 - 이 식을 바르게 인수분해하면 $x^2-4x-12=(x+2)(x-6)$
- 6 $(x+2)(x-3)=x^2-x-6$ 에서 윤아는 상수항을 제대로 보았으므로 처음의 이차식의 상수 항은 -6이다.

 $(x-4)(x+5)=x^2+x-20$ 에서

승기는 x의 계수를 제대로 보았으므로 처음의 이차식의 x의 계수는 1이다.

따라서 처음의 이차식은 $x^2 + x - 6$ 이므로

이 식을 바르게 인수분해하면

 $x^2+x-6=(x-2)(x+3)$

- 7 넓이가 x^2 인 정사각형이 1개, 넓이가 x인 직사각형이 2개, 넓이가 1인 정사각형이 1개이므로 4개의 직사각형의 넓이 의 합은 $x^2 + 2x + 1$
 - 이 식을 인수분해하면 $x^2+2x+1=(x+1)^2$
- 8 넓이가 x^2 인 정사각형이 1개, 넓이가 x인 직사각형이 4개, 넓이가 1인 정사각형이 3개이므로 8개의 직사각형의 넓이 의 합은 $x^2 + 4x + 3$
 - 이 식을 인수분해하면 $x^2+4x+3=(x+1)(x+3)$

... (i)

쌍둥이 기출문제

P 51~53

- 1 ②
- **)** (3)
- **3** (3)
- 4 a-2b 2a-b
- 5 a=2 b=25
- **6** (4) **7** (2)
- 9 2x 5
- **8** −2*x*−2. 과정은 풀이 참조

- **10** 2x-2 **11** (1) $x^2+9x-10$ (2) (x-1)(x+10)
- 12 (x+2)(x-4)
- 13 2x+3
- **14** 4x+10, 과정은 풀이 참조
- **15** A = -11, B = -10 **16** 2
- **17** ⑤

- **18** (4)
- **19** (4)
- 20 7. L. C
- **21** ②
- **22** ②

[1~2] 인수와 인수분해

$$x^2+5x+6$$
 인수분해 $(x+2)(x+3)$ 전개

- $a(a+b)^2 = a \times (a+b)^2 = (a+b) \times a(a+b)$
 - 이므로 인수가 아닌 것은 ② a^2 이다.
- $2 \quad x(x-2)(x+3) = x \times (x-2)(x+3)$
 - $=(x-2)\times x(x+3)$
 - $=(x+3)\times x(x-2)$
 - 이므로 인수가 아닌 것은 ③ x-3이다.

[3~4] 공통인 인수로 묶는 인수분해

다항식에 공통인 인수가 있을 때, 분배법칙을 이용하여 공통인 인수를 묶어 내어 인수분해한다.

- $\Rightarrow ma+mb-mc=m(a+b-c)$
- **3** (주어진 식)=a(x-y)+b(x-y)=(a+b)(x-y)
- **4** (주어진 식)= $(a-2b)\{3a-(a+b)\}$ =(a-2b)(3a-a-b)
 - =(a-2b)(2a-b)

[5~6] 완전제곱식이 될 조건

(2)
$$a^2 \pm \boxed{2ab} + b^2 = (a \pm b)^2$$

M $\frac{3}{4} \pm a \frac{1}{4} \pm b \frac{1}{4}$

5 $x^2+ax+1=x^2+ax+(\pm 1)^2$ 에서 a > 0이므로 $a = 2 \times 1 = 2$ $4x^2+20x+b=(2x)^2+2\times 2x\times 5+b$ 에서 $b=5^2=25$

- 6 ① $x^2-8x+\square=x^2-2\times x\times 4+\square$ 이므로 $\square=4^2=16$
 - ② $9x^2 12x + \square = (3x)^2 2 \times 3x \times 2 + \square$ 이므로
 - $\square = 2^2 = 4$
 - ③ $x^2 + [x + 36 = x^2 + [x + (\pm 6)^2]]$ 므로
 - □=2×6=12 (∵ □는 양수)
 - ④ $4x^2 + [x+25] = (2x)^2 + [x+(\pm 5)^2]$ 으로로
 - □=2×2×5=20 (∵ □는 양수)
 - - $=3^2=9$

[7~8] 근호 안의 식이 완전제곱식으로 인수분해되는 식

- ① 근호 안의 식을 완전제곱식으로 인수분해하여 $\sqrt{A^2}$ 의 꼴로 만든다.
- ② A의 부호를 판단한다.
- ③ $\sqrt{a^2} = \left\{ egin{array}{ll} a \geq 0 \\ a < 0 \\ a \end{array} \right.$ 때, a 임을 이용하여 근호를 없앤다.
- 7 2<x<4에서 x-2>0. x-4<0이므로

$$\sqrt{x^2 - 8x + 16} + \sqrt{x^2 - 4x + 4} = \sqrt{(x - 4)^2} + \sqrt{(x - 2)^2}
= -(x - 4) + x - 2
= -x + 4 + x - 2 = 2$$

-5 < x < 3에서 x+5 > 0. x-3 < 0이므로

$$\sqrt{x^2-6x+9}-\sqrt{x^2+10x+25}$$

$$=\sqrt{(x-3)^2}-\sqrt{(x+5)^2}$$
 ... (ii)

$$=-(x-3)-(x+5)$$

$$=-x+3-x-5$$

$$=-2x-2$$
 ···· (iii)

채점 기준	배점
(i) x-3, x+5의 부호 판단하기	30 %
(ii) 근호 안을 완전제곱식으로 인수분해하기	40 %
(iii) 주어진 식을 간단히 하기	30 %

[9~10] x의 계수가 1인 두 일차식의 곱으로 인수분해될 때.

- 이 두 일차식의 합
- \Rightarrow (주어진 식)=(x+a)(x+b)로 인수분해한 후. (x+a)+(x+b)=2x+(a+b)를 구한다.
- $9 x^2 5x 14 = (x+2)(x-7)$
 - \therefore (두 일차식의 합)=(x+2)+(x-7)=2x-5
- 10 $(x+3)(x-1)-4x=x^2-2x-3=(x+1)(x-3)$

 \therefore (두 일차식의 합)=(x+1)+(x-3)=2x-2

[11~12] 계수 또는 상수항을 잘못 보고 인수분해한 경우 잘못 본 수를 제외한 나머지의 값은 제대로 보았으므로

- (i) 상수항을 잘못 본 식이 $x^2 + ax + b$ 이면 x의 계수 a는 제대로 보았다.
- (ii) 일차항의 계수를 잘못 본 식이 $x^2 + cx + d$ 이면 상수항 d는 제대로 보았다.
- \Rightarrow (i), (ii)에서 처음의 이차식은 $x^2 + ax + d$ 이다.

11 (1) $(x+2)(x-5)=x^2-3x-10$ 에서 상우는 상수항을 제대로 보았으므로 처음의 이차식의 상 수항은 -10이다.

 $(x+4)(x+5)=x^2+9x+20$ 에서

연두는 x의 계수를 제대로 보았으므로 처음의 이차식의 x의 계수는 9이다.

따라서 처음의 이차식은 $x^2 + 9x - 10$ 이다.

- (2) 처음의 이차식을 바르게 인수분해하면 $x^2+9x-10=(x-1)(x+10)$
- 12 $(x+4)(x-2)=x^2+2x-8$ 에서 준영이는 상수항을 제대로 보았으므로 처음의 이차식의 상 수항은 -8이다.

 $(x+1)(x-3)=x^2-2x-3$ 에서

지우는 x의 계수를 제대로 보았으므로 처음의 이차식의 x의 계수는 -2이다.

따라서 처음의 이차식은 $x^2 - 2x - 8$ 이므로

이 식을 바르게 인수분해하면

 $x^2-2x-8=(x+2)(x-4)$

[13~14] 여러 개의 직사각형으로 만든 새로운 직사각형의 변의 길이

- ① 여러 개의 직사각형의 넓이의 합을 이차식으로 나타낸다. $\Rightarrow x^2 + ax + b$
- ② 이차식을 인수분해한다. $\Rightarrow x^2 + ax + b = (x+c)(x+d)$
- ③ 새로운 직사각형의 가로와 세로의 길이는 각각 x+c, x+d 또는 x+d, x+c이다.
- 13 6개의 직사각형의 넓이의 합은 x^2+3x+2 이 식을 인수분해하면 $x^2+3x+2=(x+1)(x+2)$ 따라서 새로 만든 직사각형의 이웃하는 두 변의 길이는 각각 x+1, x+2이므로 이웃하는 두 변의 길이의 합은 (x+1)+(x+2)=2x+3
- **14** 10개의 직사각형의 넓이의 합은 $x^2 + 5x + 4$... (i) 이 식을 인수분해하면

 $x^2+5x+4=(x+1)(x+4)$

따라서 새로 만든 직사각형의 이웃하는 두 변의 길이는 각각 x+1, x+4이므로 \cdots (ii)

둘레의 길이는

 $2\{(x+1)+(x+4)\}=2(2x+5)=4x+10$... (iii)

채점 기준	배점
${ m (i)}10$ 개의 직사각형의 넓이의 합을 이차식으로 나타내기	30 %
(ii) 새로 만든 직사각형의 이웃하는 두 변의 길이 구하기	40 %
(iii) 새로 만든 직사각형의 둘레의 길이 구하기	30 %

[15~16] 등식의 양변에 미지수가 있는 경우

괄호가 있는 변을 전개하여 x^2 의 계수, x의 계수, 상수항을 각각 비교한다.

15
$$6x^2 + Ax - 30 = (2x + 3)(3x + B)$$

= $6x^2 + (2B + 9)x + 3B$
상수항에서 $-30 = 3B$ ∴ $B = -10$
 x 의 계수에서 $A = 2B + 9 = 2 \times (-10) + 9 = -11$

16
$$2x^2+ax-3=(x+b)(cx+3)$$

 $=cx^2+(3+bc)x+3b$
 x^2 의 계수에서 $c=2$
 상수항에서 $-3=3b$ ∴ $b=-1$
 x 의 계수에서 $a=3+bc=3+(-1)\times 2=1$
 ∴ $a+b+c=1+(-1)+2=2$

[17~18] 인수분해 공식의 종합

- (1) $a^2+2ab+b^2=(a+b)^2$, $a^2-2ab+b^2=(a-b)^2$
- (2) $a^2-b^2=(a+b)(a-b)$
- (3) x+(a+b)x+ab=(x+a)(x+b)
- (4) $acx^2 + (ad+bc)x + bd = (ax+b)(cx+d)$
- 17 ① 3a-12ab=3a(1-4b)
 - $24x^2+12x+9=(2x+3)^2$
 - $34x^2-9=(2x+3)(2x-3)$
 - $(4) x^2 4xy 5y^2 = (x+y)(x-5y)$

18
$$(x+3)(x-4)-8=x^2-x-20$$

= $(x+4)(x-5)$

[19~20] ax+b를 인수로 갖는 다항식

⇒ 다항식을 인수분해하여 인수로 갖는지 확인한다.

19 ①
$$x^2+7x+10=(x+2)(x+5)$$

② $x^2+8x+12=(x+2)(x+6)$
③ $x^2-2x-8=(x+2)(x-4)$
④ $3x^2-10x+8=(x-2)(3x-4)$
⑤ $2x^2+5x+2=(x+2)(2x+1)$

20
$$\neg x^2 - 4x + 3 = (x - 1)(\underline{x - 3})$$

 $\vdash x^2 - 9 = (x + 3)(\underline{x - 3})$
 $\vdash x^2 + x - 12 = (x + 4)(\underline{x - 3})$
 $\vdash 2x^2 + 5x - 3 = (x + 3)(2x - 1)$

[21~22] 인수분해하여 공통인 인수 구하기

- ① 두 다항식을 각각 인수분해한다.
- ② 공통으로 들어 있는 인수를 찾는다.

21
$$x^2-8x+15=(\underline{x-3})(x-5)$$

 $3x^2-7x-6=(3x+2)(\underline{x-3})$

22
$$x^2-6x-27=(\underline{x+3})(x-9)$$

 $5x^2+13x-6=(x+3)(5x-2)$

유형 6 P. 54~55

1 (1) 3, 3, 2 (2) 6,
$$x-2$$
, 6, 3, 4
(3) 3, 2, 2, $a+b$, 2 (4) $b-2$, $a-1$, 3, 1
2 (1) $(a+b+2)^2$ (2) $(x+1)(x-1)$
(3) $x(4x+9)$ (4) $(x-2y-2)(x-2y-3)$
(5) $(x+4)(x-2)$ (6) $3(x-y)(x+y)$

3 (1)
$$x-y$$
, b , $(x-y)(a-b)$
(2) $y+1$, $y+1$, $(x-1)(y+1)$
(3) $(x-2)(y-2)$ (4) $(x-2)(y-z)$
(5) $(a-b)(c+d)$ (6) $(x-y)(1-y)$

$$\begin{array}{l} \textbf{4} & \text{(1) } x{-}2y, \ x{-}2y, \ (x{-}2y)(x{+}2y{-}1) \\ \text{(2) } x{+}y, \ 2, \ (x{+}y)(x{-}y{+}2) \\ \text{(3) } (a{+}b)(a{-}b{-}c) \end{array}$$

(4)
$$(x+4)(y+3)(y-3)$$

(5) $(x+1)(x+2)(x-2)$
(6) $(x-1)(a+1)(a-1)$

5 (1)
$$x+1$$
, $(x+y+1)(x-y+1)$
(2) $b+1$, $(a+b+1)(a-b-1)$
(3) $(x+2y-1)(x-2y+1)$
(4) $(c+a-b)(c-a+b)$
(5) $(3x+y-1)(3x-y-1)$
(6) $(a-3b+5c)(a-3b-5c)$

2 (1)
$$(a+b)^2+4(a+b)+4$$

 $=A^2+4A+4$
 $=(A+2)^2$
 $=(a+b+2)^2$
(2) $(x+3)^2-6(x+3)+8$
 $=A^2-6A+8$
 $=(A-2)(A-4)$
 $=(x+3-2)(x+3-4)$
 $=(x+1)(x-1)$
(3) $4(x+2)^2-7(x+2)-2$
 $=4A^2-7A-2$
 $=(A-2)(4A+1)$
 $=(x+2-2)\{4(x+2)+1\}$
 $=x(4x+9)$
(4) $(x-2y)(x-2y-5)+6$
 $=A(A-5)+6$
 $=A^2-5A+6$

$$= (A-2)(A-3) \\ = (x-2y-2)(x-2y-3)$$
 $A=x-2y$ 를 대입하기
$$(5) (x+1)^2-9 \\ = (x+1)^2-3^2 \\ = A^2-3^2$$
 $x+1=A$ 로 놓기
$$= (A+3)(A-3) \\ = (x+1+3)(x+1-3) \\ = (x+4)(x-2)$$

(6)
$$(2x-y)^2-(x-2y)^2$$
 $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(2x-y)^2-(x-2y)^2$ $(3x-3y)(x+y)$ $(3x-3y)(x+y)$ $(3x-3y)(x+y)$ $(3x-2y)^2$ 대입하기

(3)
$$xy-2x-2y+4=x(y-2)-2(y-2)$$

 $=(x-2)(y-2)$
 $(4) xy+2z-xz-2y=xy-2y-xz+2z$
 $=y(x-2)-z(x-2)$
 $=(x-2)(y-z)$
 $(5) ac-bd+ad-bc=ac+ad-bc-bd$
 $=a(c+d)-b(c+d)$
 $=(a-b)(c+d)$
 $(6) x-xy-y+y^2=x(1-y)-y(1-y)$
 $=(x-y)(1-y)$

$$4 \quad (3) a^{2}-ac-b^{2}-bc=a^{2}-b^{2}-ac-bc$$

$$= (a+b)(a-b)-c(a+b)$$

$$= (a+b)(a-b-c)$$

$$(4) xy^{2}+4y^{2}-9x-36=y^{2}(x+4)-9(x+4)$$

$$= (x+4)(y^{2}-9)$$

$$= (x+4)(y+3)(y-3)$$

$$(5) x^{3}+x^{2}-4x-4=x^{2}(x+1)-4(x+1)$$

$$= (x+1)(x^{2}-4)$$

$$= (x+1)(x+2)(x-2)$$

$$(6) a^{2}x+1-x-a^{2}=a^{2}x-x-a^{2}+1$$

$$= x(a^{2}-1)-(a^{2}-1)$$

$$= (x-1)(a+1)(a-1)$$

5 (3)
$$x^{2}-4y^{2}+4y-1=x^{2}-(4y^{2}-4y+1)$$

 $=x^{2}-(2y-1)^{2}$
 $=(x+2y-1)\{x-(2y-1)\}$
 $=(x+2y-1)(x-2y+1)$
(4) $c^{2}-a^{2}-b^{2}+2ab=c^{2}-(a^{2}-2ab+b^{2})$
 $=c^{2}-(a-b)^{2}$
 $=(c+a-b)\{c-(a-b)\}$
 $=(c+a-b)(c-a+b)$
(5) $9x^{2}-y^{2}-6x+1=9x^{2}-6x+1-y^{2}$
 $=(3x-1)^{2}-y^{2}$
 $=(3x-1+y)(3x-1-y)$
 $=(3x+y-1)(3x-y-1)$
(6) $a^{2}-6ab+9b^{2}-25c^{2}=(a-3b)^{2}-(5c)^{2}$
 $=(a-3b+5c)(a-3b-5c)$

유형 7 P. 56

1 (1) 54, 46, 100, 1700 (2) 53, 53, 4, 440 (3) 2, 2, 20, 20, 2, 1, 82 (4) 2, 100, 10000

2 (1) 900 (2) 1100 (3) 100 (4) 99

3 (1) 113 (2) 9800 (3) 720 (4) 5000

4 (1) 100 (2) 900 (3) 400 (4) 2500

5 (1) 250 (2) 238 (3) 100 (4) 60

$$\begin{array}{c} \textbf{2} & \text{(1) } 9 \times 57 + 9 \times 43 = 9(57 + 43) \\ & = 9 \times 100 = 900 \end{array}$$

(2)
$$11 \times 75 + 11 \times 25 = 11(75 + 25)$$

= $11 \times 100 = 1100$

(3)
$$20 \times 49 - 20 \times 44 = 20(49 - 44)$$

= $20 \times 5 = 100$

$$(4) 97 \times 33 - 94 \times 33 = 33(97 - 94)$$

 $=33 \times 3 = 99$

3 (1)
$$57^2 - 56^2 = (57 + 56)(57 - 56)$$

= $113 \times 1 = 113$

(2)
$$99^2 - 1 = 99^2 - 1^2$$

= $(99+1)(99-1)$
= $100 \times 98 = 9800$

(3)
$$32^2 \times 3 - 28^2 \times 3 = 3(32^2 - 28^2)$$

= $3(32 + 28)(32 - 28)$
= $3 \times 60 \times 4 = 720$

$$(4) \ 5 \times 55^2 - 5 \times 45^2 = 5(55^2 - 45^2)$$

=5(55+45)(55-45)

 $=5 \times 100 \times 10 = 5000$

4 (1)
$$11^2 - 2 \times 11 + 1 = 11^2 - 2 \times 11 \times 1 + 1^2$$

= $(11-1)^2 = 10^2 = 100$

(2)
$$18^2 + 2 \times 18 \times 12 + 12^2 = (18 + 12)^2$$

= $30^2 = 900$

(3)
$$25^2 - 2 \times 25 \times 5 + 5^2 = (25 - 5)^2$$

$$=20^{2}=400$$

(4)
$$49^2 + 2 \times 49 + 1 = 49^2 + 2 \times 49 \times 1 + 1^2$$

= $(49+1)^2 = 50^2 = 2500$

$$5 \quad (1) \ 50 \times 3.5 + 50 \times 1.5 = 50(3.5 + 1.5)$$

$$=50 \times 5 = 250$$

(2)
$$8.5^2 \times 3.4 - 1.5^2 \times 3.4 = 3.4(8.5^2 - 1.5^2)$$

= $3.4(8.5 + 1.5)(8.5 - 1.5)$

$$=3.4 \times 10 \times 7 = 238$$

(3)
$$7.5^2+5\times7.5+2.5^2=7.5^2+2\times7.5\times2.5+2.5^2$$

= $(7.5+2.5)^2=10^2=100$

$$(4)\sqrt{68^2-32^2} = \sqrt{(68+32)(68-32)}$$

$$=\sqrt{100\times36}=\sqrt{3600}=\sqrt{60^2}=60$$

유형 8 P. 57

1 (1) 3, 3, 30, 900

(2)
$$x-y$$
, $2-\sqrt{3}$, $2+\sqrt{3}$, $2-\sqrt{3}$, 4, $2\sqrt{3}$, $8\sqrt{3}$

2 (1) 8 (2)
$$2+\sqrt{2}$$
 (3) $5+5\sqrt{5}$ (4) 4

 $\frac{3}{3}$ (1) 4 (2) 36 (3) $8\sqrt{3}$

4 (1) 4 (2) $-2\sqrt{2}$ (3) $8\sqrt{3}$

5 (1) 30 (2) 90 (3) 60

2 (1)
$$x^2-4x+4=(x-2)^2=(2-2\sqrt{2}-2)^2=(-2\sqrt{2})^2=8$$

(2)
$$x^2 + 3x + 2 = (x+1)(x+2) = (\sqrt{2}-1+1)(\sqrt{2}-1+2)$$

= $\sqrt{2}(\sqrt{2}+1) = 2 + \sqrt{2}$

(3)
$$x^2 - 3x - 4 = (x - 4)(x + 1) = (4 + \sqrt{5} - 4)(4 + \sqrt{5} + 1)$$

= $\sqrt{5}(\sqrt{5} + 5) = 5 + 5\sqrt{5}$

(4)
$$x = \frac{1}{\sqrt{5}-2} = \frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)} = \sqrt{5}+2$$
이므로

$$x^{2}-4x+3=(x-1)(x-3)=(\sqrt{5}+2-1)(\sqrt{5}+2-3)$$
$$=(\sqrt{5}+1)(\sqrt{5}-1)=5-1=4$$

3 (1)
$$x-y=(\sqrt{2}+1)-(\sqrt{2}-1)=2$$
이므로

$$x^2-2xy+y^2=(x-y)^2=2^2=4$$

(2)
$$x+y=(3+\sqrt{5})+(3-\sqrt{5})=6$$
이므로
 $x^2+2xy+y^2=(x+y)^2=6^2=36$

(3)
$$x+y=(1+2\sqrt{3})+(1-2\sqrt{3})=2$$
,

$$x-y=(1+2\sqrt{3})-(1-2\sqrt{3})=4\sqrt{3}$$
이므로

$$x^2-y^2=(x+y)(x-y)=2\times 4\sqrt{3}=8\sqrt{3}$$

4 (1)
$$a = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1$$
,

$$b = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \sqrt{2} + 1$$
이므로

$$a-b=(\sqrt{2}-1)-(\sqrt{2}+1)=-2$$

$$\therefore a^2 - 2ab + b^2 = (a-b)^2 = (-2)^2 = 4$$

(2)
$$a = \frac{1}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = \sqrt{3} - \sqrt{2},$$

$$b = \frac{1}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \sqrt{3} + \sqrt{2}$$
이므로

$$a-b=(\sqrt{3}-\sqrt{2})-(\sqrt{3}+\sqrt{2})=-2\sqrt{2}$$

$$ab = (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 1$$

$$\therefore a^2b - ab^2 = ab(a - b)$$

$$=1\times(-2\sqrt{2})=-2\sqrt{2}$$

(3)
$$x = \frac{1}{\sqrt{3} - 2} = \frac{\sqrt{3} + 2}{(\sqrt{3} - 2)(\sqrt{3} + 2)} = -\sqrt{3} - 2$$
,

$$y = \frac{1}{\sqrt{3}+2} = \frac{\sqrt{3}-2}{(\sqrt{3}+2)(\sqrt{3}-2)} = -\sqrt{3}+2$$
이므로

$$x+y=(-\sqrt{3}-2)+(-\sqrt{3}+2)=-2\sqrt{3}$$

$$x-y=(-\sqrt{3}-2)-(-\sqrt{3}+2)=-4$$

$$\therefore x^2 - y^2 = (x+y)(x-y)$$

$$=-2\sqrt{3}\times(-4)=8\sqrt{3}$$

- 5 (1) $a^2b+ab^2=ab(a+b)=5\times 6=30$
 - (2) $3xy^2 3x^2y = -3xy(x-y)$

$$=-3\times(-6)\times5=90$$

(3)
$$x^2 - y^2 + 4x + 4y = (x+y)(x-y) + 4(x+y)$$

= $(x+y)(x-y+4)$
= $4 \times (11+4) = 60$

쌍둥이 기출문제

P 58~59

- 1 (2)
- → 1 과정은 품이 참조
- 3 (4)
- **4** (2)
- 5 (x+y+5)(x-y+5) 6 5
- 7 ③
- 8 (1) 30 (2) 10000 (3) 990
- 9 (1)
- 10 16. 과정은 풀이 참조 11 ⑤
- **12** ③

[1~2] 공통부분을 한 문자로 놓고 인수분해하기

주어진 식에 공통부분이 있으면 공통부분을 한 문자로 놓고 인수분해한 후 원래의 식을 대입하여 정리한다.

1 x-4=A로 놓으면

$$(x-4)^2 - 4(x-4) - 21 = A^2 - 4A - 21$$

$$= (A+3)(A-7)$$

$$= (x-4+3)(x-4-7)$$

$$= (x-1)(x-11)$$

따라서 a=1. b=-11이므로 a+b=1+(-11)=-10

2 2x-1=A, x+3=B로 놓으면

$$(2x-1)^2-(x+3)^2$$

$$=A^{2}-B^{2}$$

$$=(A+B)(A-B)$$

$$=\{(2x-1)+(x+3)\}\{(2x-1)-(x+3)\}$$

$$=(3x+2)(x-4)$$

...(i)

따라서
$$a=2$$
, $b=1$, $c=-4$ 이므로

... (ii)

a+b+c=2+1+	(-4)	= -1
$u \mid v \mid v - 2 \mid 1 \mid 1$	\ _	<i>,</i> — 1

... (iii)

채점 기준	배점
(i) 주어진 식을 인수분해하기	50 %
(ii) a, b, c의 값 구하기	30 %
$\overline{\text{(iii)}} \ a + b + c$ 의 값 구하기	20 %

[3~6] 적당한 항끼리 묶어 인수분해하기

- (i) (2항)+(2항)으로 묶기
 - 공통부분이 생기도록 두 항씩 짝을 지어 인수분해한다.
- (ii) (3항)+(1항) 또는 (1항)+(3항)으로 묶기

항 4개 중 3개가 완전제곱식으로 인수분해될 때는 3개의 항과 1개 의 항을 $A^2 - B^2$ 의 꼴로 변형하여 인수분해한다.

3
$$a^3-b-a+a^2b=a^3+a^2b-a-b$$

= $a^2(a+b)-(a+b)$
= $(a+b)(a^2-1)$
= $(a+b)(a+1)(a-1)$

$$4 x^2 - 9 + xy - 3y = (x+3)(x-3) + y(x-3)$$
$$= (x-3)(x+3+y)$$
$$= (x-3)(x+y+3)$$

5
$$x^2-y^2+10x+25=x^2+10x+25-y^2$$

= $(x+5)^2-y^2$
= $(x+5+y)(x+5-y)$
= $(x+y+5)(x-y+5)$

6
$$x^2-y^2+4y-4=x^2-(y^2-4y+4)$$

 $=x^2-(y-2)^2$
 $=(x+y-2)\{x-(y-2)\}$
 $=(x+y-2)(x-y+2)$
 ∴ (두 일차식의 함)= $(x+y-2)+(x-y+2)=2x$

[7~8] 인수분해를 이용한 수의 계산

복잡한 수의 계산은 인수분해 공식을 이용할 수 있도록 수의 모양을 바 꾸어 계산한다.

7
$$150^2 - 149^2$$

= $(150 + 149)(150 - 149)$ $a^2 - b^2 = (a+b)(a-b)$
= $150 + 149$

8 (1)
$$15 \times 123 - 121 \times 15 = 15(123 - 121)$$

 $= 15 \times 2 = 30$
(2) $103^2 - 6 \times 103 + 9 = 103^2 - 2 \times 103 \times 3 + 3^2$
 $= (103 - 3)^2 = 100^2 = 10000$
(3) $99 \times 5.5^2 - 99 \times 4.5^2 = 99(5.5^2 - 4.5^2)$
 $= 99(5.5 + 4.5)(5.5 - 4.5)$
 $= 99 \times 10 \times 1 = 990$

[9~12] 인수분해를 이용한 식의 값의 계산

- ① 주어진 식을 인수분해한다.
- ② 문자의 값을 바로 대입하거나 변형하여 대입한다.

9
$$x+y=(-1+\sqrt{3})+(1+\sqrt{3})=2\sqrt{3}$$
,
 $x-y=(-1+\sqrt{3})-(1+\sqrt{3})=-2$ 이므로
 $x^2-y^2=(x+y)(x-y)$
 $=2\sqrt{3}\times(-2)=-4\sqrt{3}$

10
$$a = \frac{1}{\sqrt{5}+2} = \frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)} = \sqrt{5}-2,$$

 $b = \frac{1}{\sqrt{5}-2} = \frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)} = \sqrt{5}+2$ 이므로 ···(i)
 $a-b=(\sqrt{5}-2)-(\sqrt{5}+2)=-4$

$$\therefore a^2 - 2ab + b^2 = (a - b)^2 \qquad \cdots \text{(ii)}$$

$$= (-4)^2$$

$$= 16 \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) a, b의 분모를 유리화하기	40 %
$(ii) a^2 - 2ab + b^2$ 을 인수분해하기	20 %
$\overline{\left(\mathrm{iii} \right) a^2 \! - \! 2ab \! + \! b^2}$ 의 값 구하기	40 %

11
$$x^2-y^2+6x-6y=(x+y)(x-y)+6(x-y)$$

= $(x-y)(x+y+6)$
= $5\times(3+6)$
= 45

12
$$x^2-y^2+2x+1=x^2+2x+1-y^2$$

= $(x+1)^2-y^2$
= $(x+1+y)(x+1-y)$
= $(x+y+1)(x-y+1)$
= $(\sqrt{5}+1)\times(3+1)$
= $4\sqrt{5}+4$

Best of Best 문제로 단원 마무리 P. 60~61 1 ㄱ, ㄸ, ㅂ 2 ⑤ 3 (x+6)(x-4), 과정은 풀이 참조 4 ④ 5 ⑥ 6 ② 7 ③ 8 83 9 8

- 1 $2xy(x+3y) = x \times 2y(x+3y)$ \rightarrow 인수: x, 2y(x+3y) $= y \times 2x(x+3y)$ \rightarrow 인수: y, 2x(x+3y) $= xy \times 2(x+3y)$ \rightarrow 인수: xy, 2(x+3y)
- 2 $(x-2)(x+6)+k=x^2+4x-12+k$ = $x^2+2\times x\times 2-12+k$ = $-12+k=2^2$ -12+k=4 $\therefore k=16$
- 3 (x+3)(x-8)=x²-5x-24에서
 소희는 상수항을 제대로 보았으므로 처음의 이차식의 상수 항은 -24이다.
 (x+4)(x-2)=x²+2x-8에서
 시우는 x의 계수를 제대로 보았으므로 처음의 이차식의 x의 계수는 2이다

따라서 처음의 이차식은
$$x^2+2x-24$$
이므로 \cdots (i) 이 식을 바르게 인수분해하면
$$x^2+2x-24=(x+6)(x-4) \cdots$$
(ii)

채점 기준	배점
(i) 처음의 이차식 구하기	50 %
(ii) 처음의 이차식을 바르게 인수분해하기	50 %

4
$$5x^2+ax+2=(5x+b)(cx+2)$$

 $=5cx^2+(10+bc)x+2b$
 x^2 의 계수에서 $5=5c$ $\therefore c=1$
상수항에서 $2=2b$ $\therefore b=1$
 x 의 계수에서 $a=10+bc=10+1\times 1=11$
 $\therefore a-b-c=11-1-1=9$

5 ①
$$2xy+10x=2x(y+5)$$

② $9x^2-6x+1=(3x-1)^2$
③ $25x^2-16y^2=(5x+4y)(5x-4y)$
④ $x^2+3x-18=(x-3)(x+6)$
⑤ $6x^2+xy-2y^2=(2x-y)(3x+2y)$

6
$$x^2+4x-5=(x+5)(\underline{x-1})$$

 $2x^2-3x+1=(x-1)(2x-1)$

8
$$A = \sqrt{25^2 - 24^2}$$

 $= \sqrt{(25 + 24)(25 - 24)}$
 $= \sqrt{49} = \sqrt{7^2} = 7$
 $B = \sqrt{74^2 + 4 \times 74 + 2^2}$
 $= \sqrt{74^2 + 2 \times 74 \times 2 + 2^2}$
 $= \sqrt{(74 + 2)^2}$
 $= \sqrt{76^2} = 76$
 $\therefore A + B = 7 + 76 = 83$

9
$$x = \frac{4}{\sqrt{5} - 1} = \frac{4(\sqrt{5} + 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1)} = \frac{4(\sqrt{5} + 1)}{4} = \sqrt{5} + 1,$$

 $y = \frac{4}{\sqrt{5} + 1} = \frac{4(\sqrt{5} - 1)}{(\sqrt{5} + 1)(\sqrt{5} - 1)} = \frac{4(\sqrt{5} - 1)}{4} = \sqrt{5} - 1$
ole $x = x - y = (\sqrt{5} + 1) - (\sqrt{5} - 1) = 2$
 $x = (\sqrt{5} + 1)(\sqrt{5} - 1) = 5 - 1 = 4$
 $x = x^2y - xy^2 = xy(x - y)$
 $x = 4 \times 2 = 8$

🔼 📘 이차방정식과 그 해

유형 1 P. 64

- 1 $a\neq 0$
- 2 (1) $x^2 4x 5 = 0$
- (2) $2x^2 + 6x 9 = 0$
- (3) $x^2 4 = 0$
- (4) $8x^2 22x 21 = 0$
- 3 7. 口. 日. 人
- 4 (1) = 0
- $(2) \neq \times$
- 5 (1) x=0
- (2) x = -1 또는 x = 3
- (3) x = 1
- (4) x = -1
- $(4) (3x-2)^2 = (x+5)^2$ 에서 $9x^2 - 12x + 4 = x^2 + 10x + 25$ $9x^2 - 12x + 4 - x^2 - 10x - 25 = 0$ $\therefore 8x^2 - 22x - 21 = 0$
- **3** ¬ $x^2=0$ ⇒ 이차방정식
 - x(x-1)+4에서 x^2-x+4 \Rightarrow 이차식
 - $x^2+3x=x^2+1$ 에서
 - 3x-1=0 \Rightarrow 일차방정식
 - $= x(1-3x)=5-3x^2$ 에서
 - $x-3x^2=5-3x^2$
 - x-5=0 \Rightarrow 일차방정식
 - $(x+2)^2=4$ 에서 $x^2+4x+4=4$
 - $x^2+4x=0$ \Rightarrow 이차방정식
 - $= 2x^2-5=(x-1)(3x+1)$ 에서
 - $2x^2-5=3x^2-2x-1$
 - $-x^2+2x-4=0$ \Rightarrow 이차방정식
 - $x^2(x-1)=x^3+4$ 에서
 - $x^3 x^2 = x^3 + 4$
 - $-x^2-4=0$ \Rightarrow 이차방정식
 - $0.x(x+1)=x^3-2$ 에서
 - $x^2 + x = x^3 2$
 - $-x^3+x^2+x+2=0$ \Rightarrow 이차방정식이 아니다.
 - $z. \frac{1}{m^2} + 4 = 0$ ⇒ 이차방정식이 아니다.
- 5 주어진 이차방정식에 x=-1, 0, 1, 2, 3을 각각 대입하면
 - (1) x = 0일 때, 등식이 성립하므로 해는 x = 0이다.
 - (2) x=-1, x=3일 때, 등식이 성립하므로 해는 x=-1 또는 x=3이다.
 - (3) x=1일 때, 등식이 성립하므로 해는 x=1이다.
 - (4) x = -1일 때, 등식이 성립하므로 해는 x = -1이다.

○2 이차방정식의 풀이 (1)

유형 2

P. 65

- 1 (1) x, x-4, 0, 4
 - (2) x+3, x-4, -3, 4
 - (3) x+3, x+3, x-2, -3, 2
 - (4) 2x-3, x+2, 2x-3, -2, $\frac{3}{2}$
- 2 (1) x=0 또는 x=2
- (2) x=0 또는 x=-3
- (3) x=0 또는 x=-4
- 3 (1) x = -4 또는 x = -1 (2) x = 2 또는 x = 5
 - (3) $x = -2 \pm x = 4$
- **4** (1) $x = \frac{1}{2}$ $\text{E} = \frac{1}{2}$ $\text{E} = \frac{3}{2}$

 - (3) $x = \frac{1}{2} \pm \frac{1}{2} = \frac{3}{2}$
- 5 (1) x^2+6x+8 , x=-4 $\pm \frac{1}{2}$ x=-2
 - (2) $2x^2-3x-5$, x=-1 또는 $x=\frac{5}{2}$
- 6 a = -6, x = 5
- 2 (1) $x^2-2x=0$ 에서 x(x-2)=0
 - x=0 또는 x-2=0 $\therefore x=0$ 또는 x=2
 - (2) $x^2+3x=0$ 에서 x(x+3)=0 $x=0 \, \, \pm \pm \, x+3=0 \, \qquad \therefore x=0 \, \, \pm \pm \, x=-3$
 - (3) $2x^2+8x=0$ 에서 2x(x+4)=0
 - $2x=0 \ \pm x + 4 = 0$ $\therefore x=0 \ \pm x = -4$
- 3 (1) $x^2+5x+4=0$ 에서 (x+4)(x+1)=0
 - x+4=0 또는 x+1=0
 - $\therefore x = -4 \pm x = -1$
 - $(2) x^2 7x + 10 = 0$ 에서 (x-2)(x-5) = 0
 - x-2=0 또는 x-5=0
 - $\therefore x=2 \ \text{E} = x=5$
 - $(3) x^2 = 2x + 8$ |x| + 2x 8 = 0
 - (x+2)(x-4)=0
 - x+2=0 또는 x-4=0
 - $\therefore x = -2 \, \text{E} = x = 4$
- 4 (1) $2x^2-7x+3=0$ 에서 (2x-1)(x-3)=02x-1=0 또는 x-3=0
 - $\therefore x = \frac{1}{2}$ $\exists x = 3$

 - $(2) -4x^2+4x+3=0$
 - (2x+1)(2x-3)=0
 - 2x+1=0 또는 2x-3=0
 - $\therefore x = -\frac{1}{2} \, \text{\frac{1}{2}} \, \text{\frac{1}{2}} \, x = \frac{3}{2}$

(3)
$$10x^2-6x=4x^2+5x-3$$
에서 $6x^2-11x+3=0$ $(3x-1)(2x-3)=0$ $3x-1=0$ 또는 $2x-3=0$ $x=\frac{1}{3}$ 또는 $x=\frac{3}{2}$

5 (1)
$$x(x+8)=2(x-4)$$
 에서 $x^2+8x=2x-8$

$$x^2+6x+8=0, (x+4)(x+2)=0$$

$$x+4=0 \, £ x+2=0$$
∴ $x=-4 \, £ x=-2$
(2) $2(x^2-1)=3(x+1)$ 에서 $2x^2-2=3x+3$

$$2x^2-3x-5=0, (x+1)(2x-5)=0$$

$$x+1=0 \, £ 2x-5=0$$
∴ $x=-1 \, £ x=\frac{5}{2}$

6
$$x^2+ax+5=0$$
에 $x=1$ 을 대입하면 $1^2+a\times1+5=0$, $a+6=0$ ∴ $a=-6$ 즉, $x^2-6x+5=0$ 에서 $(x-1)(x-5)=0$ $x-1=0$ 또는 $x-5=0$ ∴ $x=1$ 또는 $x=5$ 따라서 다른 한 근은 $x=5$ 이다

유형 3

1 (1) $x = -5(\frac{3}{5})$ (2) $x = \frac{1}{2}(\frac{3}{5})$ (3) $x = -\frac{3}{2}(\frac{3}{5})$

2 (1) x-4, 4 (2) 3x-1, $\frac{1}{3}$ (3) $x+\frac{1}{2}$, $-\frac{1}{2}$

3 (1) $x = \frac{4}{3} (\frac{3}{3})$ (2) $x = -1(\frac{3}{3})$ (3) $x = -3(\frac{3}{3})$

4 (1) 9, 3 (2) 25, 5 (3) $\frac{9}{4}$, $\frac{3}{2}$ (4) $\frac{1}{4}$, $\frac{1}{2}$

5 (1) 4, -4 (2) k, ± 2

6(1)-7(2) + 6

3 (1) $9x^2-24x+16=0$ $|x| (3x-4)^2=0$ $\therefore x = \frac{4}{2} (\frac{27}{6})$

> (2) $x^2+1=-2x$ $(x+1)^2 = 0$: $x = -1(\frac{2}{2})$

 $(3) 6-x^2=3(2x+5)$ 에서 $6-x^2=6x+15$ $x^2+6x+9=0$, $(x+3)^2=0$ $\therefore x = -3(\frac{2}{2})$

6 (1) $9-k=\left(\frac{-8}{2}\right)^2$, 9-k=16 $\therefore k=-7$ (2) $9 = \left(\frac{k}{2}\right)^2$, $9 = \frac{k^2}{4}$, $k^2 = 36$ $\therefore k = \pm 6$

유형 4

(2) $2\sqrt{3}$ 1 (1) 2

(3) 24, $2\sqrt{6}$ (4) 18, $3\sqrt{2}$

2 (1) $x = \pm \sqrt{5}$ (2) $x = \pm 9$ (3) $x = \pm 3\sqrt{3}$

(4) $x = \pm 5$

(5) $x = \pm \frac{\sqrt{13}}{3}$

(6) $x = \pm \frac{\sqrt{42}}{6}$

P. 67

3 (1) $\sqrt{5}$, -4, $\sqrt{5}$

(2) 2, $\sqrt{2}$, 3, $\sqrt{2}$

4 (1) x=8 $\pm \frac{1}{5}$ x=-2 (2) $x=-2\pm 2\sqrt{2}$

(3) $x=5\pm\sqrt{6}$

(4) $x = -3 \pm 3\sqrt{3}$

(5) x=3 $\pm x=-1$ (6) $x=-4\pm \sqrt{6}$

5 3

2 (1) $x^2-5=0$ 에서 $x^2=5$ $\therefore x = \pm \sqrt{5}$

> (2) $x^2-81=0$ 에서 $x^2=81$ $x = \pm \sqrt{81} = \pm 9$

(3) $3x^2-81=0$ 에서 $3x^2=81$. $x^2=27$ $\therefore x = \pm \sqrt{27} = \pm 3\sqrt{3}$

 $(4) 4x^2 - 100 = 0$ $|x| 4x^2 = 100, x^2 = 25$ $\therefore x = \pm 5$

(5) $9x^2 - 5 = 8$ 에서 $9x^2 = 13$, $x^2 = \frac{13}{9}$ $\therefore x = \pm \sqrt{\frac{13}{9}} = \pm \frac{\sqrt{13}}{3}$

(6) $6x^2-1=6$ 에서 $6x^2=7$, $x^2=\frac{7}{6}$

 $\therefore x = \pm \sqrt{\frac{7}{6}} = \pm \frac{\sqrt{42}}{6}$

 $(1)(x-3)^2=25$ 에서

P. 66

 $x-3=\pm 5$

x=3+5 또는 x=3-5

 $\therefore x=8 \pm x=-2$

 $(2) (x+2)^2 = 8에서$

 $x+2=\pm\sqrt{8}=\pm2\sqrt{2}$

 $\therefore x = -2 \pm 2\sqrt{2}$

 $(3) \ 3(x-5)^2 = 18$ 에서 $(x-5)^2 = 6$

 $x-5 = \pm \sqrt{6}$

 $\therefore x=5\pm\sqrt{6}$

 $(4) 2(x+3)^2 = 54$ 에서 $(x+3)^2 = 27$ $x+3=\pm\sqrt{27}=\pm3\sqrt{3}$

 $\therefore x = -3 \pm 3\sqrt{3}$

 $(5) 2(x-1)^2-8=0에서$

 $2(x-1)^2=8$, $(x-1)^2=4$

 $x-1=\pm 2$

x=1+2 또는 x=1-2

 $\therefore x=3 \pm x=-1$

(6) 5 $(x+4)^2-30=0$ 에서

 $5(x+4)^2=30$, $(x+4)^2=6$

 $x+4 = \pm \sqrt{6}$

 $\therefore x = -4 \pm \sqrt{6}$

5 $(x+a)^2 = 5$ 에서 $x+a = \pm \sqrt{5}$ $\therefore x = -a + \sqrt{5}$ 이때 해가 $x = -3 \pm \sqrt{5}$ 이므로 a = 3

유형 5

P. 68

1 (1) $\frac{1}{4}$, $\frac{1}{4}$, $\frac{5}{4}$

$$(2)\,\frac{2}{3},\,\frac{1}{9},\,\frac{2}{3},\,\frac{1}{9},\,\frac{2}{3},\,\frac{1}{9},\,\frac{2}{9},\,\frac{1}{3},\,\frac{2}{9}$$

2 ① 4, 2 ② 4, 2 ③ 4, 4, 4 ④ 2, 6 ⑤ 2, 6

3 ① $x^2+x-\frac{1}{2}=0$ ② $x^2+x=\frac{1}{2}$

 $3x^2+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}$ $4(x+\frac{1}{2})^2=\frac{3}{4}$

(5) $x + \frac{1}{2} = \pm \frac{\sqrt{3}}{2}$ (6) $x = \frac{-1 \pm \sqrt{3}}{2}$

4 (1) $x = -2 \pm \sqrt{3}$ (2) $x = 3 \pm \sqrt{5}$

(3) $x=1\pm\sqrt{6}$ (4) $x=-1\pm\frac{\sqrt{6}}{2}$

(1) $x^2 + 4x + 1 = 0$ 에서 $x^2 + 4x = -1$ $x^2+4x+4=-1+4$ $(x+2)^2 = 3$ $x+2 = \pm \sqrt{3}$

 $\therefore x = -2 \pm \sqrt{3}$ $(2) x^2 - 6x + 4 = 0$ 에서

 $x^2 - 6x = -4$

 $x^2 - 6x + 9 = -4 + 9$

 $(x-3)^2 = 5$, $x-3 = \pm \sqrt{5}$

 $\therefore x=3\pm\sqrt{5}$

(3) $3x^2 - 6x - 15 = 0$ 의 양변을 3으로 나누면

 $x^2 - 2x - 5 = 0$

 $x^2 - 2x = 5$

 $x^2-2x+1=5+1$

 $(x-1)^2 = 6$, $x-1 = \pm \sqrt{6}$

 $\therefore x=1\pm\sqrt{6}$

(4) $2x^2 = -4x + 1$ 의 양변을 2로 나누면

 $x^2 = -2x + \frac{1}{2}$

 $x^2 + 2x = \frac{1}{2}$

 $x^2+2x+1=\frac{1}{2}+1$

 $(x+1)^2 = \frac{3}{2}, x+1 = \pm \sqrt{\frac{3}{2}} = \pm \frac{\sqrt{6}}{2}$

 $\therefore x = -1 \pm \frac{\sqrt{6}}{2}$

한 번 (더) 연습

1 (1) x = -5 $\pm x = 1$ (2) x = -7 $\pm x = 4$

(3) x = -2 또는 x = 4 (4) x = 3 또는 x = 4

(5) $x = -\frac{1}{3}$ 또는 x = 2 (6) x = -4 또는 $x = \frac{2}{5}$

(7) $x = -\frac{5}{2}$ 또는 x = 3 (8) $x = -\frac{1}{6}$ 또는 $x = \frac{2}{3}$

2 (1) $x=5(\frac{2}{5})$ (2) $x=-\frac{3}{2}(\frac{2}{5})$

(3) $x = \frac{3}{4} (3 - 1)$ (4) $x = -\frac{1}{10} (3 - 1)$

3 (1) $x = \pm \sqrt{15}$ (2) $x = \pm 2\sqrt{2}$ (3) $x = \pm 2\sqrt{7}$

(4) $x = \pm \frac{9}{7}$ (5) $x = -1 \pm 2\sqrt{3}$ (6) $x = 5 \pm \sqrt{10}$

4 (1) $x = 4 \pm \sqrt{11}$ (2) $x = -3 \pm \sqrt{10}$

(3) $x = 4 \pm \frac{\sqrt{70}}{2}$ (4) $x = 1 \pm \frac{2\sqrt{5}}{5}$

(5) $x = \frac{4 \pm \sqrt{13}}{2}$ (6) $x = -2 \pm \frac{\sqrt{30}}{2}$

 $(1) x^2 + 4x - 5 = 0$ 에서 (x+5)(x-1) = 0

 $\therefore x = -5 \pm x = 1$

 $(2) x^2 + 3x - 28 = 0$ (x+7)(x-4) = 0

 $\therefore x = -7 \pm x = 4$ (3) $x^2-2x-8=0$ 에서 (x+2)(x-4)=0

 $\therefore x = -2 \pm x = 4$

 $(4) x^2 - 7x + 12 = 0$ 에서 (x-3)(x-4) = 0

∴ x=3 또는 x=4 (5) $3x^2-5x-2=0$ 에서 (3x+1)(x-2)=0

 $\therefore x = -\frac{1}{3}$ 또는 x = 2

(6) $5x^2+18x-8=0$ |x|(x+4)(5x-2)=0

 $\therefore x = -4 \pm x = \frac{2}{5}$

 $(7) 2x^2 - x - 15 = 0$ 에서 (2x+5)(x-3) = 0

 $\therefore x = -\frac{5}{2}$ 또는 x = 3

 $(8) -18x^2 + 9x + 2 = 0$ 에서 $18x^2 - 9x - 2 = 0$

(6x+1)(3x-2)=0

 $\therefore x = -\frac{1}{6} \stackrel{\square}{=} x = \frac{2}{2}$

2 (1) $x^2-10x+25=0$ 에서 $(x-5)^2=0$ $\therefore x=5(중구)$

 $(2) 4x^2 + 12x + 9 = 0$ 에서 $(2x+3)^2 = 0$

 $\therefore x = -\frac{3}{2} (\overline{2})$

(3) $16x^2 - 24x + 9 = 0$ 에서 $(4x - 3)^2 = 0$

 $\therefore x = \frac{3}{4} (\frac{27}{6})$

(4) $25x^2 + 5x + \frac{1}{4} = 0$ $\left(5x + \frac{1}{2}\right)^2 = 0$

 $\therefore x = -\frac{1}{10} \left(\frac{27}{6} \right)$

3 (1)
$$x^2$$
-15=0에서 x^2 =15
∴ $x=\pm\sqrt{15}$

(2)
$$4x^2 = 32$$
에서 $x^2 = 8$
 $\therefore x = \pm 2\sqrt{2}$

(3)
$$3x^2 - 84 = 0$$
에서 $3x^2 = 84$
 $x^2 = 28$ $\therefore x = \pm 2\sqrt{7}$

$$(4) \ 49x^2 - 81 = 0 \text{ and } 49x^2 = 81$$

$$x^2 = \frac{81}{49}$$
 $\therefore x = \pm \frac{9}{7}$

(5)
$$(x+1)^2 = 12$$
 에서 $x+1 = \pm 2\sqrt{3}$
∴ $x=-1\pm 2\sqrt{3}$

(6)
$$2(x-5)^2 = 20$$
 $(x-5)^2 = 10$
 $x-5 = \pm \sqrt{10}$ $\therefore x=5 \pm \sqrt{10}$

4 (1)
$$x^2 - 8x + 5 = 0$$
 \Rightarrow \Rightarrow $x^2 - 8x + 16 = -5 + 16$ $(x-4)^2 = 11, x-4 = \pm\sqrt{11}$ $\therefore x = 4 \pm\sqrt{11}$

(2)
$$x^2+6x-1=0$$
 | $x^2+6x=1$, $x^2+6x+9=1+9$
 $(x+3)^2=10$, $x+3=\pm\sqrt{10}$
 $x=-3\pm\sqrt{10}$

(3)
$$2x^2 - 16x - 3 = 0$$
의 양변을 2로 나누면 $x^2 - 8x - \frac{3}{2} = 0$, $x^2 - 8x = \frac{3}{2}$ $x^2 - 8x + 16 = \frac{3}{2} + 16$, $(x - 4)^2 = \frac{35}{2}$ $x - 4 = \pm \sqrt{\frac{35}{2}} = \pm \frac{\sqrt{70}}{2}$ $\therefore x = 4 \pm \frac{\sqrt{70}}{2}$

(4)
$$5x^2 - 10x + 1 = 0$$
의 양변을 5로 나누면 $x^2 - 2x + \frac{1}{5} = 0$, $x^2 - 2x = -\frac{1}{5}$ $x^2 - 2x + 1 = -\frac{1}{5} + 1$, $(x - 1)^2 = \frac{4}{5}$ $x - 1 = \pm \sqrt{\frac{4}{5}} = \pm \frac{2\sqrt{5}}{5}$ $\therefore x = 1 \pm \frac{2\sqrt{5}}{5}$

(5)
$$3x^2 - 8x + 1 = 0$$
의 양변을 3으로 나누면 $x^2 - \frac{8}{3}x + \frac{1}{3} = 0$, $x^2 - \frac{8}{3}x = -\frac{1}{3}$ $x^2 - \frac{8}{3}x + \frac{16}{9} = -\frac{1}{3} + \frac{16}{9}$, $\left(x - \frac{4}{3}\right)^2 = \frac{13}{9}$ $x - \frac{4}{3} = \pm \sqrt{\frac{13}{9}} = \pm \frac{\sqrt{13}}{3}$ $\therefore x = \frac{4 \pm \sqrt{13}}{3}$

(6)
$$-2x^2-8x+7=0$$
의 양변을 -2 로 나누면 $x^2+4x-\frac{7}{2}=0,\ x^2+4x=\frac{7}{2}$ $x^2+4x+4=\frac{7}{2}+4,\ (x+2)^2=\frac{15}{2}$

$$x+2 = \pm \sqrt{\frac{15}{2}} = \pm \frac{\sqrt{30}}{2}$$
$$\therefore x = -2 \pm \frac{\sqrt{30}}{2}$$

쌍둥이 기출	문제		P. 70~73
1 ①	2 ③	3 ②	4 ③
5 ⑤	6 ②	7 ②	8 4
9 4	10 ④	11 ⑤	12 2
13 ③	14 9	15 ②	16 ②
17 ②, ④	18 ②	19 (1) −1	(2) $x = -2$
20 <i>x</i> =7, 5	과정은 풀이 침]조 21 ⑤	22 ㄴ, ㅁ
23 ⑤	24 <i>k</i> =-	11, $x=6$	
25 $x=2\pm$	$\sqrt{10}$, 과정은	풀이 참조	26 ③
27 ④	28 ①	29 ②	
30 $a=4$, b	=2, c=3		

[1~4] 이차방정식

모든 항을 좌변으로 이항하여 정리하였을 때, $ax^2+bx+c=0$ ($a\neq 0$)의 꼴인 방정식

1 ①
$$(x-1)^2=0$$
에서 $x^2-2x+1=0$ \Rightarrow 이차방정식

④
$$\frac{2}{x} + 3 = 0$$
 \Rightarrow 이차방정식이 아니다.

2 ①
$$\frac{1}{2}x^2 = 0$$
 \Rightarrow 이차방정식

②
$$(x-5)^2=3x$$
에서 $x^2-10x+25=3x$ $x^2-13x+25=0$ \Rightarrow 이차방정식

③
$$4x^2 = (3-2x)^2$$
에서 $4x^2 = 9-12x+4x^2$
 $12x-9=0$ \Rightarrow 일차방정식

④
$$(x+1)(x-2)=x$$
에서 $x^2-x-2=x$
 $x^2-2x-2=0$ \Rightarrow 이차방정식

⑤
$$x^3-2x=-2+x^2+x^3$$
에서
$$-x^2-2x+2=0 \Rightarrow$$
이차방정식

3
$$2x(3x-1)=x+5$$
에서 $6x^2-2x=x+5$
 $6x^2-3x-5=0$
따라서 $a=-3$, $b=-5$ 이므로
 $a+b=-3+(-5)=-8$

[5~6] $ax^2+bx+c=0$ 이 이차방정식이 되려면 $\Rightarrow a\neq 0$

- 5 $x(ax+2)=x^2+1$ 에서 $ax^2+2x=x^2+1$ $(a-1)x^2+2x-1=0$ 이때 x^2 의 계수는 0이 아니어야 하므로 $a-1\neq 0$ $\therefore a\neq 1$
- 6 $kx^2-5x+1=2x^2+3$ 에서 $(k-2)x^2-5x-2=0$ 이때 x^2 의 계수는 0이 아니어야 하므로 $k-2\neq 0$ $\therefore k\neq 2$

[7~14] 이차방정식의 해가 x=a이다.

- \Rightarrow 이차방정식에 x=a를 대입하면 등식이 성립한다.
- 7 각 이차방정식에 x=-2를 대입하면
 - ① $(-2-2)^2 \neq 0$
- ② $(-2+2)^2=0$
- $(3)(-2+2)^2 \neq 4$
 - $(4) -2(-2+2) \neq -1$
- $(5)(-2-1)(-2-2)\neq 0$
- [] 안의 수를 주어진 이차방정식의 x에 각각 대입하면
 ① 5²-5≠0
 - $(-3)^2 (-3) 2 \neq 0$
 - $(3)(-2)^2+6\times(-2)-7\neq 0$
 - $\textcircled{4} \ 2 \times (-1)^2 3 \times (-1) 5 = 0$
 - (5) $3 \times 3^2 3 10 \neq 0$
- 9 x²+3x-4=0에 x=-1, 0, 1, 2, 3을 각각 대입하면 x=-1일 때, (-1)²+3×(-1)-4≠0 x=0일 때, 0²+3×0-4≠0 x=1일 때, 1²+3×1-4=0 x=2일 때, 2²+3×2-4≠0
 - x=3일 때, 3²+3×3−4≠0
 - x=3일 때, $3+3\times3-4$ = 1이다.
- 10 $x^2-x-6=0$ 에 x=-2, -1, 0, 1, 2, 3을 각각 대입하면 x=-2일 때, $(-2)^2-(-2)-6=0$ x=-1일 때, $(-1)^2-(-1)-6≠0$

 - x=0일 때, $0^2-0-6\neq 0$
 - x=1일 때, $1^2-1-6\neq 0$
 - x=2일 때 $2^2-2-6\neq 0$
 - x=3일 때, $3^2-3-6=0$
 - 따라서 해는 x=-2 또는 x=3이다.
- 11 x^2 -4x+a=0에 x=2를 대입하면 2^2 -4×2+a=0, -4+a=0 ∴ a=4
- 12 $x^2+ax-3=0$ 에 x=1을 대입하면 $1^2+a\times 1-3=0, a-2=0$ $\therefore a=2$

- 13 $x^2+ax+4=0$ 에 x=4를 대입하면 $4^2+a\times 4+4=0$, 20+4a=0 ∴ a=-5 $x^2-6x-b=0$ 에 x=4를 대입하면 $4^2-6\times 4-b=0$, -8-b=0 ∴ b=-8 ∴ a-b=-5-(-8)=3
- 14 $x^2+ax-2=0$ 에 x=2를 대입하면 $2^2+a\times 2-2=0$, 2+2a=0 $\therefore a=-1$ $2x^2+x-b=0$ 에 x=2를 대입하면 $2\times 2^2+2-b=0$, 10-b=0 $\therefore b=10$ $\therefore a+b=-1+10=9$

[15~18] AB=0이면 ⇒ A=0 또는 B=0

- 15 (x+3)(x-6)=0에서 x=-3 또는 x=6
- **16** ① $x = \frac{1}{2}$ 또는 x = -2 ③ x = 1 또는 x = -2 ④ x = -1 또는 x = 2 ⑤ $x = \frac{1}{2}$ 또는 x = -2
- 17 $x^2-x-20=0$ 에서 (x+4)(x-5)=0∴ x=-4 또 x=5
- 18 $2x^2 x 6 = 0$ 에서 (2x+3)(x-2) = 0 $\therefore x = -\frac{3}{2}$ 또는 x = 2

[19~20] 미지수가 있는 이차방정식의 한 근이 주어질 때

- ① 근을 대입 ⇒ 미지수 구하기
- ② 미지수를 대입 ⇨ 다른 한 근 구하기
- 19 (1) $x^2 mx + 2m = 0$ 에 x = 1을 대입하면 $1^2 m \times 1 + 2m = 0$, 1 + m = 0 ∴ m = -1 (2) $x^2 mx + 2m = 0$ 에 m = -1을 대입하면
 - $x^2+x-2=0$, (x+2)(x-1)=0 $\therefore x=-2$ 또는 x=1따라서 다른 한 근은 x=-2이다.
- 20 $x^2-6x+a=0$ 에 x=-1을 대입하면 $(-1)^2-6\times(-1)+a=0$, 7+a=0∴ a=-7(i) 즉, $x^2-6x-7=0$ 에서 (x+1)(x-7)=0 ... x=-1 또는 x=7 따라서 다른 한 근은 x=7이다.(ii)

채점 기준	배점
(i) a의 값 구하기	50 %
(ii) 다른 한 근 구하기	50 %

[21~22] 이차방정식이 중근을 가진다. ⇒ (완전제곱식)=0의 꼴이다.

- 21 ① $x^2-4=0$ 에서 (x+2)(x-2)=0∴ x=-2 또는 x=2
 - ② $x^2+8x=0$ 에서 x(x+8)=0∴ x=0 또는 x=-8
 - ③ $x^2-8x+15=0$ 에서 (x-3)(x-5)=0∴ x=3 또는 x=5
 - ④ $x^2+12x+11=0$ 에서 (x+11)(x+1)=0 $\therefore x=-11$ 또는 x=-1
 - ⑤ $x^2 + 2x + 1 = 0$ 에서 $(x+1)^2 = 0$ $\therefore x = -1(중국)$
- **22** ¬. $x^2+4x=0$ 에서 x(x+4)=0∴ x=0 또는 x=-4
 - ㄴ. $x^2+9=6x$ 에서 $x^2-6x+9=0$ $(x-3)^2=0$ $\therefore x=3(중국)$
 - 다. $x^2=1$ 에서 $x^2-1=0$, (x+1)(x-1)=0 $\therefore x=-1$ 또는 x=1
 - ㄹ. $(x+4)^2 = 1$ 에서 $x^2 + 8x + 15 = 0$ (x+5)(x+3) = 0 $\therefore x = -5$ 또는 x = -3

 $(2x-3)^2=0$ $\therefore x=\frac{3}{2}(\frac{2}{6})$

ㅂ. $x^2-3x=-5x+8$ 에서 $x^2+2x-8=0$ (x+4)(x-2)=0 $\therefore x=-4$ 또는 x=2

[23~24] 이차방정식이 중근을 가질 조건

이차항의 계수가 1일 때, (상수항)= $\left(\frac{$ 일차항의 계수}{2}\right)^2

- 23 $x^2-4x+m-5=0$ 이 중근을 가지므로 $m-5=\left(\frac{-4}{2}\right)^2, m-5=4$ $\therefore m=9$
- 24 $x^2-12x+25-k=0$ 이 중근을 가지므로 $25-k=\left(\frac{-12}{2}\right)^2, \ 25-k=36$ $\therefore k=-11$ 즉, $x^2-12x+36=0$ 에서 $(x-6)^2=0$ $\therefore x=6$ (중근)

[25~26]
$$(x-p)^2 = q(q \ge 0)$$
 에서 $x-p=\pm\sqrt{q}$ $\therefore x=p\pm\sqrt{q}$

25 $2(x-2)^2 = 20$ $||A|| (x-2)^2 = 10$... (i) $x-2 = \pm \sqrt{10}$... (ii) $\therefore x = 2 \pm \sqrt{10}$... (iii)

채점 기준	배점
$(i) (x-p)^2 = q$ 의 꼴 만들기	30 %
(ii) 제곱근 구하기	40 %
(iii) 이차방정식의 해 구하기	30 %

26
$$4(x-4)^2-8=0$$
에서 $4(x-4)^2=8$
 $(x-4)^2=2$
 $x-4=\pm\sqrt{2}$
 $\therefore x=4\pm\sqrt{2}$
따라서 $A=4$, $B=2$ 이므로
 $A+B=4+2=6$

- [27~30] (완전제곱식)=(상수)의 꼴로 고치기
- ① 이차항의 계수를 1로 만든다.
- ② 상수항을 우변으로 이항한다.
- ③ 양변에 $\left(\frac{\text{일차항의 계수}}{2}\right)^2$ 을 더한다.
- ④ 좌변을 완전제곱식으로 고친다.

27
$$x^2 - 8x + 6 = 0$$
, $x^2 - 8x = -6$
 $x^2 - 8x + \left(\frac{-8}{2}\right)^2 = -6 + \left(\frac{-8}{2}\right)^2$
 $x^2 - 8x + 16 = -6 + 16$
 $\therefore (x - 4)^2 = 10$
따라서 $p = -4$, $q = 10$ 이므로
 $p + q = -4 + 10 = 6$

28
$$2x^2 - 8x + 5 = 0$$
의 양변을 2로 나누면 $x^2 - 4x + \frac{5}{2} = 0$, $x^2 - 4x = -\frac{5}{2}$ $x^2 - 4x + \left(\frac{-4}{2}\right)^2 = -\frac{5}{2} + \left(\frac{-4}{2}\right)^2$ $x^2 - 4x + 4 = -\frac{5}{2} + 4$ $\therefore (x-2)^2 = \frac{3}{2}$ 따라서 $A = -2$, $B = \frac{3}{2}$ 이므로 $AB = -2 \times \frac{3}{2} = -3$

29
$$x^2+6x+7=0$$
, $x^2+6x=-7$
 $x^2+6x+\left(\frac{6}{2}\right)^2=-7+\left(\frac{6}{2}\right)^2$
 $x^2+6x+\boxed{9}=-7+\boxed{9}$
 $(x+3)^2=\boxed{3}\ 2$
 $x+3=\boxed{9}\ \pm\sqrt{2}$ $\therefore x=\boxed{5}\ -3\pm\sqrt{2}$

30
$$x^2 - 4x + 1 = 0$$
, $x^2 - 4x = -1$
 $x^2 - 4x + \left(\frac{-4}{2}\right)^2 = -1 + \left(\frac{-4}{2}\right)^2$
 $x^2 - 4x + \frac{4}{a} = -1 + \frac{4}{a}$
 $(x - \frac{2}{b})^2 = \frac{3}{c}$
 $x - \frac{2}{b} = \pm\sqrt{\frac{3}{c}}$ $\therefore x = \frac{2}{b} \pm\sqrt{\frac{3}{c}}$
 $\therefore a = 4$ $b = 2$ $c = 3$

○3 이차방정식의 풀이 (2)

유형 6

P. 74

- 1 (1) 1, -3, -2, -3, -3, 1, -2, 1, 3, 17, 2
 - (2) 1, 5, 3, 5, 5, 1, 3, 1, $\frac{-5\pm\sqrt{13}}{2}$
 - (3) 2, 3, -3, 3, 3, 2, -3, 2, $\frac{-3\pm\sqrt{33}}{4}$
 - (4) 3, -7, 1, -7, -7, 3, 1, 3, $\frac{7 \pm \sqrt{37}}{6}$
- 2 (1) 1, 2, -3, 2, 2, 1, -3, 1, $-2\pm\sqrt{7}$
 - (2) 5, -4, 2, -4, -4, 2, 5, $\frac{4\pm\sqrt{6}}{5}$
- 3 (1) $x = \frac{9 \pm 3\sqrt{13}}{2}$ (2) $x = \frac{7 \pm \sqrt{17}}{8}$

 - (3) $x=3\pm\sqrt{2}$ (4) $x=\frac{-2\pm\sqrt{10}}{2}$
- 3 (1) $x = \frac{-(-9) \pm \sqrt{(-9)^2 4 \times 1 \times (-9)}}{2 \times 1} = \frac{9 \pm 3\sqrt{13}}{2}$
 - (2) $x = \frac{-(-7) \pm \sqrt{(-7)^2 4 \times 4 \times 2}}{2 \times 4} = \frac{7 \pm \sqrt{17}}{8}$
 - (3) $x = -(-3) \pm \sqrt{(-3)^2 1 \times 7} = 3 \pm \sqrt{2}$
 - (4) $x = \frac{-2 \pm \sqrt{2^2 3 \times (-2)}}{3} = \frac{-2 \pm \sqrt{10}}{2}$

유형 7

P. 75

- 1 (1) 6, 3, 5, 2, 2, 3, 1, -2, $\frac{1}{3}$
 - (2) 10, 10, 3, 1, 5, 1, 2, 1, $-\frac{1}{5}$, $\frac{1}{2}$
 - (3) 2. 17. $1\pm 3\sqrt{2}$
- 2 (1) $x = \frac{2 \pm \sqrt{10}}{2}$
- (2) $x = 6 \pm 2\sqrt{7}$
- (3) $x = -1 \, \text{ET} \, x = \frac{2}{3}$ (4) $x = -6 \, \text{ET} \, x = 2$
- (5) $x = -2 \, \pm \frac{1}{2}$ (6) $x = \frac{1 \pm \sqrt{5}}{4}$
- **3** 4, 5, 5, 5, -1, 1, 5, 5, 7, 1, 7
- **4** (1) x=5 또는 x=8 (2) x=-5(중근)

 - (3) x = -2 또는 $x = -\frac{5}{c}$
- **2** (1) 양변에 12를 곱하면

$$3r^2 - 4r - 2 = 0$$

$$3x^2 - 4x - 2 = 0$$
 $\therefore x = \frac{2 \pm \sqrt{10}}{3}$

(2) 양변에 10을 곱하면

$$x^2 - 12x + 8 = 0$$
 : $x = 6 \pm 2\sqrt{7}$

- (3) 계수를 모두 분수로 고치면 $\frac{1}{2}x^2 + \frac{1}{6}x \frac{1}{2} = 0$ 양변에 6을 곱하면 $3x^2+x-2=0$ (x+1)(3x-2)=0 $\therefore x=-1 \pm \frac{2}{2}$
- (4) $(x-2)^2 = 2x^2 8$ $|x| + x^2 4x + 4 = 2x^2 8$ $x^2+4x-12=0$, (x+6)(x-2)=0
 - $\therefore x = -6 \ \text{F} = x = 2$
- (5) $3x^2 = (x-1)(x-2)$ 에서 $3x^2 = x^2 3x + 2$ $2x^2+3x-2=0$, (x+2)(2x-1)=0
 - $\therefore x = -2 \pm \frac{1}{2}$
- (6) $(3x+1)(2x-1)=2x^2+x$ 에서 $6x^2 - x - 1 = 2x^2 + x$
- $4x^2 2x 1 = 0$ $\therefore x = \frac{1 \pm \sqrt{5}}{4}$
- 4 (1) x-3=A로 놓으면 $A^2-7A+10=0$ (A-2)(A-5)=0 : A=2 또는 A=5즉. x-3=2 또는 x-3=5 $\therefore x=5$ 또는 x=8
 - (2) x+2=A로 놓으면 $A^2+6A+9=0$ $(A+3)^2=0$: A=-3(중구)
 - 즉. x+2=-3이므로 x=-5(중근)
 - (3) x+1=A로 놓으면 $6A^2+5A-1=0$
 - (A+1)(6A-1)=0 : $A=-1 \pm \frac{1}{6}A=\frac{1}{6}$
 - 즉, x+1=-1 또는 $x+1=\frac{1}{6}$
 - $\therefore x = -2 \, \text{EL} \, x = -\frac{5}{6}$

유형 8

P. 76

- 1 (1) 서로 다른 두 근
 - (2) a=2 b=1 c=2 $1^2-4\times2\times2=-15$ 그이 없다
 - (3) a=1, b=-4, c=4, $(-4)^2-4\times1\times4=0$, $\frac{27}{61}$
 - (4) a=1, b=-1, c=-2, $(-1)^2-4\times1\times(-2)=9$, 서로 다른 두 근
- 2 (1) $-\frac{1}{5}$, $-\frac{7}{5}$ (2) $\frac{5}{2}$, $\frac{1}{2}$ (3) 1, $-\frac{2}{3}$ (4) $-\frac{7}{2}$, $-\frac{1}{2}$
- **3** (1) -5, -3, -8 (2) $\alpha + \beta$, -5, -3, $\frac{5}{2}$

 - (3) $\alpha\beta$, -5, -3, 31 (4) $\alpha^2 + \beta^2$, 31, -3, $-\frac{31}{3}$
- (2) a=2, b=1, c=2이므로

 $b^2 - 4ac = 1^2 - 4 \times 2 \times 2 = -15$

:. 근이 없다.

(3) a=1, b=-4, c=4이므로

 $b^2-4ac=(-4)^2-4\times1\times4=0$

(4) a=1, b=-1, c=-2이므로

 $b^2-4ac=(-1)^2-4\times1\times(-2)=9$

∴ 서로 다른 두 근

유형 9

P. 77

1 (1) $x^2 - x - 6 = 0$

(2)
$$x+4$$
, $x-3$, $x^2+x-12=0$

(3)
$$x+5$$
, $x-6$, $x^2-x-30=0$

(4)
$$x+8$$
, $x^2+16x+64=0$

(5) 2,
$$x-3$$
, $2x^2-12x+18=0$

(6) 2,
$$x-2$$
, $x-7$, $2x^2-18x+28=0$

(7) 3,
$$x+9$$
, $x+1$, $3x^2+30x+27=0$

$$a = -5, b = 6$$

$$a = -4$$
, $b = -6$

2 x^2 의 계수가 1이고, 두 근이 2, 3인 이차방정식은 $(x-2)(x-3)=0, x^2-5x+6=0$ $\therefore a=-5, b=6$

(두 근의 합)=-a=2+3 $\therefore a$ =-5

(두 근의 곱)=b=2×3 ∴ b=6

3 x^2 의 계수가 2이고, 두 근이 -1, 3인 이차방정식은 2(x+1)(x-3)=0, $2(x^2-2x-3)=0$ $2x^2-4x-6=0$ $\therefore a=-4$, b=-6

유형 10

P. 78~79

- 1 식 : $\frac{n(n-3)}{2}$ = 54, 답 : 십이각형
- x+1, 181, -10, 9, 9, 10
- **3** 식: $x^2+(x+1)^2=113$. 답: 15
- **4** 식: $(x-1)^2+x^2+(x+1)^2=434$, 답: 11, 12, 13
- **5** 식: x(x-3)=180. 답: 15명
- (1) 식: -5t²+40t=60, 답: 2초 후 또는 6초 후
 (2) 식: -5t²+40t=0. 답: 8초 후
- **7** (1) 가로 : (x+2) cm, 세로 : (x-1) cm
- (2) (x+2)(x-1)=40 (3) 6
- 8 (1) $\pi (5+x)^2 \text{cm}^2$ (2) $x^2+10x-39=0$ (3) 3
- **9** (1) 가로 : (40-x) m, 세로 : (20-x) m
- (2) (40-x)(20-x) = 576 (3) 4
- **10** 식: (30-x)(20-x)=375. 답: 5
- 1 $\frac{n(n-3)}{2}$ =54, n(n-3)=108 n^2 -3n-108=0, (n+9)(n-12)=0 ∴ n=-9 또는 n=12 그런데 n>3이므로 n=12 따라서 구하는 다각형은 십이각형이다.

- 연속하는 두 자연수를 x, x+1이라 하면
 x²+(x+1)²=181
 x²+x²+2x+1=181, 2x²+2x-180=0
 x²+x-90=0, (x+10)(x-9)=0
 ∴ x=-10 또는 x=9
 그런데 x>0이므로 연속하는 두 자연수는 9, 10이다.
- 3 연속하는 두 자연수를 x, x+1이라 하면 $x^2+(x+1)^2=113$ $x^2+x^2+2x+1=113$, $2x^2+2x-112=0$ $x^2+x-56=0$, (x+8)(x-7)=0 ∴ x=-8 또는 x=7 그런데 x>0이므로 x=7 따라서 연속하는 두 자연수는 7, 8이므로 그 합은 7+8=15
- 4 연속하는 세 자연수를 x-1, x, x+1이라 하면 (x-1)²+x²+(x+1)²=434 x²-2x+1+x²+x²+2x+1=434 3x²=432, x²=144
 ∴ x=±12 그런데 x>1이므로 x=12 따라서 연속하는 세 자연수는 11, 12, 13이다.
- 학생 수를 x명이라 하면 볼펜을 한 학생에게 (x-3)자루씩 나누어 주었으므로 x(x-3)=180
 x²-3x-180=0, (x+12)(x-15)=0
 ∴ x=-12 또는 x=15
 그런데 x>0이므로 x=15

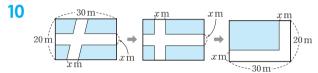
따라서 학생 수는 15명이다.

- (1) -5t²+40t=60, -5t²+40t-60=0
 t²-8t+12=0, (t-2)(t-6)=0
 ∴ t=2 또는 t=6
 따라서 공의 높이가 60 m가 되는 것은 쏘아 올린 지 2초후 또는 6초 후이다.
 - (2) 지면에 떨어질 때의 공의 높이는 0 m이므로
 -5t²+40t=0
 t²-8t=0, t(t-8)=0
 ∴ t=0 또는 t=8
 그런데 t>0이므로 t=8
 따라서 공이 다시 지면으로 떨어지는 것은 쏘아 올린 지
- 7 (3) (x+2)(x-1)=40 에서 $x^2+x-2=40$ $x^2+x-42=0$, (x+7)(x-6)=0 $\therefore x=-7$ 또는 x=6

그런데 x>1이므로 x=6

8초 후이다

- 8 (2) $\pi(5+x)^2 = \pi \times 5^2 + 39\pi$ 에서 $(5+x)^2 = 5^2 + 39$ $25+10x+x^2=25+39$
 - $\therefore x^2 + 10x 39 = 0$
 - $(3) x^2+10x-39=0$ 에서 (x+13)(x-3)=0
 - $\therefore x = -13 \, \text{E-} x = 3$
 - 그런데 x>0이므로 x=3
- 9 (3) (40-x)(20-x)=576에서 $800-60x+x^2=576$ $x^2-60x+224=0$, (x-4)(x-56)=0 $\therefore x=4 \pm \pm x=56$ 그런데 0 < x < 20이므로 x = 4



위의 그림의 세 직사각형에서 색칠한 부분의 넓이는 모두 같 ㅇㅁ구

$$(30-x)(20-x)=375$$

$$600-50x+x^2=375$$
, $x^2-50x+225=0$

$$(x-5)(x-45)=0$$

$$\therefore x=5 \pm x=45$$

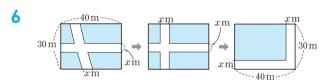
그런데 0 < x < 20이므로 x = 5

한 번 더 연습

P. 80

- **1** 식: $\frac{n(n+1)}{2}$ =153, 답: 17
- **2** 식: x(x+2)=288. 답: 34
- **3** 식: $(x+1)^2=4x+9$, 답: 4, 5
- **4** 식: $-5t^2+30t+80=105$, 답: 1초 후
- **5** (1) 가로 : (x-4) cm. 세로 : (x+2) cm
 - (2) (x-4)(x+2)=112 (3) 12
- 6 식: (40-x)(30-x)=875, 답: 5
- 1 $\frac{n(n+1)}{2}$ =153, n(n+1)=306 $n^2+n-306=0$, (n+18)(n-17)=0∴ n=-18 또는 n=17 그런데 n > 0이므로 n = 17
- 2 연속하는 두 짝수를 x, x+2라 하면 x(x+2)=288 $x^2+2x-288=0$, (x+18)(x-16)=0∴ x=-18 또는 x=16 그런데 x>0이므로 x=16따라서 두 짝수는 16, 18이므로 그 합은 16+18=34

- 3 연속하는 두 자연수를 x x+1이라 하면 $(x+1)^2 = 4x+9$ $x^2+2x+1=4x+9$, $x^2-2x-8=0$ (x+2)(x-4)=0 $\therefore x=-2 \pm \frac{1}{2} x=4$ 그런데 x>0이므로 x=4따라서 연속하는 두 자연수는 4, 5이다.
- $-5t^2+30t+80=105$. $5t^2-30t+25=0$ $t^2-6t+5=0$, (t-1)(t-5)=0∴ *t*=1 또는 *t*=5 따라서 물체의 높이가 처음으로 105m가 되는 것은 쏘아 올 린 지 1초 후이다.
- 5 (3) (x-4)(x+2)=112 에서 $x^2-2x-8=112$ $x^2-2x-120=0$, (x+10)(x-12)=0 $\therefore x = -10 \pm x = 12$ 그런데 x>4이므로 x=12



위의 그림의 세 직사각형에서 색칠한 부분의 넓이는 모두 같 ㅇㅁ로

(40-x)(30-x)=875

 $1200-70x+x^2=875, x^2-70x+325=0$

(x-5)(x-65)=0 : x=5 $\pm x=65$

그런데 0<x<30이므로 x=5

쌍둥이 기출문제

- 3 1
- 4 38
- 7 2.4 8 5
 - 9 (4)
- **10** 과정은 풀이 참조 (1) -2 (2) -4 (3) 12
- - **12** p = -8, q = -10 **13** ③

21 4 m

- 15 6살
- **19** ③
- 16 14명 17 ③

20 6cm. 과정은 풀이 참조

- **22** 5
- [1~4] (1) 이차방정식 $ax^2+bx+c=0$ 의 해

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (단, $b^2 - 4ac \ge 0$)

(2) 이차방정식 $ax^2 + 2b'x + c = 0$ 의 해

$$\Rightarrow x = \frac{-b' \pm \sqrt{b'^2 - ac}}{a} \text{ (단, } b'^2 - ac \ge 0\text{)}$$

1
$$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-1)}}{2 \times 1} = \frac{-1 \pm \sqrt{5}}{2}$$

2
$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 3 \times 5}}{3} = \frac{5 \pm \sqrt{10}}{3}$$

3
$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times 3}}{2 \times 1}$$

= $\frac{-5 \pm \sqrt{13}}{2}$

$$\therefore A = -5, B = 13$$

A+B=-3+41=38

[5~6] 계수가 분수나 소수인 이차방정식

이차방정식의 계수가 분수이면 양변에 분모의 최소공배수를 곱하고, 계수가 소수이면 양변에 10의 거듭제곱을 곱한다.

- 5 양변에 12를 곱하면 $6x^2+8x-9=0$ $\therefore x = \frac{-4 \pm \sqrt{4^2 - 6 \times (-9)}}{6} = \frac{-4 \pm \sqrt{70}}{6}$
- 6 계수를 모두 분수로 고치면 $\frac{1}{5}x^2 + \frac{3}{10}x \frac{1}{2} = 0$ 양변에 10을 곱하면 $2x^2 + 3x - 5 = 0$ (2x+5)(x-1) = 0 $\therefore x = -\frac{5}{2}$ 또는 x = 1

[7~8] 이차방정식 $ax^2+bx+c=0$ 에서

- (1) $b^2 4ac > 0$ \Rightarrow 서로 다른 두 근
- (2) b^2 -4ac = 0 \Rightarrow 중근
- (3) $b^2 4ac < 0 \Rightarrow$ 근이 없다.
- 7 ① $b^2-4ac=6^2-4\times1\times9=0$ ⇨ 중근 ② $b^2-4ac=(-3)^2-4\times1\times2=1>0$ ⇨ 서로 다른 두 근 ③ $x^2-4x=-4$ 에서 $x^2-4x+4=0$ $b^2-4ac=(-4)^2-4\times1\times4=0$ ⇨ 중근 ④ $b^2-4ac=(-5)^2-4\times2\times1=17>0$ ⇨ 서로 다른 두 근 ⑤ $b^2-4ac=(-4)^2-4\times3\times2=-8<0$ ⇨ 근이 없다.

[9~10] 근과 계수의 관계

이차방정식 $ax^2+bx+c=0$ 의 두 근을 a, β 라 하면 $a+\beta=-\frac{b}{a}$, $a\beta=\frac{c}{a}$

9
$$\alpha + \beta = -\frac{-3}{1} = 3, \ \alpha\beta = \frac{-9}{1} = -9$$

$$\therefore \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{3}{-9} = -\frac{1}{3}$$

10 (1)
$$a+b=-\frac{2}{1}=-2$$
 ... (i)

(2)
$$ab = \frac{-4}{1} = -4$$
 ... (ii)

(3)
$$a^2+b^2=(a+b)^2-2ab$$
 ... (iii)
= $(-2)^2-2\times(-4)$
=12 ... (iv)

채점 기준	배점
(i) $a+b$ 의 값 구하기	30 %
(ii) <i>ab</i> 의 값 구하기	30 %

30 %

10%

[11~12] 두 근이 α , β 이고, x^2 의 계수가 a인 이차방정식 $\Rightarrow a(x-\alpha)(x-\beta)=0$

- 11 두 근이 -3, 2이고, x^2 의 계수가 1인 이차방정식은 (x+3)(x-2)=0, $x^2+x-6=0$ 따라서 m=1, n=-6이므로 m+n=1+(-6)=-5
- 12 두 근이 -1, 5이고, x^2 의 계수가 2인 이차방정식은 2(x+1)(x-5)=0, $2x^2-8x-10=0$ $\therefore p=-8, q=-10$

[13~14] 이차방정식의 활용-수

(iii) $a^2 + b^2$ 을 변형하기

(iv) $a^2 + b^2$ 의 값 구하기

- (1) 연속하는 두 자연수 $\Rightarrow x$, x+1(x)는 자연수)로 놓는다.
- (2) 연속하는 세 자연수 $\Rightarrow x-1$, x, x+1 (x>1)로 놓는다.
- 13 연속하는 세 자연수를 x-1, x, x+1이라 하면 $(x+1)^2 = (x-1)^2 + x^2$ $x^2 + 2x + 1 = x^2 2x + 1 + x^2$, $x^2 4x = 0$ x(x-4) = 0 ∴ x = 0 또는 x = 4 그런데 x > 1이므로 x = 4 따라서 세 자연수는 3, 4, 5이므로 가장 작은 수는 3이다.
- 14 연속하는 두 자연수를 x, x+1이라 하면 $x^2+(x+1)^2=41$ $x^2+x^2+2x+1=41$, $2x^2+2x-40=0$ $x^2+x-20=0$, (x+5)(x-4)=0 ∴ x=-5 또는 x=4

그런데 x>0이므로 x=4 따라서 두 자연수는 4, 5이므로 두 수의 곱은 $4\times5=20$

[15~16] 이차방정식의 활용-나이, 개수

나이와 개수는 항상 0보다 큰 자연수이므로 이차방정식을 푼 다음 조건 에 맞는 해를 택한다.

- 15 동생의 나이를 x살이라 하면 형의 나이는 (x+4)살이므로 (x+4)²=3x²-8
 x²+8x+16=3x²-8, 2x²-8x-24=0
 x²-4x-12=0, (x+2)(x-6)=0
 ∴ x=-2 또는 x=6
 그런데 x>0이므로 x=6
 따라서 동생의 나이는 6살이다
- 학생 수를 x명이라 하면 공책을 한 학생에게 (x-4)권씩 나누어 주었으므로 x(x-4)=140
 x²-4x-140=0, (x+10)(x-14)=0
 ∴ x=-10 또는 x=14
 그런데 x>0이므로 x=14
 따라서 학생 수는 14명이다.

[17~18] 이차방정식의 활용 - 쏘아 올린 물체

쏘아 올린 물체의 높이가 $h\,\mathrm{m}$ 인 경우는 가장 높이 올라간 경우를 제외하면 올라갈 때와 내려올 때의 두 번이 있다.

- 17 -5t²+70t=240, -5t²+70t-240=0 t²-14t+48=0, (t-6)(t-8)=0 ∴ t=6 또는 t=8 따라서 물 로켓의 높이가 240 m가 되는 것은 쏘아 올린 지 6초 후 또는 8초 후이다.
- 18 40+20x-5x²=60, -5x²+20x-20=0 x²-4x+4=0, (x-2)²=0 ∴ x=2(중근) 따라서 폭죽이 터지는 것은 쏘아 올린 지 2초 후이다.

[19~20] 이차방정식의 활용-도형

새로 만든 직사각형의 가로와 세로의 길이를 x를 사용하여 나타낸 후 방정식을 세워서 푼다.

19 직사각형 모양의 밭의 가로의 길이는 (x+2) m, 세로의 길이는 (x-1) m이므로 (x+2)(x-1)=70 $x^2+x-2=70$, $x^2+x-72=0$ (x+9)(x-8)=0 ∴ x=-9 또는 x=8 그런데 x>1이므로 x=8

20 처음 정사각형의 한 변의 길이를 x cm라 하면 새로 만든 직사각형의 가로의 길이는 (x+3) cm, 세로의 길이는 (x+3)(x+2) cm이므로 $(x+3)(x+2)=2x^2$ ···(i) $x^2+5x+6=2x^2$ $x^2-5x-6=0$ (x+1)(x-6)=0 ··· x=-1 또는 x=6 ···(ii) 그런데 x>0이므로 x=6

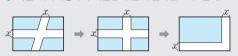
따라서 처음 정사각형의 한 변의 길이는 6cm이다.

채점 기준	배점
(i) 이차방정식 세우기	40 %

 (ii) 이차방정식 풀기
 40 %

 (iii) 처음 정사각형의 한 변의 길이 구하기
 20 %

[21~22] 다음 직사각형에서 색칠한 부분의 넓이는 모두 같다.



- 21 도로의 폭을 xm라 하면 도로를 제외한 땅의 넓이는 (50-x)(30-x)=1196 $1500-80x+x^2=1196$ $x^2-80x+304=0$ (x-4)(x-76)=0 ∴ x=4 또는 x=76 그런데 0 < x < 30이므로 x=4 따라서 도로의 폭은 4 m이다.
- 22 길을 제외한 꽃밭의 넓이는 (15-x)(10-x)=50 $150-25x+x^2=50$ $x^2-25x+100=0$ (x-5)(x-20)=0 $\therefore x=5$ 또는 x=20 그런데 0< x<10이므로 x=5

Best of Best 문제로 단원 마무리 P. 84~85 1 ④ 2 ④ 3 ④ 4 a=3, x=4/3, 과정은 풀이 참조 *** 5 ① 6 ② 7 ② 8 4 9 27, 과정은 풀이 참조 10 ⑤

1 ¬.
$$x^2-4x+3$$
 ⇒ 이차식

ㄴ.
$$(x+1)(x+2)=3$$
에서 $x^2+3x+2=3$ $x^2+3x-1=0$ \Rightarrow 이차방정식

$$x^2+5=x(x-3)$$
에서 $x^2+5=x^2-3x$
 $3x+5=0$ \Rightarrow 일차방정식

ㄹ.
$$(2-x)^2-x^2=0$$
에서 $4-4x+x^2-x^2=0$ $-4x+4=0$ \Rightarrow 일차방정식

$$\Box$$
. $\frac{1}{x^2} + \frac{1}{x} + 1 = 0$ \Rightarrow 이차방정식이 아니다.

ㅂ.
$$5x^2-3x=3(x^2+x+1)$$
에서 $5x^2-3x=3x^2+3x+3$

$$2x^2 - 6x - 3 = 0$$
 \Rightarrow 이차방정식

$\mathbf{2}$ [] 안의 수를 주어진 이차방정식의 x에 각각 대입하면

①
$$(-2)^2 - 2 \times (-2) - 2 \neq 0$$

$$(-3)^2 - (-3) - 6 \neq 0$$

$$3 \times (-1)^2 - (-1) - 1 \neq 0$$

$$4 2 \times \left(-\frac{3}{2}\right)^2 + \left(-\frac{3}{2}\right) - 3 = 0$$

$$53 \times (-2)^2 - 7 \times (-2) - 6 \neq 0$$

3
$$x^2+10x=56$$
에서 $x^2+10x-56=0$ $(x+14)(x-4)=0$ $\therefore x=-14$ 또는 $x=4$ 이때 $a>b$ 이므로 $a=4$, $b=-14$

$$a-b=4-(-14)=18$$

$$4 ax^2 - (2a+1)x + 3a - 5 = 0 에 x = 1 을 대입하면$$

$$a\!\times\!1^2\!-\!(2a\!+\!1)\!\times\!1\!+\!3a\!-\!5\!=\!0$$

$$2a-6=0 \quad \therefore a=3 \qquad \qquad \cdots (i)$$

즉,
$$3x^2 - 7x + 4 = 0$$
에서

$$(x-1)(3x-4)=0$$

∴
$$x=1$$
 또 $=\frac{4}{2}$... (ii)

따라서 다른 한 근은
$$x=\frac{4}{3}$$
이다. ... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) 이차방정식 풀기	40 %
(iii) 다른 한 근 구하기	20 %

$$x^2-3x+a=0$$
이 중근을 가지므로

$$a = \left(\frac{-3}{2}\right)^2 = \frac{9}{4}$$

즉,
$$x^2 - 3x + \frac{9}{4} = 0$$
이므로

$$\left(x - \frac{3}{2}\right)^2 = 0 \qquad \therefore x = b = \frac{3}{2} \left(\frac{2}{5}\right)$$

$$a-b=\frac{9}{4}-\frac{3}{2}=\frac{3}{4}$$

6
$$3x^2 - 8x = x^2 - 7$$
 $|x| 2x^2 - 8x = -7$

양변을 2로 나누면
$$x^2-4x=-\frac{7}{2}$$

$$x^2-4x+4=-\frac{7}{2}+4$$

$$(x-2)^2 = \frac{1}{2}$$

따라서
$$p=2$$
, $q=\frac{1}{2}$ 이므로

$$pq = 2 \times \frac{1}{2} = 1$$

7
$$x = \frac{-3 \pm \sqrt{3^2 - 2 \times a}}{2}$$

$$= \frac{-3 \pm \sqrt{9 - 2a}}{2} = \frac{b \pm \sqrt{11}}{2}$$

즉,
$$-3=b$$
, $9-2a=11$ 이므로

$$a = -1, b = -3$$

8 두 근이 $-\frac{1}{2}$, -1이고, x^2 의 계수가 2인 이차방정식은

$$2\left(x+\frac{1}{2}\right)(x+1)=0$$

$$(2x+1)(x+1)=0$$

$$\therefore 2x^2 + 3x + 1 = 0$$

따라서 a=3. b=1이므로

$$a+b=3+1=4$$

9 연속하는 세 자연수를 x-1, x, x+1이라 하면

$$(x-1)^2 + x^2 + (x+1)^2 = 245$$
 ... (i)

$$x^2 - 2x + 1 + x^2 + x^2 + 2x + 1 = 245$$

$$3x^2 = 243$$

$$x^2 = 81$$

$$\therefore x = \pm 9$$
 \cdots (ii)

그런데 x>0이므로 x=9

따라서 연속하는 세 자연수는 8, 9, 10이므로

채점 기준	배점
(i) 이차방정식 세우기	40 %
(ii) 이차방정식 풀기	30 %
(iii) 답 구하기	30 %

10
$$45t - 5t^2 = 0$$

$$t^2 - 9t = 0$$

$$t(t-9)=0$$

그런데
$$t>0$$
이므로 $t=9$

따라서 물체가 다시 지면에 떨어지는 것은 쏘아 올린 지 9초 후이다.

이차함수의 뜻

- 1 (1) × (2) \bigcirc
- (3) >
- (4) (

- (5) 🔾
- (6) × (7) ×
- (8) ×
- 2 (1) 이차함수가 아니다.
 - (2) $3x^2 6x 9$. 이차함수이다.
 - (3) 16x-32. 이차함수가 아니다.
 - $(4) x^2 x 2$, 이차함수이다.
- 3 이차함수인 것 : (2), (4)
 - (1) y = 3x (2) $y = 2x^2$ (3) $y = \frac{1}{4}x$ (4) $y = 10\pi x^2$
- **4** (1) 1 (2) 0 (3) $\frac{1}{4}$ (4) $\frac{9}{4}$ (5) 5 (6) 5
- **3** (1) *y*=3*x* ⇒ 일차함수
 - (2) $y = \frac{1}{2} \times (x+3x) \times x = 2x^2$ \Rightarrow 이차함수
 - (3) $y = \frac{1}{4}x$ \Rightarrow 일차함수
 - (4) $y=\pi \times x^2 \times 10=10\pi x^2$ \Rightarrow 이차함수
- 4 (1) $f(0) = 0^2 2 \times 0 + 1 = 1$
 - (2) $f(1)=1^2-2\times1+1=0$

(3)
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 2 \times \frac{1}{2} + 1 = \frac{1}{4}$$

$$(4) f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 - 2 \times \left(-\frac{1}{2}\right) + 1 = \frac{9}{4}$$

$$(5) f(-1) = (-1)^2 - 2 \times (-1) + 1 = 4$$

$$f(2)=2^2-2\times2+1=1$$

$$f(-1)+f(2)=4+1=5$$

(6)
$$f(-2) = (-2)^2 - 2 \times (-2) + 1 = 9$$

$$f(3)=3^2-2\times3+1=4$$

$$f(-2)-f(3)=9-4=5$$

$\bigcirc 2$ 이차함수 $y=ax^2$ 의 그래프

유형 2

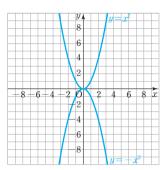
P. 89

- 1 풀이 참조
- 2 (1) (0, 0), 아래로 볼록 (2) (0, 0), 위로 볼록
- **3** 그래프 위에 있는 점 : (1), (4)
 - $(1) = (2) \neq (3) \neq (4) =$

P. 88

1

x	 -3	-2	-1	0	1	2	3	
x^2	 9	4	1	0	1	4	9	
$-x^2$	 -9	-4	-1	0	-1	-4	-9	



유형 3

P. 90~91

- 1 풀이 참조
- 2 (1) (0, 0), 아래로 볼록 (2) (0, 0), 위로 볼록 (3) (0, 0), 아래로 볼록 (4) (0, 0), 위로 볼록
- 3 (1) ①, ①, ⓒ
- (2) 🗈, 🕒, 🗇
- 4 그래프는 풀이 참조

(1)
$$y = -4x^2$$
 (2) $y = \frac{1}{3}x^2$

5 그래프는 풀이 참조

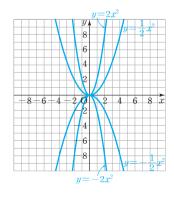
(1)
$$x=0$$
 (2) (0, 0) (3) $y=\frac{2}{3}x^2$ (4) 감소한다.

6 그래프 위에 있는 점 : (1), (3)

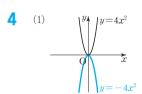
$$(1) = (2) \neq (3) = (4) \neq$$

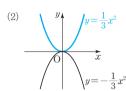
1

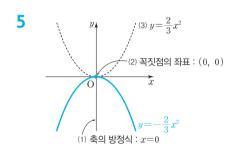
	\boldsymbol{x}	 -2	-1	0	1	2	
	$2x^2$	 8	2	0	2	8	
ĺ	$-2x^{2}$	 -8	-2	0	-2	-8	
	$\frac{1}{2}x^2$	 2	$\frac{1}{2}$	0	$\frac{1}{2}$	2	
	$-\frac{1}{2}x^{2}$	 -2	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-2	



- (1) 그래프가 아래로 볼록하므로 a > 0그래프의 폭이 좁을수록 a의 절댓값이 크므로 a의 값이 큰 것부터 차례로 나열하면 ①. ①. ©이다.
 - (2) 그래프가 위로 볼록하므로 a < 0그래프의 폭이 좁을수록 a의 절댓값이 크고, a가 음수이 므로 a의 값이 큰 것부터 차례로 나열하면 \bigcirc . \bigcirc . \bigcirc 이다.







쌍둥이 기출문제

P. 92~93

- **1** ③ **2** 3개 **3** ㄱ, ㄹ
- 5 ⑤ 6 10, 과정은 풀이 참조 7 $\frac{1}{2}$ 8 1
- **9** ④ **10** ③ **11** $a > \frac{1}{2}$ **12** ⑦, ⑤, ⑥, ②
- 13 ③ 14 ㄴ과 ㄷ, ㄹ과 ㅂ 15 ③, ⑤ 16 ④

[1~4] 이차함수 $\Rightarrow y = (x)$ 에 관한 이차식)의 꼴

- ④ y=(x-2)²-x²=-4x+4 ⇒ 일차함수
- 2 $y=x(x+1)=x^2+x$ \Rightarrow 이차함수 $= (x-3)^2 = 6x - 9 \Rightarrow$ 일차함수 $= y = (x-1)^2 + 2x - 1 = x^2$ \Rightarrow 이차함수 ㅂ. $y=4x(x+2)-4x^2=8x$ ⇒ 일차함수 따라서 이차함수인 것은 ㄱ, ㄴ, ㄹ의 3개이다.
- **3** ¬ *y*=5*x* ⇒ 일차함수 \bot . $y=\pi(x+1)^2=\pi x^2+2\pi x+\pi$ \Rightarrow 이차함수 $\Box y = x^2 \Rightarrow$ 이차함수 $\Box y = 2x \Rightarrow$ 일차함수
- 4 ① $y=2\pi\times5x=10\pi x$ \Rightarrow 일차함수 ② $y = \frac{1}{2} \times x \times 9 = \frac{9}{2}x$ \Rightarrow 일차함수
 - ③ *y*=80*x* ⇒ 일차함수
 - ④ *y*=6*x* ⇒ 일차함수
 - ⑤ $y = \pi x^2 \times 5 = 5\pi x^2$ \Rightarrow 이차함수

[5~6] 이차함수 $f(x) = ax^2 + bx + c$ 에서 함숫값 f(k)f(x)에 x 대신 k를 대입한 값 \Rightarrow $f(k) = ak^2 + bk + c$

- 5 $f(x) = -x^2 + 3x + 1$ 에서 $f(2) = -2^2 + 3 \times 2 + 1 = 3$
- $f(x) = 2x^2 5x$ 에서 $f(-1)=2\times(-1)^2-5\times(-1)=7$... (i) $f(1) = 2 \times 1^2 - 5 \times 1 = -3$... (ii) f(-1)-f(1)=7-(-3)=10··· (iii)

채점 기준	배점
$(\mathrm{i})f(-1)$ 의 값 구하기	40 %
(ii) f(1)의 값 구하기	40 %
$\overline{\mathrm{(iii)}f(-1)\!-\!f(1)}$ 의 값 구하기	20%

- [7~8] 점 (a, b)가 이차함수의 그래프 위의 점이다. \Rightarrow 이차함수의 식에 x=a, y=b를 대입하면 성립한다.
- 7 $y=ax^2$ 에 x=4, y=8을 대입하면 $8=a\times 4^2$ $\therefore a=\frac{1}{2}$
- **8** $y = \frac{1}{4}x^2$ 에 x = -2, y = k를 대입하면 $k = \frac{1}{4} \times (-2)^2 = 1$

[9~14] 이차함수 $y=ax^2$ 의 그래프에서 a의 값

- (1) 그래프의 모양 : a > 0일 때, 아래로 볼록 a<0일 때, 위로 볼록
- (2) 그래프의 폭 : a의 절댓값이 클수록 그래프의 폭이 좁아진다.
- (3) 이차함수 $y = -ax^2$ 의 그래프와 x축에 서로 대칭이다.
- 9 $\left|\frac{1}{4}\right| < \left|-\frac{1}{2}\right| < |2| < |-3| < |4|$ 이므로 그래프의 폭이 가장 넓은 것은 ④ $y = \frac{1}{4}x^2$ 이다.
- **10** x^2 의 계수가 음수인 것은 ②. ③. ⑤이고. 이때 $\left| -\frac{2}{2} \right| < |-1| < |-3|$ 이므로 그래프가 위로 볼록하 면서 폭이 가장 좁은 것은 ③ $y = -3x^2$ 이다.
- 11 $y=ax^2$ 의 그래프는 아래로 볼록하고 $y=\frac{1}{3}x^2$ 의 그래프보 다 폭이 좁으므로 $a > \frac{1}{2}$ 이다.
- **12** \bigcirc , \bigcirc , \bigcirc 에서 a>0이고, 그래프의 폭이 가장 좁은 것은 \bigcirc 이므로 a의 값이 큰 것부터 나열하면 ①. ①. ⓒ이다. ②. \square 에서 a < 0이고. 그래프의 폭이 더 좁은 것은 \square 이므 로 a의 값이 큰 것부터 나열하면 @. ②이다. 따라서 a의 값이 큰 것부터 차례로 나열하면 7, C, C, D, 2

- **13** $y = \frac{3}{2}x^2$ 의 그래프는 $y = -\frac{3}{2}x^2$ 의 그래프와 x축에 서로 대
- 14 x축에 서로 대칭인 그래프를 모두 찾아 짝지으면 다음과 같다. $L. y = \frac{1}{5}x^2$ $L. y = -\frac{1}{5}x^2$, ਦ. $y = -\frac{4}{5}x^2$ ਸ ਮ. $y = \frac{4}{5}x^2$

[15~16] 이차함수 $y=ax^2$ 의 그래프의 성질

- (1) 꼭짓점의 좌표 : (0, 0)
- (2) 축의 방정식 : x=0(y축)
- (3) a > 0이면 아래로 볼록. a < 0이면 위로 볼록
- (4) a의 절댓값이 클수록 그래프의 폭이 좁아진다.
- (5) $y = ax^2$ 과 $y = -ax^2$ 의 그래프는 x축에 서로 대칭이다.
- **15** ③ *a* > 0일 때. 아래로 볼록한 포물선이다.
 - ⑤ $y = -ax^2$ 의 그래프와 x축에 서로 대칭이다
- **16** ① 꼭짓점의 좌표는 (0, 0)이다.
 - ② 위로 볼록한 포뭌선이다
 - ③ $4 \neq -(-2)^2$ 이므로 점 (-2, 4)를 지나지 않는다. ⇒ 점 (-2, -4)를 지난다.
 - ⑤ x < 0일 때, x의 값이 증가하면 y의 값도 증가한다.

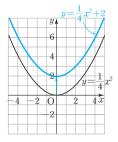
\bigcirc 3 이차함수 $y=a(x-p)^2+q$ 의 그래프

유형 4

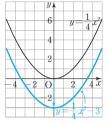
P. 94~95

- 1 (1) $y=3x^2+5$, $y=3x^2-7$ (2) $y = -\frac{1}{2}x^2 + 4$, $y = -\frac{1}{2}x^2 - 3$
- 2 (1) $y = \frac{1}{3}x^2$, -5 (2) $y = 2x^2$, 1
 - (3) $y = -3x^2$, $-\frac{1}{3}$ (4) $y = -\frac{5}{2}x^2$, 3
- 3~4 풀이 참조 **5** ②. ③
- 6 그래프는 풀이 참조
 - (1) 아래로 볼록. x=0. (0, -3)
 - (2) 아래로 볼록. *x*=0. (0, 3)
 - (3) 위로 볼록, x=0, (0, -1)
 - (4) 위로 볼록, x=0, (0,5)
- 7 (1) x=0 (2) (0, 2) (3) $a=\frac{1}{2}$, q=2

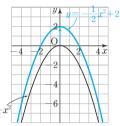
3 (1) $y = \frac{1}{4}x^2 + 2$ 의 그래프는 $y=\frac{1}{4}x^2$ 의 그래프를 y축의 방 향으로 2만큼 평행이동한 것이



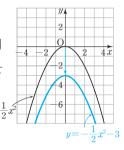
(2) $y = \frac{1}{4}x^2 - 3$ 의 그래프는 $y=\frac{1}{4}x^2$ 의 그래프를 y축의 방 향으로 -3만큼 평행이동한 것



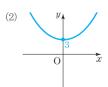
4 (1) $y = -\frac{1}{2}x^2 + 2$ 의 그래프는 $y=-\frac{1}{2}x^2$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 것

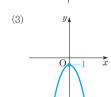


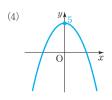
(2) $y = -\frac{1}{2}x^2 - 3$ 의 그래프는 $y=-\frac{1}{2}x^2$ 의 그래프를 y축의 방향으로 - 3만큼 평행이동한 것이다



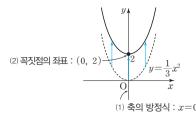
- $y = 5x^2 3$ 에 주어진 점의 좌표를 각각 대입하면
 - ① $7 \neq 5 \times (-2)^2 3$
 - ② $2=5\times(-1)^2-3$
 - $3 3 = 5 \times 0^2 3$
 - (4) $-2 \neq 5 \times 1^2 3$
 - $5 7 \neq 5 \times 2^2 3$
- (1)







7



- (3) $y=\frac{1}{3}x^2$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 그래프이므로 $y=\frac{1}{3}x^2+2$ $\therefore a=\frac{1}{3}, q=2$

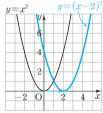
유형 5

P. 96~97

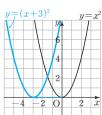
1 (1)
$$y=3(x-5)^2$$
, $y=3(x+7)^2$
(2) $y=-\frac{1}{2}(x-4)^2$, $y=-\frac{1}{2}(x+3)^2$

2 (1)
$$y=2x^2$$
, -3 (2) $y=-x^2$, 5 (3) $y=-2x^2$, -4 (4) $y=\frac{1}{4}x^2$, $\frac{1}{2}$

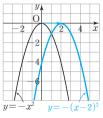
- **3~4** 풀이 참조 **5** ④
- 6 그래프는 풀이 참조
 - (1) 아래로 볼록, x=2, (2, 0)
 - (2) 아래로 볼록, x = -5, (-5, 0)
 - (3) 위로 볼록, $x = \frac{4}{5}$, $(\frac{4}{5}, 0)$
 - (4) 위로 볼록, x=-4, (-4, 0)
- 7 (1) x = -3 (2) (-3, 0) (3) a = 2, p = -3
- 2 (1) $y=2(x+3)^2=2\{x-(-3)\}^2$ 의 그래프는 $y=2x^2$ 의 그 래프를 x축의 방향으로 -3만큼 평행이동한 것이다.
 - (3) $y=-2(x+4)^2=-2\{x-(-4)\}^2$ 의 그래프는 $y=-2x^2$ 의 그래프를 x축의 방향으로 -4만큼 평행이 동한 것이다.
- (1) y=(x-2)²의 그래프는
 y=x²의 그래프를 x축의 방향으로 2만큼 평행이동한 것이다.



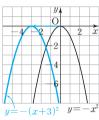
(2) $y=(x+3)^2=\{x-(-3)\}^2$ 의 그래프는 $y=x^2$ 의 그래프를 x축 의 방향으로 -3만큼 평행이동 한 것이다.



4 (1) y=-(x-2)²의 그래프는
 y=-x²의 그래프를 x축의 방향
 으로 2만큼 평행이동한 것이다.



(2) y=-(x+3)²
 =-{x-(-3)}²
 의 그래프는 y=-x²의 그래프를 x축의 방향으로 -3만큼 평행이동한 것이다.



 $5 \quad y = -\frac{1}{3}(x+1)^2 \text{에 주어진 점의 좌표를 각각 대입하면}$

①
$$-3 = -\frac{1}{3} \times (-4 + 1)^2$$

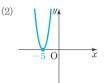
$$2 - \frac{1}{3} = -\frac{1}{3} \times (-2 + 1)^2$$

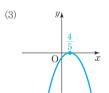
$$3 - \frac{1}{3} = -\frac{1}{3} \times (0+1)^2$$

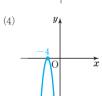
$$43 \neq -\frac{1}{3} \times (2+1)^2$$

$$5 - 12 = -\frac{1}{3} \times (5+1)^2$$

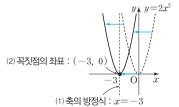
6 (







7



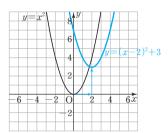
(3) $y=2x^2$ 의 그래프를 x축의 방향으로 -3만큼 평행이동한 그래프이므로

$$y=2\{x-(-3)\}^2=2(x+3)^2$$

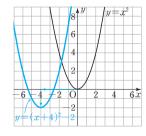
$$\therefore a=2, p=-3$$

유형 6 P. 98~99

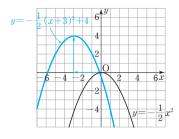
- 1 (1) $y=3(x-1)^2+2$, $y=3(x+2)^2-3$ (2) $y=-\frac{1}{2}(x-3)^2-2$, $y=-\frac{1}{2}(x+4)^2+1$
- 2 (1) $y = \frac{1}{2}x^2$, 2, -1 (2) $y = 2x^2$, -2, 3 (3) $y = -x^2$, 5, -3 (4) $y = -\frac{1}{3}x^2$, $-\frac{3}{2}$, $-\frac{3}{4}$
- **3~4** 풀이 참조 **5** ④
- 6 그래프는 풀이 참조
 - (1) 아래로 볼록, *x*=2, (2, 1)
 - (2) 위로 볼록. x=-2. (-2, -5)
 - (3) 아래로 볼록. x=2. (2, 4)
 - (4) 위로 볼록, $x = -\frac{3}{2}$, $\left(-\frac{3}{2}, -1\right)$
- **7** (1) x=3 (2) (3, -1) (3) $a=\frac{1}{4}, p=3, q=-1$
- $2 \qquad \text{(4)} \ y = -\frac{1}{3} \left(x + \frac{3}{2} \right)^2 \frac{3}{4} = -\frac{1}{3} \left\{ x \left(-\frac{3}{2} \right) \right\}^2 \frac{3}{4} \ \, \text{의 } \ \,$ 래프는 $y = -\frac{1}{3} x^2 \ \, \text{의 } \ \, \text{리표를} \ \, x \stackrel{\text{4}}{\Rightarrow} \ \, \text{방향으로} \ \, -\frac{3}{2} \ \, \text{만}$ 큼, $y \stackrel{\text{4}}{\Rightarrow} \ \, \text{방향으로} \ \, -\frac{3}{4} \ \, \text{만큼} \ \, \text{평행이동한 것이다.}$
- **3** (1) $y=(x-2)^2+3$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동한 것이다.



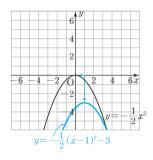
(2) $y=(x+4)^2-2=\{x-(-4)\}^2-2$ 의 그래프는 $y=x^2$ 의 그래프를 x축의 방향으로 -4만큼, y축의 방향으로 -2만큼 평행이동한 것이다.



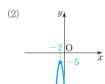
 $4 (1) y = -\frac{1}{2}(x+3)^2 + 4 = -\frac{1}{2}\{x - (-3)\}^2 + 4$ 의 그래프 는 $y = -\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 4만큼 평행이동한 것이다.

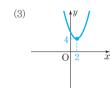


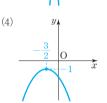
(2) $y = -\frac{1}{2}(x-1)^2 - 3$ 의 그래프는 $y = -\frac{1}{2}x^2$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -3만큼 평행이동한 것이다.

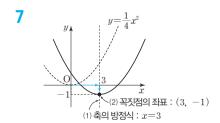


- $y = -4(x-2)^2 + 5$ 에 주어진 점의 좌표를 각각 대입하면
 - ① $-11 \neq -4 \times (-2-2)^2 + 5$
 - $2 -7 \neq -4 \times (-1-2)^2 + 5$
 - 3) 21 \neq $-4 \times (0-2)^2 + 5$
 - $41 = -4 \times (1-2)^2 + 5$
 - (5) $9 \neq -4 \times (3-2)^2 + 5$
- 6 (1) y O 2 x









(3) $y=\frac{1}{4}x^2$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 -1만큼 평행이동한 그래프이므로 $y=\frac{1}{4}(x-3)^2-1$ $\therefore a=\frac{1}{4}, p=3, q=-1$

유형 7

- **1** (1) 2, 3, 0, -1, $\frac{1}{2}$, $y = \frac{1}{2}(x-2)^2 3$ (2) $y = -5(x+1)^2 + 5$
- 2 1. 3. 1. 3. 0. 4. 1. $y=(x-1)^2+3$
- **3** (1) 1, 4, 16, $-\frac{1}{4}$, 4, $y = -\frac{1}{4}(x-1)^2 + 4$ (2) $y=3(x+3)^2-1$
- **4** 2, 2, 4, 6, 4, 4, 16, $-\frac{1}{3}$, $\frac{16}{3}$, $y = -\frac{1}{3}(x-2)^2 + \frac{16}{3}$
- (2) 꼭짓점의 좌표가 (-1, 5)이므로 구하는 이차함수의 식 이 그래프가 워점을 지나므로 x=0, y=0을 대입하면 $0=a(0+1)^2+5$: a=-5
- 3 (2) 축의 방정식이 x=-3이므로 구하는 이차함수의 식을 $y=a(x+3)^2+a$ 로 놓자. 이 그래프가 두 점 (-1, 11), (-2, 2)를 지나므로
 - x=-1. y=11을 대입하면 $11 = a(-1+3)^2 + q$: 11 = 4a + q
 - x = -2, y = 2를 대입하면
 - $2=a(-2+3)^2+a$: 2=a+a
 - ①. ①을 연립하여 풀면
 - a = 3, q = -1 $y=3(x+3)^2-1$

 $y = -5(x+1)^2 + 5$

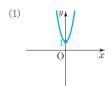
한 번 더 연습

... (L)

- 1 (1) $y=2x^2-3$ (2) $y=-\frac{3}{2}(x+1)^2$

 - (3) $y = \frac{1}{2}(x-5)^2 3$ (4) $y = -5(x+2)^2 + 4$
- 2 그래프는 풀이 참조
 - (1) 아래로 볼록, x=0, (0, 1)
 - (2) 위로 볼록, x=-2, (-2, 0)
 - (3) 아래로 볼록. x=2. (2, -5)
 - (4) 위로 볼록, x=-1, (-1, -3)
- 3 (1) $y=5(x-1)^2-3$ (2) $y=\frac{1}{2}(x-2)^2-1$
- **4** (1) $y = \frac{5}{4}(x+2)^2 1$ (2) $y = -(x+1)^2 + 4$

2



- (3)
- (1) 꼭짓점의 좌표가 (1, −3)이므로 구하는 이차함수의 식을 $y=a(x-1)^2-3$ 으로 놓자. 이 그래프가 점 (2, 2)를 지나므로
 - x=2 y=2를 대입하면
 - $2 = a(2-1)^2 3$: a = 5
 - $y=5(x-1)^2-3$
 - (2) 축의 방정식이 x=2이므로 구하는 이차함수의 식을 $y=a(x-2)^2+a$ 로 놓자.
 - 이 그래프가 두 점 $\left(-1, \frac{7}{2}\right)$, (6, 7)을 지나므로
 - $x=-1, y=\frac{7}{2}$ 을 대입하면
 - $\frac{7}{2} = a(-1-2)^2 + q \qquad \therefore \frac{7}{2} = 9a + q \qquad \cdots \bigcirc$
 - x=6. y=7을 대입하면
 - $7 = a(6-2)^2 + a$: 7 = 16a + a
- ①. ①을 연립하여 풀면

$$a = \frac{1}{2}, q = -1$$

$$\therefore y = \frac{1}{2}(x-2)^2 - 1$$

- (1) 꼭짓점의 좌표가 (-2, -1)이므로 구하는 이차함수의 식을 $y=a(x+2)^2-1$ 로 놓자.
 - 이 그래프가 점 (0.4)를 지나므로
 - x=0, y=4를 대입하면

$$4 = a(0+2)^2 - 1$$
 : $a = \frac{5}{4}$

$$\therefore y = \frac{5}{4}(x+2)^2 - 1$$

- (2) 축의 방정식이 x = -1이므로 구하는 이차함수의 식을 $y = a(x+1)^2 + q$ 로 놓자.
 - 이 그래프가 두 점 (-3, 0), (0, 3)을 지나므로
 - x=-3, y=0을 대입하면
 - $0=a(-3+1)^2+q$: 0=4a+q
- ... (7)
- x=0, y=3을 대입하면
- $3=a(0+1)^2+q$: 3=a+q
- ... (L)
- ①. ①을 연립하여 풀면
- a = -1, q = 4
- $\therefore y = -(x+1)^2 + 4$

유형 8 P. 102

- 1 (1) >, >, >
- (2) 위, <, 3, <, <
- (3) >, >, <
- (4) > . < . <
- (5) < ... < ... >
- (6) < . > . <
- (3) 그래프가 아래로 볼록하므로 a ≥ 0
 꼭짓점 (p, q)가 제4사분면 위에 있으므로
 p ≥ 0, q < 0
 - (4) 그래프가 아래로 볼록하므로 $a \ge 0$ 꼭짓점 (p, q)가 제3사분면 위에 있으므로 p < 0, q < 0
 - (5) 그래프가 위로 볼록하므로 $a \le 0$ 꼭짓점 (p, q)가 제2사분면 위에 있으므로 $p \le 0, q \ge 0$
 - (6) 그래프가 위로 볼록하므로 $a \le 0$ 꼭짓점 (p, q)가 제4사분면 위에 있으므로 p > 0, q < 0

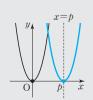
쌍둥이 기출문제

P. 103~105

- **1** ④ **2** ① **3** ① **4** ③ **5** c, =
- **6** ⓐ **7** ⓐ **8** ③ **9** -2 **10** $\frac{5}{2}$ **11** 7
- **12** 1 **13** ⑤ **14** ① **15** $y = -3(x-1)^2 + 3$
- **16** 5 **17** 1 **18** $y = -\frac{1}{3}(x+3)^2 + 2$
- **19** $y=2(x+2)^2+1$ **20** 8. 과정은 풀이 참조
- **21** a < 0, p > 0, q > 0 **22** ③

[1~6] 이차함수 $y=ax^2+q$, $y=a(x-p)^2$ 의 그래프

- (1) $y = ax^2 + q$ 의 그래프
 - ① $y=ax^2$ 의 그래프를 y축의 방향으로 q만큼 평행이동
 - ② 축의 방정식 : *x*=0
 - ③ 꼭짓점의 좌표: (0, q)
 - ④ 증가·감소의 기준 : 직선 x=0
- $(2) y = a(x-p)^2$ 의 그래프
 - ① $y=ax^2$ 의 그래프를 x축의 방향으로 p만큼 평행이동
 - ② 축의 방정식 : x=p
 - ③ 꼭짓점의 좌표 : (p, 0)
 - ④ 증가·감소의 기준 : 직선 x=p



1 $y=-2x^2+1$ 에서 x^2 의 계수가 음수이므로 그래프는 위로 볼록하고, 꼭짓점의 좌표가 (0, 1)이므로 4이다.

- **2** $y=2(x+1)^2$ 에서 x^2 의 계수가 양수이므로 그래프는 아래로 볼록하고, 꼭짓점의 좌표가 (-1,0)이므로 ①이다.
- 3 평행이동한 그래프의 식은 $y = \frac{1}{3}x^2 + m$ 이 그래프가 점 (3, 5)를 지나므로 x = 3, y = 5를 대입하면 $5 = \frac{1}{3} \times 3^2 + m$ ∴ m = 2
- 4 평행이동한 그래프의 식은 y=-2(x-m)²
 이 그래프가 점 (0, -18)을 지나므로
 x=0, y=-18을 대입하면
 -18=-2×(0-m)², m²=9
 ∴ m=±3
 그런데 m>0이므로 m=3
- 기. 축의 방정식은 x=0이다.
 니. 위로 볼록한 포물선이다.
 미. y=-¹/₂x²의 그래프를 y축의 방향으로 1만큼 평행이동한 그래프이다.
- ④ x>-2일 때, x의 값이 증가하면 y의 값도 증가한다.
 ⑤ 꼭짓점 (-2, 0)이 x축 위에 있으므로 x축과 한 점에서 만난다.

[7~14] 이차함수 $y=a(x-p)^2+q$ 의 그래프

- (1) $y=ax^2$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동
 - ⇒ a의 값이 같으면 평행이동하여 완전히
 포갤 수 있다.
- (2) 축의 방정식 : x=b
- (3) 꼭짓점의 좌표 : (p, q)
- (4) 증가·감소의 기준 : 직선 x=p

- 7 ④ y=(x+2)²+3은 y=2x²과 x²의 계수가 다르므로 그래 프를 평행이동하여 완전히 포갤 수 없다.
- 8 ③ $y = -\frac{1}{2}x^2 3$ 은 $y = -\frac{1}{2}x^2$ 과 x^2 의 계수가 같으므로 그래프를 평행이동하여 완전히 포갤 수 있다.
- 9 평행이동한 그래프의 식은 $y=-(x-3)^2-1$ 이 그래프가 점 (4, m)을 지나므로 x=4, y=m을 대입하면 $m=-(4-3)^2-1=-2$
- 10 평행이동한 그래프의 식은 $y=a(x-1)^2-4$ 이 그래프가 점 (-1,6)을 지나므로 x=-1,y=6을 대입하면 $6=a(-1-1)^2-4,6=4a-4$ $\therefore a=\frac{5}{2}$

- 11 평행이동한 그래프의 식은 $y=2(x-p)^2+q$ 이 식이 $y=2(x+6)^2+1$ 과 같아야 하므로 p=-6, q=1 $\therefore q-p=1-(-6)=7$
- 12 평행이동한 그래프의 식은 $y=-4(x-m)^2+n$ 이 식이 $y=a(x-3)^2+2$ 와 같아야 하므로 a=-4, m=3, n=2 $\therefore m+n+a=3+2+(-4)=1$
- 13 ⑤ y=2x²의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 3만큼 평행이동한 그래프이다.
- 14 그래프 그래프의 모양 축의 방정식 꼭짓점의 좌표 \neg 아래로 볼록 (2, -4)x=2위로 볼록 x=2(2. -4)(-2, -4)아래로 볼록 x=-2위로 볼록 x = -1(-1, 5)근
 - ② \neg . x>2일 때, x의 값이 증가하면 y의 값도 증가한다. \bot . x>2일 때, x의 값이 증가하면 y의 값은 감소한다.

[15~18] 이차함수 $y=a(x-p)^2+q$ 의 그래프의 식 구하기 (1) 꼭짓점 (p,q)와 그래프가 지나는 다른 한 점의 좌표를 알 때 $\Rightarrow y=a(x-p)^2+q$ 에 다른 한 점의 좌표를 대입하여 a의 값을 구한다.

- 15 꼭짓점의 좌표가 (1, 3)이므로 구하는 이차함수의 식을 $y=a(x-1)^2+3$ 으로 놓자. 이 그래프가 점 (2, 0)을 지나므로 x=2, y=0을 대입하면 $0=a(2-1)^2+3$ $\therefore a=-3$ $\therefore y=-3(x-1)^2+3$
- 3 목짓점의 좌표가 (3, -2)이므로 이차함수의 식을 y=a(x-3)²-2로 놓으면 p=3, q=-2
 이 그래프가 점 (4, 2)를 지나므로 x=4, y=2를 대입하면 2=a(4-3)²-2 ∴ a=4
 ∴ a+p+q=4+3+(-2)=5
- 17 꼭짓점의 좌표가 (-2, -1)이므로 이차함수의 식을 $y=a(x+2)^2-1$ 로 놓으면 p=-2, q=-1 이 그래프가 점 (0, 1)을 지나므로 x=0, y=1을 대입하면 $1=a(0+2)^2-1, 4a=2$ $\therefore apq=\frac{1}{2}\times (-2)\times (-1)=1$

18 꼭짓점의 좌표가 (-3, 2)이므로 구하는 이차함수의 식을 y=a(x+3)²+2로 놓자.
이 그래프가 점 (0, -1)을 지나므로 x=0, y=-1을 대입하면 -1=a(0+3)²+2, 9a=-3 ∴ a=-1/3
∴ y=-1/3(x+3)²+2

[19~20] 이차함수 $y=a(x-p)^2+q$ 의 그래프의 식 구하기 (2) 축의 방정식 x=p와 그래프가 지나는 두 점의 좌표를 알 때 $\Rightarrow y=a(x-p)^2+q$ 에 두 점의 좌표를 각각 대입하여 $a,\ q$ 의 값을 구한다

- 19 축의 방정식이 x=-2이므로 구하는 이차함수의 식을 $y=a(x+2)^2+q$ 로 놓자.
 이 그래프가 두 점 (-1,3),(0,9)를 지나므로 x=-1,y=3을 대입하면 3=a+q ··· ① x=0,y=9를 대입하면 9=4a+q ··· ① ① ... ① 연립하여 풀면 a=2,q=1 ∴ $y=2(x+2)^2+1$
- 20 축의 방정식이 x=4이므로 이차함수의 식을 $y=a(x-4)^2+q$ 로 놓으면 p=4 ··· (i) 이 그래프가 두 점 (0,5), (1,-2)를 지나므로 x=0, y=5를 대입하면 5=16a+q ··· ① x=1, y=-2를 대입하면 -2=9a+q ··· ② ①, ②을 연립하여 풀면 a=1, q=-11 ··· (ii) ··· a-p-q=1-4-(-11)=8 ··· (iii)

채점 기준	배점
(i) p의 값 구하기	30 %
(ii) a, q의 값 구하기	50%
(iii) $a-p-q$ 의 값 구하기	20 %

[21~22] 이차함수 $y=a(x-p)^2+q$ 의 그래프에서 a, p, q의 부호

- (1) *a*의 부호
 - ① 그래프가 아래로 볼록하면 $\Rightarrow a > 0$
 - ② 그래프가 위로 볼록하면 $\Rightarrow a < 0$
- (2) p, q의 부호 : 꼭짓점의 위치에 따라
 - A TILLER NAME OF THE PARTY OF T
 - ① 제1사분면 $\Rightarrow p > 0, q > 0$ ② 제2사분면 $\Rightarrow p < 0, q > 0$
 - ③ 제3사분면 \Rightarrow p < 0, q < 0 ④ 제4사분면 \Rightarrow p > 0, q < 0
- 21 그래프가 위로 볼록하므로 *a*<0 꼭짓점 (*p*, *q*)가 제1사분면 위에 있으므로 *p*>0, *q*>0
- 22 그래프가 아래로 볼록하므로 a>0 꼭짓점 (p,q)가 제2사분면 위에 있으므로 p<0(1),q>0 ② ap<0
 - ③ (양수)-(음수)=(양수)이므로 a-p>0
 - 4 a+q>0
 - \bigcirc apq< 0

Best of Best 문제로 단원 마무리 P. 106~107

- **1** ④ **2** 4 **3** 4. 과정은 풀이 참조
- **5** -1 **6** L, E, E **7** $\frac{1}{2}$ **8** ③
- 1 ③ y=x(x+1)-x(x-2)=3x \Rightarrow 일차함수 ④ $y = -x(x^2-1) = -x^3 + x$ \Rightarrow 이차함수가 아니다
- 2 $f(x) = -3x^2 + 5x 11$ $f(-1) = -3 \times (-1)^2 + 5 \times (-1) - 11 = -19$ $f(3) = -3 \times 3^2 + 5 \times 3 - 11 = -23$ f(-1)-f(3)=-19-(-23)=4
- $y=ax^2$ 의 그래프가 점 (-2, 2)를 지나므로 x = -2, y = 2를 대입하면 $2=a\times(-2)^2$ $\therefore a=\frac{1}{2}$... (i)

즉, $y = \frac{1}{2}x^2$ 의 그래프가 점 (4, b)를 지나므로

x=4, y=b를 대입하면

$$b = \frac{1}{2} \times 4^2 = 8 \qquad \cdots (ii)$$

$$\therefore ab = \frac{1}{2} \times 8 = 4$$

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

- **4** ① 꼭짓점의 좌표는 (0, 0)이다
 - ② 위로 볼록한 포물선이다.
 - ④ $5 \neq -\frac{1}{5} \times (-5)^2$ 이므로 점 (-5, 5)를 지나지 않는다. ⇒ 점 (-5, -5)를 지난다.
 - ⑤ x>0일 때. x의 값이 증가하면 y의 값은 감소한다.
- 평행이동한 그래프의 식은 $y = -\frac{1}{2}(x-m)^2 + n$

이 식이 $y = -\frac{1}{2}(x+5)^2 + 4$ 와 같아야 하므로

m = -5, n = 4 : m + n = -5 + 4 = -1

- 6 L. 꼭짓점의 좌표는 (2, 4)이다.
 - $c.6 \neq -2(1-2)^2 + 4$ 이므로 점 (1.6)을 지나지 않는다. ⇒ 점 (1, 2)를 지난다.
 - \Box 그래프의 폭은 x^2 의 계수의 절댓값이 클수록 좁으므로 $y = -2(x-2)^2 + 4$ 의 그래프는 $y = x^2$ 의 그래프보다 폭 이 좁다.
- 7 꼭짓점의 좌표가 (2, -2)이므로 이차함수의 식을 $y=a(x-2)^2-2$ 로 놓으면

p=2, q=-2

이 그래프가 원점 (0,0)을 지나므로

x=0, y=0을 대입하면

 $0=a(0-2)^2-2, 0=4a-2$ $\therefore a=\frac{1}{2}$

 $\therefore a+p+q=\frac{1}{2}+2+(-2)=\frac{1}{2}$

8 그래프가 아래로 볼록하므로 a>0꼭짓점 (p, q)가 제3사분면 위에 있으므로 p < 0, q < 0

... (iii)

이 이 이 하함수 $y=ax^2+bx+c$ 의 그래프

유형 1

P. 110~111

- 1(1) 9, 9, 9, 18, 3, 19(2) 풀이 참조(3) 8, 8, 16, 16, 8, 16, 8, 4, 10(4) 풀이 참조
- 그래프는 풀이 참조
 (1) (-2, -1), (0, 3), 아래로 볼록
 (2) (1, 3), (0, 5/2), 위로 볼록
- 3 (1) (-2, 0), (4, 0) (2) (-3, 0), (1, 0) (3) (-5, 0), (2, 0) (4) (-2, 0), (3, 0)
- **4** (1) 3, 3, 3, 2, -2, 3, 5, 1, 1, -4, $y=x^2-4x+3$ (2) $y=\frac{1}{4}x^2+x-3$
- 5 (1) 2, 5, 2, -1, $-\frac{1}{2}$, $-\frac{1}{2}$, 2, 5, $y = -\frac{1}{2}x^2 + \frac{7}{2}x 5$ (2) $y = 2x^2 + 4x - 6$
- 1 (2) $y = -3x^2 + 3x 5$ $= -3(x^2 - x) - 5$ $= -3\left(x^2 - x + \frac{1}{4} - \frac{1}{4}\right) - 5$ $= -3\left(x^2 - x + \frac{1}{4}\right) + \frac{3}{4} - 5$ $= -3\left(x - \frac{1}{2}\right)^2 - \frac{17}{4}$
 - $(4) y = \frac{1}{6}x^{2} + \frac{1}{3}x 1$ $= \frac{1}{6}(x^{2} + 2x) 1$ $= \frac{1}{6}(x^{2} + 2x + 1 1) 1$ $= \frac{1}{6}(x^{2} + 2x + 1) \frac{1}{6} 1$ $= \frac{1}{6}(x + 1)^{2} \frac{7}{6}$
- 2 (1) $y=x^2+4x+3$ = $(x^2+4x+4-4)+3$ = $(x^2+4x+4)-4+3$ = $(x+2)^2-1$

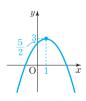
$$(2) y = -\frac{1}{2}x^{2} + x + \frac{5}{2}$$

$$= -\frac{1}{2}(x^{2} - 2x) + \frac{5}{2}$$

$$= -\frac{1}{2}(x^{2} - 2x + 1 - 1) + \frac{5}{2}$$

$$= -\frac{1}{2}(x^{2} - 2x + 1) + \frac{1}{2} + \frac{5}{2}$$

$$= -\frac{1}{2}(x - 1)^{2} + 3$$



- 3 (3) $x^2+3x-10=0$ 에서 (x+5)(x-2)=0 $\therefore x=-5$ 또는 x=2 $\therefore (-5,0), (2,0)$ $(4)-x^2+x+6=0$ 에서 -(x+2)(x-3)=0 $\therefore x=-2$ 또는 x=-2
 - -(x+2)(x-3)=0 ∴ x=-2 $\pm \frac{1}{6}$ x=3 ∴ (-2, 0), (3, 0)
- 4 (2) $y=ax^2+bx+c$ 로 놓으면 이 그래프가 점 (0, -3)을 지나므로 c=-3즉, $y=ax^2+bx-3$ 의 그래프가 점 (2, 0)을 지나므로 0=4a+2b-3 ∴ 4a+2b=3 ···· ① 점 (4, 5)를 지나므로 5=16a+4b-3 ∴ 4a+b=2 ···· ⓒ ①, ⓒ을 연립하여 풀면 $a=\frac{1}{4}$, b=1∴ $y=\frac{1}{4}x^2+x-3$
- 5 (2) y=a(x+3)(x-1)로 놓으면 이 그래프가 점 (2, 10)을 지나므로 $10=a\times5\times1$ ∴ a=2∴ y=2(x+3)(x-1) $=2x^2+4x-6$

유형 2

P. 112

- 1 (1) >, >, >, < (2) 위, <, 오른, <, >, 위, > (3) >, <, > (4) <, <, > (5) <, >, < (6) >, >, >
- 1 (3) 그래프가 아래로 볼록하므로 a>0 축이 y축의 오른쪽에 있으므로 ab<0 $\therefore b<0$ y축과의 교점이 x축보다 위쪽에 있으므로 c>0
 - (4) 그래프가 위로 볼록하므로 a < 0축이 y축의 왼쪽에 있으므로 ab > 0 $\therefore b < 0$ y축과의 교점이 x축보다 위쪽에 있으므로 c > 0
 - (5) 그래프가 위로 볼록하므로 a < 0 축이 y축의 오른쪽에 있으므로 ab < 0 $\therefore b > 0$ y축과의 교점이 x축보다 아래쪽에 있으므로 c < 0
 - (6) 그래프가 아래로 볼록하므로 a>0 축이 y축의 왼쪽에 있으므로 ab>0 $\therefore b>0$ y축과의 교점이 x축보다 위쪽에 있으므로 c>0

쌍둥이 기출문제

P. 113~114

- 1 (2.9)
- x=3, (3, -4)
- 3 (5)

- **4** ③ **5** -3 **6** 21 **7** ⑤ **8** ④
- 9 (1) A(-1, 0), B(5, 0), C(2, 9) (2) 27

- 10 ② 11 ① 12 ②
- **13** a < 0, b < 0, c < 0, 과정은 풀이 참조
- **14** a > 0, b < 0, c > 0
- [1~8] $y=ax^2+bx+c \Rightarrow y=a(x-b)^2+a$ 의 꼴로 변형
- (1) 축의 방정식 : x=p
- (2) 꼭짓점의 좌표 : (p, q)
- (3) y축과의 교점의 좌표 : (0, c)
- (4) $y=ax^2$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동한 그래프
- 1 $y = -2x^2 + 8x + 1$
 - $=-2(x^2-4x)+1$
 - $=-2(x^2-4x+4-4)+1$
 - $=-2(x^2-4x+4)+8+1$
 - $=-2(x-2)^2+9$

따라서 꼭짓점의 좌표는 (2, 9)이다.

- 2 $y = \frac{1}{2}x^2 2x 1$
 - $=\frac{1}{3}(x^2-6x)-1$
 - $=\frac{1}{3}(x^2-6x+9-9)-1$
 - $=\frac{1}{3}(x^2-6x+9)-3-1$
 - $=\frac{1}{2}(x-3)^2-4$

따라서 축의 방정식은 x=3이고. 꼭짓점의 좌표는 (3, -4)이다

- $y=2x^2-4x+3$
 - $=2(x^2-2x)+3$
 - $=2(x^2-2x+1-1)+3$
 - $=2(x^2-2x+1)-2+3$
 - $=2(x-1)^2+1$

따라서 그래프는 오른쪽 그림과 같다.

- 4 $y = -\frac{1}{2}x^2 + 3x 4$
 - $=-\frac{1}{2}(x^2-6x)-4$
 - $=-\frac{1}{2}(x^2-6x+9-9)-4$
 - $=-\frac{1}{2}(x^2-6x+9)+\frac{9}{2}-4$
 - $=-\frac{1}{2}(x-3)^2+\frac{1}{2}$

따라서 그래프는 오른쪽 그림과 같으므 로 제2사부면을 지나지 않는다

- $y = \frac{1}{4}x^2 + x$
 - $=\frac{1}{4}(x^2+4x)$
 - $=\frac{1}{4}(x^2+4x+4-4)$
 - $=\frac{1}{4}(x^2+4x+4)-1$
 - $=\frac{1}{4}(x+2)^2-1$

따라서 이 이차함수의 그래프는 $y=\frac{1}{4}x^2$ 의 그래프를 x축의 방향으로 -2만큼. y축의 방향으로 -1만큼 평행이동한 것 이므로

- m = -2, n = -1
- m+n=-2+(-1)=-3
- 6 $y = -3x^2 + 18x 6$
 - $=-3(x^2-6x)-6$
 - $=-3(x^2-6x+9-9)-6$
 - $=-3(x^2-6x+9)+27-6$ $=-3(x-3)^2+21$

따라서 이 이차함수의 그래프는 $y=-3x^2$ 의 그래프를 x축 의 방향으로 3만큼. y축의 방향으로 21만큼 평행이동한 것 이므로

- a = -3, m = 3, n = 21
- $\therefore a+m+n=-3+3+21=21$
- $y = 2x^2 12x + 17$
 - $=2(x^2-6x)+17$
 - $=2(x^2-6x+9-9)+17$
 - $=2(x^2-6x+9)-18+17$
 - $=2(x-3)^2-1$
 - ① 아래로 볼록한 포물선이다.
 - ② 직선 *x*=3을 축으로 한다.
 - ③ 꼭짓점의 좌표는 (3, -1)이다.
 - ④ y축과의 교점의 좌표는 (0, 17)이다.
- $y = -x^2 + 8x 5$
 - $=-(x^2-8x)-5$
 - $=-(x^2-8x+16-16)-5$
 - $=-(x^2-8x+16)+16-5$
 - $=-(x-4)^2+11$
 - ④ x < 4일 때, x의 값이 증가하면 y의 값도 증가한다.

[9~10] $y=ax^2+bx+c$ 의 그래프가 x축과 만나는 점 $y=ax^2+bx+c$ 에 y=0을 대입하면 $a(x-\alpha)(x-\beta)=0$ \Rightarrow $(\alpha, 0), (\beta, 0)$

- 9 (1) $-x^2+4x+5=0$ 에서 $x^2-4x-5=0$ (x+1)(x-5)=0 $\therefore x=-1 \pm x=5$ A(-1, 0), B(5, 0) $y = -x^2 + 4x + 5$ $=-(x^2-4x)+5$ $=-(x^2-4x+4-4)+5$ $=-(x^2-4x+4)+4+5$ $=-(x-2)^2+9$: C(2, 9)
 - (2) 따라서 △ABC는 밑변의 길이가 6이고, 높이가 9이므로 $\triangle ABC = \frac{1}{2} \times 6 \times 9 = 27$
- 10 $x^2-2x-3=0$ 에서 (x+1)(x-3)=0 $\therefore x = -1 \pm x = 3$ A(-1, 0), B(3, 0) 또 y축과의 교점의 좌표가 (0, -3)이므로 C(0. -3)따라서 △ACB는 밑변의 길이가 4이고, 높이가 3이므로 $\triangle ACB = \frac{1}{2} \times 4 \times 3 = 6$

[11~12] 이차함수의 식 구하기

- (1) 그래프가 지나는 서로 다른 세 점의 좌표를 알 때 ① $y=ax^2+bx+c$ 로 놓는다.
 - ② 세 점의 좌표를 각각 대입하여 a, b, c의 값을 구한다.
- (2) x축과 만나는 두 점 $(\alpha, 0), (\beta, 0)$ 과 그래프가 지나는 다른 한 점의 좌표를 알 때
 - ① $y=a(x-\alpha)(x-\beta)$ 로 놓는다.
 - ② 다른 한 점의 좌표를 대입하여 a의 값을 구한다.
- 11 $y=ax^2+bx+c$ 로 놓으면 이 그래프가 점 (0.5)를 지나므로 c=5즉. $y = ax^2 + bx + 5$ 의 그래프가 점 (2, 3)을 지나므로 3=4a+2b+5 $\therefore 2a+b=-1$ $\cdots \bigcirc$

점 (4.5)를 지나므로

5 = 16a + 4b + 5 : 4a + b = 0... (L)

①, ①을 연립하여 풀면 $a = \frac{1}{2}, b = -2$

 $\therefore abc = \frac{1}{2} \times (-2) \times 5 = -5$

12 x축 위의 두 점 (-2, 0), (4, 0)을 지나므로 y = a(x+2)(x-4)로 놓자. 이 그래프가 점 (0.8)을 지나므로 $8=a\times2\times(-4)$ $\therefore a=-1$ y = -(x+2)(x-4) $=-x^2+2x+8$

다른 풀이

 $y=ax^2+bx+c$ 로 놓으면

이 그래프가 점 (0.8)을 지나므로 c=8

즉 $y=ax^2+bx+8$ 의 그래프가

점 (-2, 0)을 지나므로

0=4a-2b+8 $\therefore 2a-b=-4$ $\cdots \bigcirc$

점 (4.0)을 지나므로

0 = 16a + 4b + 8 : 4a + b = -2

 \bigcirc , \bigcirc 을 연립하여 풀면 a=-1. b=2

 $y = -x^2 + 2x + 8$

[13~14] 이차함수 $y=ax^2+bx+c$ 의 그래프에서 a, b, c의 부호

- (1) 아래로 볼록 ⇒ a>0 위로 볼록 $\Rightarrow a < 0$
- (2) 축이 y축의 왼쪽 $\Rightarrow ab > 0$ (a와 b는 같은 부호) 축이 y축의 오른쪽 $\Rightarrow ab < 0 (a$ 와 b는 반대 부호)
- (3) y축과의 교점이 x축보다 위쪽 $\Rightarrow c > 0$ y축과의 교점이 x축보다 아래쪽 $\Rightarrow c < 0$
- 13 그래프가 위로 볼록하므로 a < 0... (i) 축이 y축의 왼쪽에 있으므로 ab>0 $\therefore b<0$... (ii) y축과의 교점이 x축보다 아래쪽에 있으므로 c<0 ··· (iii)

채점 기준	배점
(i) a의 부호 정하기	30 %
(ii) <i>b</i> 의 부호 정하기	40 %
(iii) <i>c</i> 의 부호 정하기	30 %

14 그래프가 아래로 볼록하므로 a>0축이 y축의 오른쪽에 있으므로 ab < 0 $\therefore b < 0$ y축과의 교점이 x축보다 위쪽에 있으므로 c>0

이차함수의 최댓값과 최솟값

유형 3

P. 115

- 1 (1) 0, 0
 - (2) 최댓값: x=2에서 0. 최솟값: 없다.
 - (3) 최댓값 : x = -1에서 4. 최솟값 : 없다.
- **2** (1) 최댓값: x=0에서 0, 최솟값: 없다.
 - (2) 최댓값 : 없다. 최솟값 : x = -3에서 0
 - (3) 최댓값 : 없다, 최솟값 : x = -1에서 7
 - (4) 최댓값 : x = -2에서 $-\frac{1}{3}$, 최솟값 : 없다.
- **3** (1) $1, \frac{5}{2}$, 없다, $-\frac{5}{2}$ (2) $-2(x+1)^2+4$, 4, 없다.
 - $(3) \frac{1}{4}$, 없다. (4) 없다, -18

3 (3) $y = -3x^2 - 9x - 7$ $= -3\left(x^2 + 3x + \frac{9}{4} - \frac{9}{4}\right) - 7$ $=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}$

따라서 $x=-\frac{3}{2}$ 에서 최댓값은 $-\frac{1}{4}$ 이고, 최솟값은 없다.

(4) $y = 6x^2 - 12x - 12$ $=6(x^2-2x+1-1)-12$ $=6(x-1)^2-18$

따라서 x=1에서 최솟값은 -18이고, 최댓값은 없다

한 걸음 더 연습

P. 116

- 1 2, -2, -4, -4, 6
- 2 (1) $y = -3(x-1)^2 + 3 + k$ (2) 3
- 3 1, 3, 2, 1, 3, $2x^2-4x+5$
- 4 -2, -4, -2, 2, 4, $-2x^2-8x-12$, -8, -12
- 2 (1) $y = -3x^2 + 6x + k$ $=-3(x^2-2x+1-1)+k$ $=-3(x-1)^2+3+k$
 - (2) 주어진 이차함수는 x=1에서 최댓값이 3+k이므로 3+k=6 : k=3
- x=1에서 최솟값이 3이므로 꼭짓점의 좌표는 (1, 3)이고. x^{2} 의 계수가 2이므로 이차함수의 식은 $y=2(x-1)^2+3=2x^2-4x+5$
- $4 \quad x = -2$ 에서 최댓값이 -4이므로 꼭짓점의 좌표는 (-2, -4)이고. x^2 의 계수가 -2이므로 이차함수의 식은 $y = \boxed{-2(x+2)^2 - 4} = \boxed{-2x^2 - 8x - 12}$ A = -8, B = -12

유형 4

P. 117

- 1 x+12, x+12, 6, 36, -6, -36, -36, -6, 6
- 2 (1) $y = -x^2 + 30x$ (2) $225 \,\mathrm{cm}^2$ (3) $15 \,\mathrm{cm}$
- **3** (1) 가로 : 40+4x. 세로 : 40-2x (2) $y = -8x^2 + 80x + 1600$ (3) 1800
- 4 a=2, b=50

2 (1) 직사각형의 둘레의 길이가 60 cm이므로 가로의 길이가 x cm이면 세로의 길이는 (30-x) cm이다

$$\therefore y = x(30-x) = -x^2 + 30x$$

(2) $y = -x^2 + 30x$ $=-(x^2-30x+225-225)$ $=-(x-15)^2+225$

즉. x=15에서 최댓값은 225이다.

따라서 직사각형의 넓이의 최댓값은 225 cm²이다.

- (3) 직사각형의 넓이가 최대일 때는 x=15일 때이므로 구하 는 가로의 길이는 15 cm이다.
- (2) y = (40+4x)(40-2x) $=-8x^2+80x+1600$
 - (3) $y = -8x^2 + 80x + 1600$ $=-8(x^2-10x+25-25)+1600$ $=-8(x-5)^2+1800$

즉. x=5에서 최댓값은 1800이다. 따라서 직사각형의 넓이의 최댓값은 1800이다.

4 $h = -5t^2 + 20t + 30$ $=-5(t^2-4t+4-4)+30$ $=-5(t-2)^2+50$ 즉, t=2에서 최댓값은 50이다. 따라서 물 로켓은 2초 후에 최고 높이 50 m에 도달한다. $\therefore a=2, b=50$

쌍둥이 기출문제

P. 118

- 1 ③ 2 ④ 3 5 4 1

- 5 ① 6 ②
- 7 55 m, 과정은 풀이 참조 **8** ④
- [1~4] 이차함수 $y=a(x-p)^2+q$ 의 최댓값과 최솟값

(1) a > 0

1
$$y = \frac{2}{5}x^2 - \frac{4}{5}x - \frac{8}{5}$$

 $= \frac{2}{5}(x^2 - 2x + 1 - 1) - \frac{8}{5}$
 $= \frac{2}{5}(x - 1)^2 - 2$
즉, $x = 1$ 에서 최솟값이 -2 이므로
 $a = 1, m = -2$
 $\therefore a + m = 1 + (-2) = -1$

$$y=-2(x-4)^2+5$$
는 $x=4$ 에서 최댓값이 5이므로 $M=5$ $y=5x^2-4x+4$

$$=5\left(x^{2} - \frac{4}{5}x + \frac{4}{25} - \frac{4}{25}\right) + 4$$
$$=5\left(x - \frac{2}{5}\right)^{2} + \frac{16}{5}$$

즉,
$$x=\frac{2}{5}$$
에서 최솟값이 $\frac{16}{5}$ 이므로 $m=\frac{16}{5}$

$$Mm = 5 \times \frac{16}{5} = 16$$

3
$$y=x^2-6x+5+a$$

 $=(x^2-6x+9-9)+5+a$
 $=(x-3)^2-4+a$
즉, $x=3$ 에서 최솟값은 $-4+a$ 이다.
그런데 최솟값이 1이므로
 $-4+a=1$ ∴ $a=5$

4
$$y=-2x^2-4x+c$$

= $-2(x^2+2x+1-1)+c$
= $-2(x+1)^2+2+c$
즉, $x=-1$ 에서 최댓값은 $2+c$ 이다.
그런데 최댓값이 3 이므로
 $2+c=3$ $\therefore c=1$

[5~6] x=p에서 최댓값(최솟값)이 q \Rightarrow 꼭짓점의 좌표 : (p,q)

- x^2 의 계수는 1이고, 꼭짓점의 좌표는 (2, 1)이므로 $y=(x-2)^2+1=x^2-4x+5=x^2+Ax+B$ 따라서 A=-4, B=5이므로 A+B=-4+5=1
- x²의 계수는 -1이고, 꼭짓점의 좌표는 (1, 9)이므로 y=-(x-1)²+9=-x²+2x+8=-x²+8ax-b 따라서 8a=2, -b=8이므로 a=1/4, b=-8
 ∴ ab=1/4 × (-8)=-2

[7~8] 이차함수의 최대·최소에 대한 활용 문제

- (1) x와 y 사이의 관계식이 주어진 경우 : $y=a(x-p)^2+q$ 의 꼴로 변형한다.
- (2) 합이 a인 두 수가 주어진 경우 : 두 수를 x, a-x로 놓는다. 차가 b인 두 수가 주어진 경우 : 두 수를 x, x+b로 놓는다.
- 7 $h=-5t^2+30t+10$ = $-5(t^2-6t+9-9)+10$ = $-5(t-3)^2+55$... (i) 즉, t=3에서 최댓값은 55이다. 따라서 이 공이 올라갈 수 있는 최고 높이는 55m이다. ... (ii)

채점 기준	배점
$(\mathrm{i})\; h{=}a(t{-}p)^2{+}q$ 의 꼴로 변형하기	50%
(ii) 공의 최고 높이 구하기	50%

8 두 수를 x, 16-x라 하고, 두 수의 곱을 y라 하면 y=x(16-x) $=-x^2+16x$ $=-(x^2-16x+64-64)$ $=-(x-8)^2+64$ 즉, x=8에서 최댓값은 64이다.
따라서 두 수의 곱의 최댓값은 64이다

Best of Best 문제로 단원 마무리 P. 119~120 1 -28 2 ③ 3 ⑤ 4 27 5 (3, 4), 과정은 풀이 참조 6 ⑤ 7 ③ 8 18

- 1 $y=x^2+8x-4$ $=(x^2+8x+16-16)-4$ $=(x+4)^2-20$ 즉, 축의 방정식은 x=-4이고, 꼭짓점의 좌표는 (-4,-20)이다. 따라서 a=-4, p=-4, q=-20이므로 a+p+q=-4+(-4)+(-20)=-28
- 2 $y=3x^2+3x$ = $3\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)$ = $3\left(x+\frac{1}{2}\right)^2-\frac{3}{4}$ 따라서 그래프는 오른쪽 그림과 같으므로 제1, 2, 3사분면을 지난다.
- 3 $y = \frac{1}{3}x^2 4x 2$ = $\frac{1}{3}(x^2 - 12x + 36 - 36) - 2$ = $\frac{1}{3}(x - 6)^2 - 14$
 - ⑤ $y = \frac{1}{3}x^2$ 의 그래프를 x축의 방향으로 6만큼, y축의 방향으로 -14만큼 평행이동하면 완전히 포개어진다.
- 4 $x^2+2x-8=0$ 에서 (x+4)(x-2)=0 ∴ x=-4 또는 x=2∴ A(2,0), B(-4,0)

$$y=x^{2}+2x-8$$
= (x²+2x+1-1)-8
= (x+1)^{2}-9
∴ C(-1, -9)

따라서 △ABC는 밑변의 길이가 6이고, 높이가 9이므로

$$\triangle ABC = \frac{1}{2} \times 6 \times 9 = 27$$

5 $y=ax^2+bx+c$ 로 놓으면 이 그래프가 점 (0,-5)를 지나므로 c=-5 (i)즉, $y=ax^2+bx-5$ 의 그래프가

점 (2, 3)을 지나므로

3 = 4a + 2b - 5 : 2a + b = 4

... 🗇

점 (5, 0)을 지나므로

0 = 25a + 5b - 5 : 5a + b = 1

₩ 🗓

 \bigcirc . \bigcirc 을 연립하여 풀면 a=-1. b=6

··· (ii)

··· (iii)

$$y = -x^{2} + 6x - 5$$

$$= -(x^{2} - 6x + 9 - 9) - 5$$

$$= -(x - 3)^{2} + 4$$

따라서 구하는 꼭짓점의 좌표는 (3, 4)이다.

채점 기준	배점
(i) c의 값 구하기	20 %
(ii) a, b의 값 구하기	50 %
(iii) 꼭짓점의 좌표 구하기	30 %

- 6 ① 최댓값은 2이다.
 - ② 최댓값은 0이다.
 - ③ 최댓값은 $\frac{7}{2}$ 이다.
 - ④ $y=-2x^2+4x=-2(x^2-2x+1-1)$ = $-2(x-1)^2+2$ 이므로 최댓값은 2이다
 - $5y = -4x^2 + 24x 30 = -4(x^2 6x + 9 9) 30$ $= -4(x 3)^2 + 6$

이므로 최댓값은 6이다.

따라서 최댓값이 가장 큰 것은 ⑤이다.

- 7 x^2 의 계수는 2이고, 꼭짓점의 좌표는 (3, 2)이므로 $y=2(x-3)^2+2=2x^2-12x+20=ax^2+bx+c$ 따라서 a=2, b=-12, c=20이므로 a+b-c=2+(-12)-20=-30
- y=20x-5x²
 = -5(x²-4x+4-4)
 = -5(x-2)²+20
 즉, x=2에서 최댓값은 20이다.
 따라서 물방울이 가장 높이 올라갔을 때의 높이는 20m이고, 그때까지 걸린 시간은 2초이므로
 a=20, b=2
 ∴ a-b=20-2=18

정답과 해설

제곱근과 실수

1단계 보고 때문 하기

P. 6~7

1 - a

- 2 24, 54, 96
- **3** P: $-3-\sqrt{5}$, Q: $-3+\sqrt{5}$
 - $\sqrt{7}$ − 1
- 1 1단계 a>0에서

$$-a < 0$$
이므로 $\sqrt{(-a)^2} = -(-a) = a$
 $2a > 0$ 이므로 $\sqrt{4a^2} = \sqrt{(2a)^2} = 2a$

... (i)

2단계 :
$$\sqrt{(-a)^2} - \sqrt{4a^2} = a - 2a = -a$$
 ... (ii)

채점 기준	배점
(i) 근호를 사용하지 않고 나타내기	60 %
(ii) 주어진 식을 간단히 하기	40 %

- **2** 1달제 $\sqrt{\frac{50}{3}}n = \sqrt{\frac{2 \times 5^2}{3} \times n}$ 이 자연수가 되려면 자연수 n은 $2 \times 3 \times ($ 자연수)². 즉 $6 \times ($ 자연수)²의 꼴이어야 한다. ... (i)
 - **2**단계 따라서 구하는 두 자리의 자연수 n의 값은

 $6 \times 2^2 = 24$, $6 \times 3^2 = 54$, $6 \times 4^2 = 96$ 이다. ... (ii)

채점 기준 배점 (i) 자연수 n에 대한 조건 설명하기 60% (ii) 두 자리의 자연수 n의 값 구하기 40%

- 3 [단계 $\square ABCD = 3 \times 3 4 \times \left(\frac{1}{2} \times 1 \times 2\right) = 5$ 이므로
 - \square ABCD의 한 변의 길이는 $\sqrt{5}$ 이다. ... (i)
 - 2단계 따라서 $\overline{AP} = \overline{AD} = \sqrt{5}$ 이므로 점 P에 대응하는 수는 $-3-\sqrt{5}$ 이고. $\overline{AQ} = \overline{AB} = \sqrt{5}$ 이므로

점 Q에 대응하는 수는 $-3+\sqrt{5}$ 이다. ... (ii)

채점 기준	배점
(i) □ABCD의 한 변의 길이 구하기	40 %
(ii) 두 점 P, Q에 대응하는 수 구하기	60 %

4 $2 < \sqrt{7} < 3$ 이므로 $1 < \sqrt{7} - 1 < 2$ 에서 $\sqrt{7}$ -1의 정수 부분은 1이다.

 $\therefore a=1$... (i)

 $\sqrt{7}-1$ 의 소수 부분은 $(\sqrt{7}-1)-1=\sqrt{7}-2$ 이다. $b=\sqrt{7}-2$... (ii)

 $a^2+b=1^2+(\sqrt{7}-2)$

 $=\sqrt{7}-1$... (iii)

채점 기준	배점
(i) <i>a</i> 의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) a^2+b 의 값 구하기	20 %

2 단계 스스로 해결하기

P. 8~10

- 1 $\sqrt{22}$ m
- 2 $\pm \sqrt{5}$
- **4** (1) 5 (2) -1 (3) -3 **5** -a-3b
- **6** (1) 2, 18, 162 (2) (2, 9), (18, 3), (162, 1)
- **7** 22 **8** 30 **9** 34
- **10** P: $1-\sqrt{13}$, Q: $3+\sqrt{13}$
- **11** (1) A > B (2) A < C (3) B < A < C **12** $7 \sqrt{5}$
- 1 정사각형과 삼각형을 붙여 놓은 모양의 잔디밭의 넓이는 $4 \times 4 + \frac{1}{2} \times 4 \times 3 = 16 + 6 = 22 \, (\text{m}^2)$

따라서 새로 만든 정사각형 모양의 잔디밭의 넓이가 22 m²이 므로 한 변의 길이는 $\sqrt{22}$ m이다. ... (ii)

채점 기준	배점
(i) 정사각형과 삼각형을 붙여 놓은 모양의 잔디밭의 넓이 구하기	50%
(ii) 새로 만든 정사각형 모양의 잔디밭의 한 변의 길이 구하기	50 %

2 121의 음의 제곱근은 $-\sqrt{121} = -11$ 이므로

(-14)²=196의 양의 제곱근은 √196=14이므로

... (i)

따라서 $\sqrt{b-a} = \sqrt{14-(-11)} = \sqrt{25} = 5$ 이므로

... (ii)

구하는 제곱근은 ±√5이다.

... (iii)

채점 기준	배점
(i) a, b의 값 구하기	40 %
$(ii)\sqrt{b-a}$ 의 값 구하기	30 %
$(ext{iii})\sqrt{b-a}$ 의 제곱근 구하기	30 %

3 $\sqrt{0.64} \div \sqrt{\frac{4}{25}} - \sqrt{(-2)^2} \times \sqrt{3^4}$

$$= \sqrt{0.8^2} \div \sqrt{\left(\frac{2}{5}\right)^2} - \sqrt{2^2} \times \sqrt{(3^2)^2}$$

$$=0.8 \div \frac{2}{5} - 2 \times 3^2 \qquad \cdots (i)$$

$$=\frac{8}{10} \times \frac{5}{2} - 2 \times 9$$

$$=2-18=-16$$
 ... (ii)

채점 기준	배점
(i) 근호를 사용하지 않고 나타내기	60 %
(ii) 주어진 식을 계산하기	40 %

4 (1) x>2일 때, x+2>0, x-2>0이므로

$$\sqrt{(x+2)^2} - \sqrt{(x-2)^2} = x - 1$$
 에서 $(x+2) - (x-2) = x - 1$

$$4=x-1$$
 $\therefore x=5$

(2) -2<x<2일 때, x+2>0, x-2<0이므로

$$\sqrt{(x+2)^2} - \sqrt{(x-2)^2} = x - 1$$
에서 $(x+2) + (x-2) = x - 1$

$$2x=x-1$$
 $\therefore x=-1$

... (iv)

(3) x < -2일 때, x+2 < 0, x-2 < 0이므로 $\sqrt{(x+2)^2} - \sqrt{(x-2)^2} = x - 1$ 에서

$$-(x+2)+(x-2)=x-1$$
 ... (v)

$$-4=x-1$$
 $\therefore x=-3$

... (vi)

... (i)

채점 기준	배점
$\mathrm{(i)}x{>}2$ 일 때, 주어진 식을 근호를 사용하지 않고 나타내기	20%
(ii) 방정식을 풀어 x 의 값 구하기	10%
(iii) $-2 < x < 2$ 일 때, 주어진 식을 근호를 사용하지 않고 나타내기	30 %
(iv) 방정식을 풀어 x 의 값 구하기	10%
$({ m v})~x{<}{-}2$ 일 때, 주어진 식을 근호를 사용하지 않고 나타 내기	20 %
(vi) 방정식을 풀어 x 의 값 구하기	10%

5 ab < 0이므로 a, b의 부호는 서로 다르다. 이때 a-b>0, 즉 a>b이므로 a>0, b<0이다. \cdots (i) -a<0이므로 $\sqrt{(-a)^2}=-(-a)=a$ b-2a<0이므로 $\sqrt{(b-2a)^2}=-(b-2a)=-b+2a$ 4b<0이므로 $\sqrt{16b^2}=\sqrt{(4b)^2}=-4b$ \cdots (ii)

$$\therefore$$
 (주어진 식)= $a-(-b+2a)+(-4b)$

$$=a+b-2a-4b$$

$$=-a-3b$$
 ···· (iii)

채점 기준	배점
(i) a, b의 부호 판단하기	30 %
$(ii) \sqrt{(-a)^2}, \sqrt{(b-2a)^2}, \sqrt{16b^2}$ 을 근호를 사용하지 않고 나타내기	50%
(iii) 주어진 식을 간단히 하기	20 %

6 (1) $\sqrt{\frac{162}{a}} = \sqrt{\frac{2 \times 3^4}{a}}$ 이 자연수가 되려면 자연수 a는 2×3^4 의 약수이면서 $2 \times ($ 자연수)²의 꼴이어야 한다. 따라서 구하는 자연수 a의 값은 $a = 2 \times 1^2, \ 2 \times 3^2, \ 2 \times (3^2)^2$

즉. a=2, 18, 162

$$a=162$$
일 때, $b=\sqrt{1}=1$... (ii) 따라서 구하는 순서쌍 (a,b) 는 $(2,9), (18,3), (162,1)$ 이다. ... (iii)

채점 기준	배점
(i) 자연수 a 의 값 모두 구하기	40 %
(ii) a 의 값에 따른 b 의 값 구하기	40 %
(iii) 순서쌍 (a,b) 구하기	20 %

7 양수는 $(\sqrt{2})^2 = 2 = \sqrt{4}$, $\sqrt{(-5)^2} = \sqrt{25}$, $4 = \sqrt{16}$, $\sqrt{15}$ 이고, 음수는 $-\sqrt{3}$, $-\sqrt{\frac{1}{2}}$ 이다.

양수끼리 대소를 비교하면

(2) a=2일 때, $b=\sqrt{81}=9$ a=18일 때, $b=\sqrt{9}=3$

 $\sqrt{4}$ < $\sqrt{15}$ < $\sqrt{16}$ < $\sqrt{25}$ 이므로

$$(\sqrt{2})^2 < \sqrt{15} < 4 < \sqrt{(-5)^2}$$

$$\therefore a = \sqrt{(-5)^2} \qquad \cdots (i)$$

음수끼리 대소를 비교하면

$$\sqrt{3}>\sqrt{rac{1}{2}}$$
에서 $-\sqrt{3}<-\sqrt{rac{1}{2}}$ 이므로

$$b = -\sqrt{3}$$
 ··· (ii)

$$\therefore a^2 - b^2 = \{\sqrt{(-5)^2}\}^2 - (-\sqrt{3})^2$$
= 25 - 3 = 22 ... (iii)

채점 기준	배점
(i) a 의 값 구하기	40 %
(ii) b 의 값 구하기	40 %
(iii) a^2-b^2 의 값 구하기	20 %

8 $3<\sqrt{\frac{x-3}{2}}<5$ 에서 $\sqrt{9}<\sqrt{\frac{x-3}{2}}<\sqrt{25}$ 이므로

$$9 < \frac{x-3}{2} < 25, 18 < x - 3 < 50$$

$$\therefore 21 < x < 53$$
 $\cdots (i)$

$$M - m = 52 - 22 = 30$$
 ... (iii)

채점 기준	배점
$(\mathrm{i})x$ 의 값의 범위 구하기	50 %
(ii) M , m 의 값 구하기	30 %
(iii) $M\!-\!m$ 의 값 구하기	20 %

9 1≤√1<√2<√3<2이므로

$$N(1)=N(2)=N(3)=1$$
 ... (i)

 $2 \le \sqrt{4} < \sqrt{5} < \sqrt{6} < \sqrt{7} < \sqrt{8} < 3$ 이므로

$$N(4)=N(5)=N(6)=N(7)=N(8)=2$$
 ... (ii)

 $3 < \sqrt{9} < \sqrt{10} < \sqrt{11} < \sqrt{12} < \sqrt{13} < \sqrt{14} < \sqrt{15} < 4$ 이므로

$$N(9) = N(10) = N(11) = N(12)$$

$$=N(13)=N(14)=N(15)=3$$
 ... (iii)

 $N(1)+N(2)+\cdots+N(15)$ =1×3+2×5+3×7
=3+10+21
=34

채점 기준	배점
(i) N(1) = N(2) = N(3) = 1임을 설명하기	25 %
$(ii) N(4) = N(5) = \cdots = N(8) = 2$ 임을 설명하기	25 %
$(iii) N(9) = N(10) = \cdots = N(15) = 3$ 임을 설명하기	25 %
$\overline{\mathrm{(iv)}N(1)\!+\!N(2)\!+\!\cdots\!+\!N(15)}$ 의 값 구하기	25 %

10 $\square ABCD = \square EFGH = 5 \times 5 - 4 \times \left(\frac{1}{2} \times 3 \times 2\right) = 13$	3이므로
□ABCD와 □EFGH의 한 변의 길이는 √13이다.	(i)
따라서 $\overline{\mathrm{AP}}{=}\overline{\mathrm{AD}}{=}\sqrt{13}$ 이므로	
점 P에 대응하는 수는 $1-\sqrt{13}$ 이고,	··· (ii)
$\overline{\mathrm{EQ}} = \overline{\mathrm{EF}} = \sqrt{13}$ 이므로	
점 Q에 대응하는 수는 $3+\sqrt{13}$ 이다.	··· (iii)

채점 기준	배점
(i) □ABCD, □EFGH의 한 변의 길이 구하기	40 %
(ii) 점 P에 대응하는 수 구하기	30 %
(iii) 점 Q에 대응하는 수 구하기	30 %

11 (1) $A=\sqrt{13}+4$, $B=\sqrt{13}+\sqrt{15}$ 에서 $4>\sqrt{15}$ 이므로 양변에 $\sqrt{13}$ 을 더하면 $\sqrt{13}+4>\sqrt{13}+\sqrt{15}$

 $\therefore A > B \qquad \cdots (i)$

(2) $A=\sqrt{13}+4$, $C=4+\sqrt{15}$ 에서 $\sqrt{13}<\sqrt{15}$ 이므로 양변에 4를 더하면 $\sqrt{13}+4<4+\sqrt{15}$

 $\therefore A < C$... (ii)

(3) B<A, A<C이므로 B<A<C ···· (iii)

채점 기준	배점
(i) A, B의 대소 비교하기	30 %
(ii) A, C의 대소 비교하기	30 %
(iii) A, B, C의 대소 비교하기	40 %

12 $2<\sqrt{6}<3$ 이므로 $4<\sqrt{6}+2<5$ 에서 $\sqrt{6}+2$ 의 정수 부분 a=4 (i) $2<\sqrt{5}<3$ 이므로 $-3<-\sqrt{5}<-2$, $3<6-\sqrt{5}<4$ 에서

$6-\sqrt{5}$ 의 소수 부분 $b=(6-\sqrt{5})-3=3-\sqrt{5}$	(1	11)
$a+b=4+(3-\sqrt{5})=7-\sqrt{5}$	··· (i	ii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) $a+b$ 의 값 구하기	20 %

3 단계) 항 2% 더 <mark>도전하기</mark>

P. 11

1 a=4, b=81, $c=\sqrt{7}$

2 95 cm²

3 182개

... (iv)

4 (1) 2*n* 기 (2) 4036 기

1 정육면체를 만들었을 때,

a가 적힌 면과 마주 보는 면에 적힌 수는 16이고, $0 \le a \le 10$ 이므로 a = 16의 양의 제곱근이다.

 $\therefore a = \sqrt{16} = 4$... (i)

b가 적힌 면과 마주 보는 면에 적힌 수는 3^2 =9이고, $10 \le b \le 100$ 이므로 9가 b의 양의 제곱근이다.

 $h=9^2=81$... (ii)

c가 적힌 면과 마주 보는 면에 적힌 수는 $\sqrt{49}$ =7이고, $0 \le c \le 10$ 이므로 c는 7의 양의 제곱근이다.

 $\therefore c = \sqrt{7}$... (iii)

채점 기준	배점
(i) a의 값 구하기	30 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) <i>c</i> 의 값 구하기	30 %

2 A 부분의 한 변의 길이는 $\sqrt{48n}$ cm.

B 부분의 한 변의 길이는 $\sqrt{37-n}$ cm이다.

 $\sqrt{48n} = \sqrt{2^4 \times 3 \times n}$ 이 자연수가 되려면 자연수 n은 $n=3 \times ($ 자연수)²의 꼴이어야 한다.

 $\stackrel{\text{def}}{=}$, n=3, 12, 27, 48,

· 🗇 ... (i

또 $\sqrt{37-n}$ 이 자연수가 되려면 37-n은 37보다 작은 제곱수 이어야 한다.

즉, 37-n=1, 4, 9, 16, 25, 36이어야 하므로

n=1, 12, 21, 28, 33, 36

··· (L)

 \bigcirc 요을 모두 만족하는 자연수 n의 값은 12이다.

A 부분의 한 변의 길이는

 $\sqrt{48n} = \sqrt{48 \times 12}$

 $=\sqrt{576} = 24 \, (\text{cm})$

B 부분의 한 변의 길이는

 $\sqrt{37-n} = \sqrt{37-12}$

 $=\sqrt{25} = 5 \text{ (cm)}$

따라서 C 부분의 넓이는

 $5 \times (24 - 5) = 5 \times 19$

(...)

 $=95 \, (cm^2)$

· · · (iii)

... (ii)

채점 기준	배점
$(\mathrm{i})\sqrt{48n}$ 이 자연수가 되도록 하는 자연수 n 의 값 구하기	35 %
$(\mathrm{ii})\sqrt{37-n}$ 이 자연수가 되도록 하는 자연수 n 의 값 구하기	35 %
(iii) C 부분의 넓이 구하기	30 %

3 $\sqrt{2n}$, $\sqrt{3n}$ 이 모두 무리수가 되도록 하는 자연수 n의 개수는 200 이하의 자연수 n의 개수에서 $\sqrt{2n}$ 또는 $\sqrt{3n}$ 이 유리수가 되도록 하는 자연수 n의 개수를 뺀 것과 같다.

(7) $\sqrt{2n}$ 이 유리수가 되려면 자연수 n은

 $n=2\times($ 자연수)²의 꼴이어야 한다.

즉, $n=2\times1^2$, 2×2^2 , …, 2×10^2 의 10개이다. … (i)

 $(4)\sqrt{3n}$ 이 유리수가 되려면 자연수 n은

 $n=3\times($ 자연수)²의 꼴이어야 한다.

즉, $n=3\times1^2$, 3×2^2 , …, 3×8^2 의 8개이다. … (ii) 따라서 (n), (4)에서 $\sqrt{2n}$, $\sqrt{3n}$ 이 모두 무리수가 되도록 하는 자연수 n의 개수는

$$200 - (10 + 8) = 182(7)$$
 ... (iii)

채점 기준	배점
$(\mathrm{i})\sqrt{2n}$ 이 유리수가 되도록 하는 자연수 n 의 개수 구하기	30 %
$(ii)\sqrt{3n}$ 이 유리수가 되도록 하는 자연수 n 의 개수 구하기	30 %
(iii) $\sqrt{2n}$, $\sqrt{3n}$ 이 모두 무리수가 되도록 하는 자연수 n 의 개수 구하기	40 %

4 (1) $n=\sqrt{n^2}$, $n+1=\sqrt{(n+1)^2}$ 이므로 자연수 n은 n^2 번째 점에 대응하고, 자연수 n+1은 $(n+1)^2$ 번째 점에 대응한다. 따라서 연속하는 두 자연수 n, n+1을 나타내는 점 사이에 있는 점의 개수는 두 자연수 n^2 , $(n+1)^2$ 사이에 있는 자연수의 개수와 같으므로

$$\{(n+1)^2 - n^2\} - 1 = (n^2 + 2n + 1 - n^2) - 1$$

= $2n(7||)$... (i)

- 참고 두 자연수 m, n(m < n) 사이에 있는 자연수의 개수는 (n-m-1)개이다.
- (2) 두 자연수 2018, 2019를 나타내는 점 사이에 있는 점의 개 수는

$$2 \times 2018 = 4036$$
(7 \parallel) ··· (ii)

채점 기준	배점
(i) 두 자연수 $n, n+1$ 을 나타내는 점 사이에 있는 점의 개수를 n 에 대한 식으로 나타내기	70%
(ii) 두 자연수 2018, 2019를 나타내는 점 사이에 있는 점 의 개수 구하기	30 %

1 단계	보고 EIZH 하기		P. 14~15
1 $\frac{1}{16}$	2 2√6 cm	3 -16	4 $-\frac{\sqrt{35}}{5}$

1 (단계)
$$\frac{3}{\sqrt{12}} = \frac{3}{2\sqrt{3}} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}$$
이므로 $a = \frac{1}{2}$ … (i)

2단계
$$\frac{\sqrt{3}}{\sqrt{32}} = \frac{\sqrt{3}}{4\sqrt{2}} = \frac{\sqrt{6}}{8}$$
이므로 $b = \frac{1}{8}$... (ii)

3단계
$$\therefore ab = \frac{1}{2} \times \frac{1}{8} = \frac{1}{16}$$
 ... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) b 의 값 구하기	40 %
(iii) <i>ab</i> 의 값 구하기	20 %

2 1단제 사다리꼴의 높이를 $h \, \mathrm{cm}$ 라 하면 $\frac{1}{2} \times (\sqrt{8} + \sqrt{32}) \times h = 12\sqrt{3} \qquad \cdots (\mathrm{i})$

2단계
$$\therefore h = \frac{2 \times 12\sqrt{3}}{\sqrt{8} + \sqrt{32}} = \frac{24\sqrt{3}}{2\sqrt{2} + 4\sqrt{2}}$$
$$= \frac{24\sqrt{3}}{6\sqrt{2}} = \frac{4\sqrt{3}}{\sqrt{2}} = 2\sqrt{6}$$

따라서 사다리꼴의 높이는 $2\sqrt{6}$ cm이다. \cdots (ii)

채점 기준	배점
(i) 사다리꼴의 높이를 구하는 식 세우기	40 %
(ii) 사다리꼴의 높이 구하기	60 %

3 12A
$$\sqrt{3}(1-\sqrt{12})+\sqrt{5}(2\sqrt{5}-\sqrt{15})$$

 $=\sqrt{3}-\sqrt{36}+10-\sqrt{75}$
 $=\sqrt{3}-6+10-5\sqrt{3}$
 $=4-4\sqrt{3}$...(i)

2단계
$$4-4\sqrt{3}=a+b\sqrt{3}$$
이므로 $a=4, b=-4$... (ii)

3단계 ∴
$$ab = 4 \times (-4) = -16$$
 ··· (iii)

채점 기준	배점
(i) 주어진 식의 좌변을 간단히 하기	50 %
(ii) a, b의 값 구하기	30 %
(iii) <i>ab</i> 의 값 구하기	20 %

4
$$x = \frac{2}{\sqrt{7} + \sqrt{5}} = \frac{2(\sqrt{7} - \sqrt{5})}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})} = \sqrt{7} - \sqrt{5},$$

 $y = \frac{2}{\sqrt{7} - \sqrt{5}} = \frac{2(\sqrt{7} + \sqrt{5})}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})} = \sqrt{7} + \sqrt{5}$... (i)

$$\begin{array}{ll} x + y = (\sqrt{7} - \sqrt{5}) + (\sqrt{7} + \sqrt{5}) = 2\sqrt{7}, \\ x - y = (\sqrt{7} - \sqrt{5}) - (\sqrt{7} + \sqrt{5}) = -2\sqrt{5} \end{array} \qquad \cdots (ii)$$

$$\therefore \frac{x+y}{x-y} = \frac{2\sqrt{7}}{-2\sqrt{5}} = -\frac{\sqrt{7}}{\sqrt{5}} = -\frac{\sqrt{35}}{5} \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) x, y의 분모를 유리화하기	50%
(ii) $x+y$, $x-y$ 의 값 구하기	30 %
(iii) 주어진 식의 값 구하기	20 %

2 단계 스스로 해결하기

1 $3\sqrt{2}$ **2** $24 \,\mathrm{cm}^2$ **3** (1) 0.3033 (2) 959.2 **4** -8

5 $5\sqrt{30}$ **6** $12-\sqrt{2}$ **7** 7 **8** $25+6\sqrt{5}$

9 3 **10** (1) $f(x) = -\sqrt{x} + \sqrt{x+1}$ (2) $-1 + \sqrt{11}$

11 (1) $A(-1+\sqrt{2})$, $B(3-\sqrt{2})$ (2) $\frac{2\sqrt{2}-1}{7}$ **12** -2

$$\sqrt{72} = 6\sqrt{2}$$
이므로 $b = 6$... (ii)

$$\therefore \sqrt{ab} = \sqrt{3 \times 6} = \sqrt{18} = 3\sqrt{2} \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) a의 값 구하기	30 %
(ii) <i>b</i> 의 값 구하기	30 %
(iii) \sqrt{ab} 의 값 구하기	40 %

2 넓이가 12 cm², 48 cm²인 두 정사각형의 한 변의 길이는 각각 $\sqrt{12} = 2\sqrt{3}$ (cm), $\sqrt{48} = 4\sqrt{3}$ (cm) ... (i) 따라서 직사각형 ABCD의 넓이는 $4\sqrt{3} \times 2\sqrt{3} = 24 \text{ (cm}^2)$... (ii)

채점 기준	배점
(i) 두 정사각형의 한 변의 길이 각각 구하기	50 %
(ii) 직사각형 ABCD의 넓이 구하기	50 %

3 (1)
$$\sqrt{0.092} = \sqrt{\frac{9.2}{100}} = \frac{\sqrt{9.2}}{10}$$
 ... (i)

$$=\frac{3.033}{10}=0.3033$$
 ... (ii)

(2)
$$\sqrt{920000} = \sqrt{92 \times 10000} = 100\sqrt{92}$$
 ... (iii)
= $100 \times 9.592 = 959.2$... (iv)

채점 기준	배점
$(i)\sqrt{0.092}$ 를 $\sqrt{9.2}$ 를 사용하여 나타내기	20 %
(ii) √0.092 의 값 구하기	30 %
(iii) $\sqrt{920000}$ 을 $\sqrt{92}$ 를 사용하여 나타내기	20 %
(iv) √920000 의 값 구하기	30 %

4
$$\sqrt{12} + \sqrt{28} + \sqrt{63} - \sqrt{75} = 2\sqrt{3} + 2\sqrt{7} + 3\sqrt{7} - 5\sqrt{3}$$

= $-3\sqrt{3} + 5\sqrt{7}$... (i)

따라서 a = -3, b = 5이므로 ... (ii)

a-b=-3-5=-8... (iii)

채점 기준	배점
(i) 주어진 식의 좌변을 간단히 하기	50%
(ii) a, b의 값 구하기	30 %
$(ext{iii})$ $a-b$ 의 값 구하기	20 %

5
$$A = (-6\sqrt{2}) \times \sqrt{\frac{15}{8}} \div \frac{\sqrt{3}}{2}$$

 $= (-6\sqrt{2}) \times \frac{\sqrt{15}}{2\sqrt{2}} \times \frac{2}{\sqrt{3}}$
 $= -6\sqrt{5}$... (i)
 $B = \frac{\sqrt{3}}{\sqrt{2}} + \frac{\sqrt{8}}{\sqrt{3}} - \sqrt{24}$
 $= \frac{\sqrt{6}}{2} + \frac{\sqrt{24}}{3} - \sqrt{24}$
 $= \frac{\sqrt{6}}{2} + \frac{2\sqrt{6}}{3} - 2\sqrt{6}$
 $= (\frac{1}{2} + \frac{2}{3} - 2)\sqrt{6}$
 $= -\frac{5\sqrt{6}}{6}$... (ii)

$$\therefore AB = (-6\sqrt{5}) \times \left(-\frac{5\sqrt{6}}{6}\right) = 5\sqrt{30} \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) A 의 값 구하기	30 %
(ii) <i>B</i> 의 값 구하기	30 %
(iii) AB 의 값 구하기	40 %

$$\begin{array}{lll} \pmb{6} & \sqrt{12} \left(\frac{8}{\sqrt{3}} - \sqrt{6} \right) - (\sqrt{32} - 10) \div \sqrt{2} \\ \\ & = 8\sqrt{4} - \sqrt{72} - (\sqrt{32} - 10) \times \frac{1}{\sqrt{2}} \\ \\ & = 16 - 6\sqrt{2} - \sqrt{16} + \frac{10}{\sqrt{2}} & \cdots \text{(i)} \\ \\ & = 16 - 6\sqrt{2} - 4 + 5\sqrt{2} & \cdots \text{(ii)} \\ \\ & = 12 - \sqrt{2} & \cdots \text{(iii)} \end{array}$$

채점 기준	배점
(i) 분배법칙을 이용하여 괄호 풀기	30 %
(ii) 분모를 유리화하기	30 %
(iii) 답 구하기	40 %

7 두 수의 합은 $(3+a\sqrt{2})+(b-4\sqrt{2})=(3+b)+(a-4)\sqrt{2}$ 이 식이 유리수가 되려면 a - 4 = 0... (i) $\therefore a=4$

두 수의 곱은

$$(3+a\sqrt{2})(b-4\sqrt{2}) = 3b + (-12+ab)\sqrt{2} - 8a$$
$$= (3b-8a) + (-12+ab)\sqrt{2}$$

이 식이 유리수가 되려면

-12+ab=0 : ab=12

이때 a=4이므로

$$4b=12$$
 $\therefore b=3$

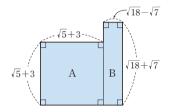
... (ii)

$$a+b=4+3=7$$

··· (iii)

채점 기준	배점
(i) a의 값 구하기	30 %
(ii) <i>b</i> 의 값 구하기	50 %
(iii) $a+b$ 의 값 구하기	20 %

8



위의 그림에서 구하는 도형의 넓이는 정사각형 A와 직사각형 B의 넓이의 합과 같다.

(정사각형 A의 넓이)= $(\sqrt{5}+3)^2$

$$=5+6\sqrt{5}+9$$

$$=14+6\sqrt{5} \qquad \cdots (i)$$

(직사각형 B의 넓이)= $(\sqrt{18} - \sqrt{7})(\sqrt{18} + \sqrt{7})$

$$=18-7=11$$
 ... (ii)

따라서 구하는 도형의 넓이는

$$(14+6\sqrt{5})+11=25+6\sqrt{5}$$
 ... (iii)

채점 기준	배점
(i) 정사각형 A의 넓이 구하기	40 %
(ii) 직사각형 B의 넓이 구하기	40 %
(iii) 주어진 도형의 넓이 구하기	20 %

9
$$\frac{2\sqrt{6}}{\sqrt{3}-1} + \frac{3\sqrt{2}}{\sqrt{6}-3}$$

$$= \frac{2\sqrt{6}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} + \frac{3\sqrt{2}(\sqrt{6}+3)}{(\sqrt{6}-3)(\sqrt{6}+3)}$$

$$=\sqrt{6}(\sqrt{3}+1)-\sqrt{2}(\sqrt{6}+3)$$

$$=\sqrt{18}+\sqrt{6}-\sqrt{12}-3\sqrt{2}$$

$$=3\sqrt{2}+\sqrt{6}-2\sqrt{3}-3\sqrt{2}$$

$$=-2\sqrt{3}+\sqrt{6}$$
 ... (i)

따라서
$$a=-2$$
, $b=1$ 이므로 ... (ii)

$$b-a=1-(-2)=3$$
 ... (iii)

채점 기준	배점
(i) 주어진 식의 좌변을 간단히 하기	50%
(ii) a, b의 값 구하기	30 %
(iii) $b\!-\!a$ 의 값 구하기	20 %

10 (1)
$$f(x) = \frac{1}{\sqrt{x} + \sqrt{x+1}}$$

$$= \frac{\sqrt{x} - \sqrt{x+1}}{(\sqrt{x} + \sqrt{x+1})(\sqrt{x} - \sqrt{x+1})}$$

$$= \frac{\sqrt{x} - \sqrt{x+1}}{x - (x+1)} = -(\sqrt{x} - \sqrt{x+1})$$

$$= -\sqrt{x} + \sqrt{x+1} \qquad \cdots (i)$$

(2)
$$A = f(1) + f(2) + \dots + f(10)$$

 $= (-\sqrt{1} + \sqrt{2}) + (-\sqrt{2} + \sqrt{3}) + \dots + (-\sqrt{10} + \sqrt{11})$
 $= -\sqrt{1} + \sqrt{11}$
 $= -1 + \sqrt{11}$... (ii)

채점 기준	배점
(i) f(x)의 분모를 유리화하기	60 %
(ii) A의 값 구하기	40 %

11 (1) 한 변의 길이가 1인 정사각형의 대각선의 길이는 $\sqrt{2}$ 이므로

$$\overline{PA} = \overline{PQ} = \sqrt{2}$$
, $\overline{RB} = \overline{RS} = \sqrt{2}$

··· (i)

... (ii)

이때 점 A는 점 P에서 오른쪽으로 $\sqrt{2}$ 만큼 떨어진 점이므로 점 A의 좌표는 $A(-1+\sqrt{2})$

점 B는 점 R에서 왼쪽으로 $\sqrt{2}$ 만큼 떨어진 점이므로

$$(2) a = -1 + \sqrt{2}$$
 $b = 3 - \sqrt{2}$ 이므로

$$\frac{a}{b} = \frac{-1 + \sqrt{2}}{3 - \sqrt{2}}$$

$$= \frac{(-1 + \sqrt{2})(3 + \sqrt{2})}{(3 - \sqrt{2})(3 + \sqrt{2})}$$

$$= \frac{-3 + 2\sqrt{2} + 2}{9 - 2}$$

$$= \frac{2\sqrt{2} - 1}{7} \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) \overline{PA} , \overline{RB} 의 길이 구하기	30 %
(ii) 두 점 A, B의 좌표 구하기	30 %
$(iii) \frac{a}{b}$ 의 값 구하기	40 %

12 $1 < \sqrt{3} < 2$ 이므로 $\sqrt{3}$ 의 소수 부분 $x = \sqrt{3} - 1$... (i)

이때 $x = \sqrt{3} - 1$ 에서 $x + 1 = \sqrt{3}$ 이고.

이 식의 양변을 제곱하면

$$(x+1)^2 = (\sqrt{3})^2$$

$$x^2 + 2x + 1 = 3$$

$$x^2+2x=2$$
 ··· (ii)

$$\therefore x^2 + 2x - 4 = 2 - 4 = -2$$
 ... (iii)

채점 기준	배점
(i) x 의 값 구하기	40 %
(ii) x^2+2x 의 값 구하기	40 %
(iii) 주어진 식의 값 구하기	20 %

다른 풀이

$$1<\sqrt{3}<2$$
이므로 $\sqrt{3}$ 의 소수 부분 $x=\sqrt{3}-1$ ····(i) 따라서 $x=\sqrt{3}-1$ 을 주어진 식에 대입하면 $x^2+2x-4=(\sqrt{3}-1)^2+2(\sqrt{3}-1)-4$ $=(3-2\sqrt{3}+1)+2(\sqrt{3}-1)-4$ $=4-2\sqrt{3}+2\sqrt{3}-2-4$ $=-2$ ····(ii)

채점 기준	배점
(i) x의 값 구하기	40 %
(ii) 주어진 식의 값 구하기	60 %

3 단계) 한 개유 더 도전하기

P. 19

1
$$\frac{9\sqrt{5}}{5}$$

2
$$(10\sqrt{2}+12\sqrt{3})$$
 m

3
$$(9-4\sqrt{5})\pi$$

4
$$a=10, b=2$$

1 a>0, b>0에서 $a=\sqrt{a^2}$, $b=\sqrt{b^2}$ 이므로

$$a\sqrt{\frac{b}{a}} + b\sqrt{\frac{a}{b}} - \frac{\sqrt{a}}{a\sqrt{b}}$$

$$= \sqrt{a^2}\sqrt{\frac{b}{a}} + \sqrt{b^2}\sqrt{\frac{a}{b}} - \frac{\sqrt{a}}{\sqrt{a^2}\sqrt{b}}$$

$$= \sqrt{a^2} \times \frac{b}{a} + \sqrt{b^2} \times \frac{a}{b} - \sqrt{\frac{a}{a^2} \times b}$$

$$= \sqrt{ab} + \sqrt{ab} - \frac{1}{\sqrt{ab}} \qquad \cdots (i)$$

$$= \sqrt{5} + \sqrt{5} - \frac{1}{\sqrt{5}}$$

$$= \sqrt{5} + \sqrt{5} - \frac{\sqrt{5}}{5}$$

$$= \left(1 + 1 - \frac{1}{5}\right)\sqrt{5}$$

$$= \frac{9\sqrt{5}}{5} \qquad \cdots (ii)$$

채점 기준	배점
(i) 주어진 식을 ab 를 포함한 식으로 정리하기	60 %
(ii) 주어진 식의 값 구하기	40 %

2 혜나의 방의 한 변의 길이는 $\sqrt{18} = 3\sqrt{2} \text{ (m)}$ 이므로 혜나의 방에 필요한 띠 벽지의 길이는 $4 \times 3\sqrt{2} - \sqrt{2} = 11\sqrt{2}$ (m) ... (i) 부모님의 방의 한 변의 길이는 $\sqrt{27} = 3\sqrt{3} \text{ (m)}$ 이므로

부모님의 방에 필요한 띠 벽지의 길이는 $4 \times 3\sqrt{3} - \sqrt{2} = 12\sqrt{3} - \sqrt{2}$ (m) ... (ii) 따라서 필요한 띠 벽지의 길이는 $11\sqrt{2} + (12\sqrt{3} - \sqrt{2}) = 10\sqrt{2} + 12\sqrt{3}$ (m) ... (iii)

채점 기준	배점
(i) 혜나의 방에 필요한 띠 벽지의 길이 구하기	40 %
(ii) 부모님의 방에 필요한 띠 벽지의 길이 구하기	40 %
(iii) 필요한 띠 벽지의 길이 구하기	20 %

3 사분원 A의 반지름의 길이는 2이다. ... (i) 사분원 B의 반지름의 길이는 $(1+\sqrt{5})-2=\sqrt{5}-1$... (ii) 사분원 C의 반지름의 길이는 $2-(\sqrt{5}-1)=3-\sqrt{5}$ ··· (iii)

$$2-(\sqrt{5}-1)=3-\sqrt{5}$$
 ... (m)
사분원 D의 반지름의 길이는 $(\sqrt{5}-1)-(3-\sqrt{5})=2\sqrt{5}-4$... (iv)

따라서 사부워 D의 넓이는

 $(\sqrt{5}-1)-(3-\sqrt{5})=2\sqrt{5}-4$

$$\frac{1}{4} \times \pi \times (2\sqrt{5} - 4)^2 = \frac{\pi}{4} (20 - 16\sqrt{5} + 16)$$

$$= \frac{\pi}{4} (36 - 16\sqrt{5})$$

$$= (9 - 4\sqrt{5})\pi \qquad \cdots (v)$$

채점 기준	배점
(i) 사분원 A 의 반지름의 길이 구하기	10 %
(ii) 사분원 B의 반지름의 길이 구하기	20 %
(iii) 사분원 C의 반지름의 길이 구하기	20 %
(iv) 사분원 D의 반지름의 길이 구하기	20 %
(v) 사분원 D의 넓이 구하기	30 %

4 $1 < \sqrt{3} < 2$ 이므로 $6 < 5 + \sqrt{3} < 7$ 에서

 $5+\sqrt{3}$ 의 정수 부분은 6이다.

$$\therefore$$
 $<5+\sqrt{3}>=6$ \cdots (i) $-2<-\sqrt{3}<-1$ 이므로 $3<5-\sqrt{3}<4$ 에서

 $5-\sqrt{3}$ 의 소수 부분은 $(5-\sqrt{3})-3=2-\sqrt{3}$ 이다.

$$\therefore \ll 5 - \sqrt{3} \gg = 2 - \sqrt{3} \qquad \cdots \text{ (ii)}$$

따라서 a=10, b=2이다.

채점 기준	배점
(i) $<$ 5 $+\sqrt{3}$ $>$ 의 값 구하기	20 %
(ii) ≪5-√3≫의 값 구하기	20 %
(iii) 주어진 식의 좌변을 간단히 하기	40 %
(iv) a, b의 값 구하기	20 %

... (iv)

인수분해

1 단계 보고 때문 하기

P 22~23

1 4

2 (x-3)(2x-1) **3** $4\sqrt{15}$ **4** 1.2

1 (x+b)(cx+2)= $cx^2+(2+bc)x+2b$

... (i)

2단계 즉 $5x^2-3x+a=cx^2+(2+bc)x+2b$ 이므로 x^2 의 계수에서

5=c

x의 계수에서 -3=2+bc이므로

 $-3=2+b\times 5.5b=-5$

 $\therefore b = -1$

상수항에서

 $a=2b=2\times(-1)=-2$

... (ii)

3₹a-b+c=-2-(-1)+5=4

... (iii)

... (i)

채점 기준	배점
(i) 인수분해 결과를 전개하기	20 %
(ii) a, b, c의 값 구하기	60 %
(iii) a-b+c의 값 구하기	20 %

- 2 $(x-4)(2x+1)=2x^2-7x-4$ 에서 지연이는 x의 계수를 바르게 보았으므로 a = -7
 - **2단계** $(x+1)(2x+3)=2x^2+5x+3$ 에서 수호는 상수항을 바르게 보았으므로 ... (ii) b=3
 - **3**단계 따라서 $2x^2+ax+b=2x^2-7x+3$ 이므로 이 식을 바르게 인수분해하면 (x-3)(2x-1)이다. ··· (iii)

채점 기준	배점
(i) <i>a</i> 의 값 구하기	30 %
(ii) <i>b</i> 의 값 구하기	30 %
(iii) 처음의 이차식을 바르게 인수분해하기	40 %

- 3 154 $x^2-y^2=(x+y)(x-y)$ ··· (i)
 - $x+y=(\sqrt{5}+\sqrt{3})+(\sqrt{5}-\sqrt{3})=2\sqrt{5}$ $x-y=(\sqrt{5}+\sqrt{3})-(\sqrt{5}-\sqrt{3})=2\sqrt{3}$... (ii)
 - 3단계 : $x^2-y^2=(x+y)(x-y)$ $=2\sqrt{5}\times2\sqrt{3}=4\sqrt{15}$... (iii)

채점 기준	배점
(i) 주어진 식을 인수분해하기	20 %
(ii) $x+y$, $x-y$ 의 값 구하기	40 %
(iii) 주어진 식의 값 구하기	40 %

4 $\sqrt{3} \times 1.58^2 - 3 \times 1.42^2$

$$=\sqrt{3(1.58^2-1.42^2)}$$

$$=\sqrt{3(1.58+1.42)(1.58-1.42)} \cdots (i)$$

 $=\sqrt{3\times3\times0.16}$

 $=\sqrt{1.44}=\sqrt{1.2^2}$

=1.2

채점 기준	배점
(i) 인수분해 공식을 이용하여 근호 안의 수를 변형하기	60 %
(ii) 계산하기	40 %

2 단계 스스로 해결하기

P. 24~26

... (ii)

- **1** 8, 32 **2** 2
- **4** (1) (x-3)(3x-1) (2) (2x+5)(3x-1) (3) 3x-1

3 4개

- 5 -12 6 x+7 7 4x-2
- **8** (1) (x+3y-1)(x-y+1)(2) a=3, b=-1, c=-1 $(3)\ 1$
- **9** 1002 **10** 144
- **11** (1) $x = \sqrt{10} + 3$, $y = \sqrt{10} 3$ (2) $x+y=2\sqrt{10}, x-y=6$ (3) $6\sqrt{10}$
- 12 $3\sqrt{17} + 8$
- 1 $(2x-1)(2x-9)+kx=4x^2-20x+9+kx$ $=4x^2+(k-20)x+9$

 $=(2x)^2+(k-20)x+(\pm 3)^2$

이 식이 완전제곱식이 되려면

 $k-20=2\times2\times(\pm3)=\pm12$ 이어야 한다.

... (i)

즉. k-20=12에서 k=32이고.

k-20=-12에서 k=8이다.

따라서 구하는 상수 k의 값은 8.32이다. ... (ii)

채점 기준	배점
(i) 완전제곱식이 되기 위한 k 의 조건 설명하기	60 %
(ii) k의 값 구하기	40 %

2 $\sqrt{x}=a-2$ 의 양변을 제곱하면

 $(\sqrt{x})^2 = (a-2)^2$ 에서 $x = a^2 - 4a + 4$ 이므로

 $\sqrt{x+2a-3} + \sqrt{x-2a+5}$

 $=\sqrt{a^2-4a+4+2a-3}+\sqrt{a^2-4a+4-2a+5}$

 $=\sqrt{a^2-2a+1}+\sqrt{a^2-6a+9}$

... (i)

 $=\sqrt{(a-1)^2}+\sqrt{(a-3)^2}$

... (ii)

이때 2<a<3이므로

a-1>0, a-3<0

· · · (iii)

∴ (주어진 식)=(a-1)-(a-3)

=a-1-a+3=2· · · (iv)

채점 기준	배점
(i) 근호 안의 식을 a 에 관한 식으로 나타내기	20 %
(ii) 근호 안의 식을 인수분해하기	30 %
(iii) $a\!-\!1$, $a\!-\!3$ 의 부호 판단하기	20 %
(iv) 주어진 식을 간단히 하기	30 %

3 $x^2+kx-10=(x+a)(x+b)$ 라 하자.(단, a>b)
이때 $(x+a)(x+b)=x^2+(a+b)x+ab$ 에서 k=a+b, ab=-10 ... (i) ab=-10을 만족하는 정수 a, b의 순서쌍 (a, b)와 그에 따른 k의 값을 구하면 다음과 같다.
(가 (a, b)가 (1, -10)일 때, k=1+(-10)=-9(나) (a, b)가 (2, -5)일 때, k=2+(-5)=-3(다) (a, b)가 (5, -2)일 때, k=5+(-2)=3(라) (a, b)가 (10, -1)일 때, k=10+(-1)=9 ... (ii)
따라서 $(x)\sim$ (라)에 의해 상수 k는

채점 기준	배점
(i) 주어진 조건을 만족하는 a,b 와 k 의 조건 알기	20 %
(ii) 순서쌍 (a,b) 와 그에 따른 k 의 값 구하기	60 %
$(ext{iii})$ k 의 개수 구하기	20 %

4 (1)
$$3x^2 - 10x + 3 = (x - 3)(3x - 1)$$
 ... (i)

(2)
$$6x^2 + 13x - 5 = (2x + 5)(3x - 1)$$
 ... (ii)

(3) 두 다항식의 공통인 인수는
$$3x-1$$
이다. ··· (iii)

채점 기준	배점
$(i) 3x^2 - 10x + 3$ 을 인수분해하기	40 %
$(ii) 6x^2 + 13x - 5$ 를 인수분해하기	40 %
(iii) 공통인 인수 구하기	20 %

5 x-4가 $2x^2-5x+a$ 의 인수이므로

-9. **-**3. 3. 9의 4개이다.

$$2x^2-5x+a=(x-4)(2x+b)$$
라 하면 ...(i)

$$2x^2-5x+a=2x^2+(b-8)x-4b$$
이므로 ··· (ii)

*x*의 계수에서

$$-5=b-8$$
 $\therefore b=3$ \cdots (iii)

상수항에서

$$a = -4b = -4 \times 3 = -12$$
 ... (iv)

채점 기준	배점
(i) $2x^2 - 5x + a = (x-4)(2x+b)$ 로 놓기	20 %
(ii) (i)의 식의 우변을 전개하기	20 %
(iii) <i>b</i> 의 값 구하기	30 %
(iv) <i>a</i> 의 값 구하기	30 %

이때 두 도형 A, B의 넓이가 서로 같고, 도형 B의 세로의 길이가 x+3이므로 가로의 길이는 x+7이다. \cdots (iii)

채점 기준	배점
(i) 도형 A 의 넓이를 x 에 관한 식으로 나타내기	30 %
(ii) (i)의 식을 인수분해하기	40 %
(iii) 도형 B의 가로의 길이 구하기	30 %

7 2x+1=A, 3y-2=B로 놓으면

(주어진 식)

... (iii)

$$=A^2-B^2-4A+4$$

$$=A^2-4A+4-B^2$$

$$=(A-2)^2-B^2$$

$$=(A-2+B)(A-2-B)$$

$$=\{(2x+1)-2+(3y-2)\}\{(2x+1)-2-(3y-2)\}$$

$$=(2x+3y-3)(2x-3y+1)$$
 ... (i)

따라서 두 일차식은 2x+3y-3, 2x-3y+1이므로 \cdots (ii) 합을 구하면

$$(2x+3y-3)+(2x-3y+1)=4x-2$$
 ... (iii)

채점 기준	배점
(i) 주어진 식을 인수분해하기	60 %
(ii) 두 일차식 구하기	20 %
(iii) 두 일차식의 합 구하기	20 %

8 (1) 주어진 식을 x에 대하여 내림차순으로 정리하여 인수분해 하면

(주어진 식)=
$$x^2+2yx-(3y^2-4y+1)$$

= $x^2+2yx-(3y-1)(y-1)$
= $\{x+(3y-1)\}\{x-(y-1)\}$
= $(x+3y-1)(x-y+1)$...(i)

(2)
$$a=3$$
, $b=-1$, $c=-1$... (ii)

(3)
$$a+b+c=3+(-1)+(-1)=1$$
 ... (iii)

채점 기준	배점
(i) 주어진 식을 인수분해하기	60 %
(ii) a, b, c의 값 구하기	20 %
(iii) $a+b+c$ 의 값 구하기	20 %

채점 기준	배점
(i) 인수분해 공식을 이용하여 좌변을 변형하기	60 %
$\overline{\mathrm{(ii)}}$ 자연수 N 의 값 구하기	40 %

채점 기준	배점
(i) 인수분해 공식을 적용할 수 있도록 적절한 항끼리 묶기	30 %
(ii) 인수분해하기	40 %
(iii) 계산하기	30 %

11 (1)
$$x = \frac{1}{\sqrt{10} - 3} = \frac{\sqrt{10} + 3}{(\sqrt{10} - 3)(\sqrt{10} + 3)} = \sqrt{10} + 3$$

 $y = \frac{1}{\sqrt{10} + 3} = \frac{\sqrt{10} - 3}{(\sqrt{10} + 3)(\sqrt{10} - 3)} = \sqrt{10} - 3$... (i)
(2) $x + y = (\sqrt{10} + 3) + (\sqrt{10} - 3) = 2\sqrt{10}$
 $x - y = (\sqrt{10} + 3) - (\sqrt{10} - 3) = 6$... (ii)
(3) $x^2 - y^2 - 3x - 3y = (x + y)(x - y) - 3(x + y)$
 $= (x + y)(x - y - 3)$... (iii)
 $= 2\sqrt{10} \times (6 - 3)$
 $= 6\sqrt{10}$... (iv)

채점 기준	배점
(i) x, y의 분모를 유리화하기	40 %
(ii) $x+y$, $x-y$ 의 값 구하기	30 %
(iii) 주어진 식을 인수분해하기	20 %
(iv) 주어진 식의 값 구하기	10%

12
$$a^2-b^2+8b-16=3$$
에서 (좌번)= $a^2-(b^2-8b+16)$ = $a^2-(b-4)^2$ = $\{a+(b-4)\}\{a-(b-4)\}$ = $(a+b-4)(a-b+4)$ ··· (i) 즉, $(a+b-4)(a-b+4)=3$ 이므로 $a+b=\sqrt{17}$ 을 대입하면 $(\sqrt{17}-4)(a-b+4)=3$ 에서 $a-b+4=\frac{3}{\sqrt{17}-4}$ = $\frac{3(\sqrt{17}+4)}{(\sqrt{17}-4)(\sqrt{17}+4)}$ = $3(\sqrt{17}+4)$ = $3(\sqrt{17}+4)$ = $3(\sqrt{17}+4)$ = $3\sqrt{17}+12$ ··· $(a-b+3\sqrt{17}+12-4=3\sqrt{17}+8)$ ··· (ii)

채점 기준	배점
(i) 주어진 식의 좌변을 인수분해하기	40 %
$(ext{ii})$ $a-b$ 의 값 구하기	60 %

3 단계 한 개 등 도전하기

P. 27

-a **2** (1) (x+3y-5)(x+3y+7) (2) (3, 1)

3 (1) 5×11×73 (2) 3개

이때 0 < a < 1에서 $\frac{1}{a} > 1$ 이므로

4 5

1
$$\left(a + \frac{1}{a}\right)^2 - 4 = a^2 + 2 + \frac{1}{a^2} - 4$$

 $= a^2 - 2 + \frac{1}{a^2}$
 $= a^2 - 2 \times a \times \frac{1}{a} + \frac{1}{a^2}$
 $= \left(a - \frac{1}{a}\right)^2$
 $\left(a - \frac{1}{a}\right)^2 + 4 = a^2 - 2 + \frac{1}{a^2} + 4$
 $= a^2 + 2 + \frac{1}{a^2}$
 $= a^2 + 2 \times a \times \frac{1}{a} + \frac{1}{a^2}$
 $= \left(a + \frac{1}{a}\right)^2$... (i)

$$a - \frac{1}{a} < 0, \ a + \frac{1}{a} > 0, \ -a < 0 \qquad \cdots (ii)$$

$$\therefore \sqrt{\left(a + \frac{1}{a}\right)^2 - 4} - \sqrt{\left(a - \frac{1}{a}\right)^2 + 4} + \sqrt{(-a)^2}$$

$$= \sqrt{\left(a - \frac{1}{a}\right)^2} - \sqrt{\left(a + \frac{1}{a}\right)^2} + \sqrt{(-a)^2}$$

$$= -\left(a - \frac{1}{a}\right) - \left(a + \frac{1}{a}\right) - (-a)$$

$$= -a + \frac{1}{a} - a - \frac{1}{a} + a$$

$$= -a \qquad \cdots (iii)$$

채점 기준	배점
(i) 근호 안의 식을 완전제곱식으로 고치기	30 %
$\overline{\left(\mathrm{ii}\right)a+\frac{1}{a},a-\frac{1}{a},-a}$ 의 부호 정하기	30 %
(iii) 주어진 식을 간단히 하기	40 %

 $\mathbf{2}$ (1) 주어진 식을 x에 대하여 내림차순으로 정리하여 인수분해 하면

$$x^{2}+6xy+9y^{2}+2x+6y-35$$

$$=x^{2}+(6y+2)x+9y^{2}+6y-35$$

$$=x^{2}+(6y+2)x+(3y-5)(3y+7)$$

$$=(x+3y-5)(x+3y+7) \qquad \cdots (i)$$

(2) 주어진 식의 값이 소수가 되려면 x+3y-5=1, x+3y+7=(소수)이어야 한다. ··· (ii) x+3y-5=1에서 x+3y=6이므로 x+3y+7=6+7=13으로 소수이다. 따라서 x+3y=6을 만족하는 자연수 x, y의 순서쌍 (x,y)를 구하면 (3,1)뿐이다. ··· (iii)

채점 기준	배점
(i) 주어진 식을 인수분해하기	40 %
(ii) (i)의 식이 소수가 되기 위한 조건 설명하기	40 %
(iii) 순서쌍 (x,y) 구하기	20 %

3 (1)
$$8^4 - 81 = 8^4 - 3^4$$

 $= (8^2)^2 - (3^2)^2$
 $= (8^2 + 3^2)(8^2 - 3^2)$
 $= (8^2 + 3^2)(8 + 3)(8 - 3)$
 $= 73 \times 11 \times 5$... (i)

따라서 84-81을 소인수분해하면

5×11×73이다. ... (ii)

(2) 8⁴-81=5×11×73이므로 8⁴-81을 나누어떨어지도록 하 는 두 자리의 자연수는 84-81의 약수 중 두 자리의 수이 므로

채점 기준	배점
${ m (i)}$ 인수분해 공식을 이용하여 $8^4 - 81$ 을 변형하기	40 %
(ii) 8 ⁴ -81을 소인수분해하기	20 %
(iii) $8^4 - 81$ 을 나누어떨어지도록 하는 두 자리의 자연수의 개수 구하기	40 %

4 주어진 수의 분모를 유리화하면

$$\frac{4-\sqrt{6}}{\sqrt{6}-2} = \frac{(4-\sqrt{6})(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}$$

$$= \frac{4\sqrt{6}+8-6-2\sqrt{6}}{6-4}$$

$$= \frac{2\sqrt{6}+2}{2}$$

$$= \sqrt{6}+1 \qquad \cdots (i)$$

이때 $2 < \sqrt{6} < 3$ 이므로 $3 < \sqrt{6} + 1 < 4$ 에서

$$\frac{4-\sqrt{6}}{\sqrt{6}-2}$$
의 정수 부분 $a=3$,

소수 부분
$$b = (\sqrt{6} + 1) - 3 = \sqrt{6} - 2$$
 ... (ii)

$$\therefore b^2 + ab + b + a = b(a+b) + (a+b)$$

$$= (a+b)(b+1) \qquad \cdots \text{ (iii)}$$

$$= \{3+(\sqrt{6}-2)\}\{(\sqrt{6}-2)+1\}$$

$$= (\sqrt{6}+1)(\sqrt{6}-1)$$

$$= 6-1$$

=5· · · (iv)

채점 기준	배점
(i) 주어진 수의 분모를 유리화하기	20 %
(ii) a, b의 값 구하기	30 %
(iii) 주어진 식을 인수분해하기	30 %
(iv) 주어진 식의 값 구하기	20 %

이차방정식

P. 30~31

... (ii)

1
$$x=2$$
 2 $x=\frac{-4\pm\sqrt{13}}{3}$ **3** $x=\frac{-1\pm\sqrt{41}}{4}$

3
$$x = \frac{-1 \pm \sqrt{4}}{4}$$

4 18

1 (1단계) x=3을 주어진 이차방정식에 대입하면 $(a-1)\times3^2-(2a+1)\times3+6=0$ 3a - 6 = 0 $\therefore a=2$... (i)

2단계
$$a=2$$
를 주어진 이차방정식에 대입하면 $x^2-5x+6=0$... (ii)

3단계
$$(x-2)(x-3)=0$$

∴ $x=2$ 또는 $x=3$
따라서 다른 한 근은 $x=2$ 이다. ··· (iii)

채점 기준	배점
(i) 한 근을 대입하여 a 의 값 구하기	40 %
(ii) a 의 값을 대입하여 이차방정식 구하기	20 %
(iii) 다른 한 근 구하기	40 %

2 **12** 3
$$x^2 + 8x + 1 = 0$$
의 양변을 3으로 나누면
$$x^2 + \frac{8}{2}x + \frac{1}{2} = 0 \qquad \cdots (i)$$

상수항을 우변으로 이항하면
$$x^2 + \frac{8}{3}x = -\frac{1}{3}$$
 양변에 $\left(\frac{8}{3} \times \frac{1}{2}\right)^2 = \frac{16}{9}$ 을 더하면
$$x^2 + \frac{8}{3}x + \frac{16}{9} = -\frac{1}{3} + \frac{16}{9}$$
 $\left(x + \frac{4}{3}\right)^2 = \frac{13}{9}$... (ii)

3단계
$$x + \frac{4}{3} = \pm \frac{\sqrt{13}}{3}$$
 $\therefore x = \frac{-4 \pm \sqrt{13}}{3}$ \cdots (iii)

채점 기준	배점
$\left(\mathrm{i}\right)x^{2}$ 의 계수를 1 로 만들기	20 %
(ii) 좌변을 완전제곱식으로 고치기	50%
(iii) 이차방정식의 해 구하기	30 %

3 (단계) 주어진 이차방정식의 양변에 10을 곱하면

$$4x^2 + 2x - 10 = 0$$
$$2x^2 + x - 5 = 0$$

$$2x^2 + x - 5 = 0 \qquad \cdots (i)$$

2단계
$$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-5)}}{2 \times 2}$$
 ... (ii)

3단계
$$\therefore x = \frac{-1 \pm \sqrt{41}}{4}$$
 ... (iii)

채점 기준	배점
(i) 계수를 모두 정수로 고치기	30 %
(ii) 근의 공식 적용하기	40 %
(iii) 이차방정식의 해 구하기	30 %

4 상자의 밑면은 한 변의 길이가 (x-4) cm인 정사각형이므로 $(x-4)^2 \times 2 = 392$... (i)

 $(x-4)^2 = 196$

 $x-4=\pm 14$

 $\therefore x = -10 \, \text{E} = 18$

... (ii)

그런데 x>4이므로 x=18

... (iii)

채점 기준	배점
(i) 이차방정식 세우기	30 %
(ii) 이차방정식 풀기	50 %
(iii) <i>x</i> 의 값 구하기	20 %

2 단계 스스로 해격하기

P. 32~34

1 1

2
$$x = -3$$
 또는 $x = \frac{2}{5}$

3
$$m=2, x=3$$
 4 (1) $x=-1\pm\sqrt{7}$ (2) $-4\sqrt{7}$

5
$$a=2, b=-4$$
 6 $x=-4\pm\sqrt{10}$

7 (1) $x = \frac{7 \pm \sqrt{49 - 4k}}{2}$ (2) 6, 10, 12

8 x = -1 또는 x = 3

9 $2\sqrt{26}$

10 (1) $2-\sqrt{2}$ (2) a=-6, b=6 **11** 12 **12** 8 cm

1 $x^2 + ax - 2 = 0$ 에 x = 2를 대입하면 $2^2 + a \times 2 - 2 = 0$

2a+2=0

 $\therefore a = -1$

... (i)

 $3x^2-7x+b=0$ 에 x=2를 대입하면

 $3 \times 2^2 - 7 \times 2 + b = 0$

-2+b=0

b=2

... (ii)

a+b=-1+2=1

... (iii)

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) a+b의 값 구하기	20 %

2 (x-8)(x-10)=15에서 $x^2-18x+65=0$

(x-5)(x-13)=0

 $\therefore x=5 \pm \pm x=13$

이때 a < b이므로 a = 5. b = 13

... (i)

즉. $5x^2+13x-6=0$ 에서

(x+3)(5x-2)=0

$$\therefore x = -3$$
 또는 $x = \frac{2}{5}$

... (ii)

채점 기준	배점
(i) a, b의 값 구하기	40 %
(ii) $ax^2 + bx - 6 = 0$ 의 해 구하기	60 %

3 중근을 가지려면 좌변이 완전제곱식이어야 하므로

$$2m^2+1=\left\{\frac{-2(m+1)}{2}\right\}^2$$
 ... (i)

 $2m^2+1=m^2+2m+1$

 $m^2-2m=0$, m(m-2)=0

∴ *m*=0 또는 *m*=2

그런데 m>0이므로 m=2

... (ii)

m=2를 주어진 이차방정식에 대입하면

$$x^2-6x+9=0$$
. $(x-3)^2=0$

··· (iii)

... (i)

... (iii)

채점 기준	배점
(i) 중근을 갖기 위한 m 의 조건 설명하기	40 %
(ii) <i>m</i> 의 값 구하기	30 %
(iii) 중근 구하기	30 %

4 (1) $x^2+2x-6=0$ |x| $|x|^2+2x=6$

 $x^2+2x+1=6+1$, $(x+1)^2=7$

 $x+1 = \pm \sqrt{7}$

$$\therefore x = -1 \pm \sqrt{7}$$

(2)
$$a > b$$
이므로 $a = -1 + \sqrt{7}$, $b = -1 - \sqrt{7}$... (ii) $a + b = (-1 + \sqrt{7}) + (-1 - \sqrt{7}) = -2$, $a - b = (-1 + \sqrt{7}) - (-1 - \sqrt{7}) = 2\sqrt{7}$ 이므로

$$a^2-b^2=(a+b)(a-b)$$

$$=-2\times 2\sqrt{7}=-4\sqrt{7}$$

채점 기준	배점
(i) 완전제곱식을 이용하여 이차방정식 풀기	40 %
(ii) a, b의 값 구하기	20 %
(iii) $a^2 - b^2$ 의 값 구하기	40 %

5
$$x = \frac{-4 \pm \sqrt{4^2 - 3 \times a}}{3} = \frac{-4 \pm \sqrt{16 - 3a}}{3}$$
 ... (i)

이때 $x = \frac{b \pm \sqrt{10}}{3}$ 이므로

... (ii) h = -4

10 = 16 - 3a : a = 2

... (iii)

채점 기준	배점
(i) 근의 공식을 이용하여 이차방정식 풀기	60 %
(ii) b 의 값 구하기	20 %
(iii) <i>a</i> 의 값 구하기	20 %

6
$$x^2+kx+(k+2)=0$$
에 $x=-2$ 를 대입하면 $(-2)^2+k\times(-2)+(k+2)=0$ $-k+6=0$ $\therefore k=6$ ··· (i)

처음의 이차방정식
$$x^2+(k+2)x+k=0$$
에 $k=6$ 을 대입하면 $x^2+8x+6=0$... (ii)

$$\therefore x = -4 \pm \sqrt{4^2 - 1 \times 6}$$

$$= -4 \pm \sqrt{10} \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) k의 값 구하기	40 %
(ii) 처음의 이차방정식 구하기	20 %
(iii) 처음의 이차방정식 풀기	40 %

7 (1)
$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 1 \times k}}{2 \times 1}$$

= $\frac{7 \pm \sqrt{49 - 4k}}{2}$... (i)

(2) (1)에서 구한 해가 유리수가 되려면 k는 자연수이므로 근호 안의 수 49-4k가 0 또는 49보다 작은 제곱수이어야 한다. \cdots (ii)

즉, 49-4k=0, 1, 4, 9, 16, 25, 36에서 4k=49, 48, 45, 40, 33, 24, 13

$$\therefore k = \frac{49}{4}, 12, \frac{45}{4}, 10, \frac{33}{4}, 6, \frac{13}{4}$$

그런데 k는 자연수이므로

$$k=6, 10, 12$$

채점 기준	배점
(i) 근의 공식을 이용하여 이차방정식 풀기	40 %
(ii) 해가 유리수가 되기 위한 조건 설명하기	20 %
(iii) 자연수 k 의 값 구하기	40 %

8 주어진 이차방정식의 양변에 6을 곱하면

$$2x^{2}-4x-(x^{2}-2x-3)=6$$

$$x^2 - 2x - 3 = 0$$
 ... (ii)

$$(x+1)(x-3)=0$$

$$\therefore x = -1 \, \text{EL} x = 3 \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) 양변에 분모의 최소공배수 곱하기	20 %
$(ii) ax^2 + bx + c = 0$ 의 꼴로 나타내기	20 %
(iii) 이차방정식 풀기	60%

 $\mathbf{9}$ 두 근이 $-\frac{5}{2}$, 2이고, x^2 의 계수가 2인 이차방정식은 $2\left(x+\frac{5}{2}\right)(x-2)=0$

 $2x^2 + x - 10 = 0$

이 식이 $2x^2+mx+n=0$ 과 같아야 하므로

$$m=1, n=-10$$
 ··· (i)

즉,
$$x^2+10x-1=0$$
의 두 근을 구하면
$$x=-5\pm\sqrt{5^2-1}\times(-1)=-5\pm\sqrt{26} \qquad \qquad \cdots \text{(ii)}$$
 따라서 구하는 두 근의 차는
$$(-5+\sqrt{26})-(-5-\sqrt{26})=2\sqrt{26} \qquad \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) m, n의 값 구하기	40 %
$\overline{(ii) x^2 - nx - m} = 0$ 의 두 근 구하기	40 %
(iii) $x^2 - nx - m = 0$ 의 두 근의 차 구하기	20 %

10 (1) 1<√2<2에서 −2< −√2< −1이므로 3<5−√2<4 따라서 5−√2의 소수 부분은

 $(5-\sqrt{2})-3=2-\sqrt{2}$... (i)

이때 두 근의 합은 $(2-\sqrt{2})+(2+\sqrt{2})=4$ 이므로

$$-\frac{2a}{3} = 4 \qquad \therefore a = -6 \qquad \qquad \cdots \text{(iii)}$$

두 근의 곱은 $(2-\sqrt{2})(2+\sqrt{2})=2$ 이므로

$$\frac{b}{3}$$
=2 $\therefore b$ =6 \cdots (iv)

채점 기준	배점
(i) $5-\sqrt{2}$ 의 소수 부분 구하기	20 %
(ii) 주어진 이차방정식의 두 근 구하기	20 %
(iii) <i>a</i> 의 값 구하기	30 %
(iv) <i>b</i> 의 값 구하기	30 %

11 t초 후 직사각형의 가로의 길이는 $(40-2t)\,{
m cm}$,

세로의 길이는 (24+3*t*) cm

... (i)

... (ii)

t초 후 직사각형의 넓이가 처음의 직사각형의 넓이와 같아지 므로

$$(40-2t)(24+3t)=40\times 24$$

 $-6t^2+72t=0$

... (iii)

t(t-12)=0

 $\therefore t=0 \ \text{E} = 12$

··· (iii)

그런데 t>0이므로 t=12

··· (iv)

채점 기준	배점
(i) t 초 후 직사각형의 가로와 세로의 길이를 t 에 관한 식으로 나타내기	20 %
(ii) 이차방정식 세우기	30 %
(iii) 이차방정식 풀기	30 %
(iv) <i>t</i> 의 값 구하기	20 %

12 BF=xcm라 하면 DE=BF=xcm △ABC∽△ADE(AA 닮음)이므로

 $\overline{AB} : \overline{AD} = \overline{BC} : \overline{DE}$ 에서

 $20:\overline{\mathrm{AD}}=10:x$

$10\overline{AD} = 20x$	$\therefore \overline{AD} = 2x \text{ (cm)}$
1011D-20x	$\cdots 11D-2x$ (CIII)

$$\therefore \overline{DB} = \overline{AB} - \overline{AD} = 20 - 2x (cm) \qquad \cdots (i)$$

이때 □DBFE=32 cm²이므로

$$x(20-2x)=32에서$$
 ... (ii)

$$-2x^2+20x-32=0$$

$$x^2 - 10x + 16 = 0$$

$$(x-2)(x-8)=0$$

$$\therefore x=2 \ \Xi = x=8 \qquad \cdots$$
 (iii)

그런데 $\overline{\mathrm{BF}} > \overline{\mathrm{DB}}$ 이므로 x=8

채점 기준	배점
(i) \overline{BF} , \overline{DB} 의 길이를 문자를 사용하여 나타내기	30 %
(ii) 이차방정식 세우기	20 %
(iii) 이차방정식 풀기	30 %
(iv) BF의 길이 구하기	20 %

3 단계 한 건축 더 도전하기

P. 35

1 3 **2**

2 2 **3** 16마리 또는 48마리

4 5 cm

1
$$5(x-1)^2+4x=(2x-3)(3x+1)$$
 에서
 $5(x^2-2x+1)+4x=6x^2-7x-3$
 $x^2-x-8=0$...(i)

$$\therefore x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-8)}}{2 \times 1}$$

$$=\frac{1\pm\sqrt{33}}{2} \qquad \cdots (ii)$$

 $\therefore \alpha = \frac{1 + \sqrt{33}}{2} \qquad \cdots \text{ (iii)}$

이때 5<√33<6이므로

$$6 < 1 + \sqrt{33} < 7$$

$$3 < \frac{1 + \sqrt{33}}{2} < \frac{7}{2}$$

즉,
$$3 < \alpha < 4$$
이므로 $n=3$ ···· (iv)

채점 기준	배점
(i) 괄호를 전개하여 $ax^2 + bx + c = 0$ 의 꼴로 나타내기	20 %
(ii) 이차방정식의 해 구하기	30 %
(iii) 두 근 중 큰 근 구하기	10 %
(iv) 정수 <i>n</i> 의 값 구하기	40 %

2
$$x^2-2x-1=0$$
에 $x=\alpha$ 를 대입하면 $\alpha^2-2\alpha-1=0$ \therefore $\alpha^2-2\alpha=1$ $x^2-2x-1=0$ 에 $x=\beta$ 를 대입하면 $\beta^2-2\beta-1=0$ \therefore $\beta^2-2\beta=1$ \cdots (i) $x^2-2x-1=0$ 의 두 근이 α , β 이므로 $\alpha+\beta=2$, $\alpha\beta=-1$ \cdots (ii)

채점 기준	배점
$(\mathrm{i})~lpha^2{-}2lpha,~eta^2{-}2eta$ 의 값 구하기	20 %
(ii) $lpha+eta$, $lphaeta$ 의 값 구하기	20 %
(iii) (α²-3α-2)(β²-3β-2)의 값 구하기	60 %

3 숲속에 있는 원숭이를 모두 x마리라 하면

$$x - \left(\frac{1}{8}x\right)^2 = 12$$
 ... (i)

$$x - \frac{1}{64}x^2 = 12$$

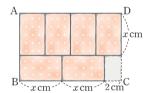
 $x^2 - 64x + 768 = 0$

(x-16)(x-48)=0

따라서 원숭이는 모두 16마리 또는 48마리이다. ... (iii)

채점 기준	배점
(i) 이차방정식 세우기	40 %
(ii) 이차방정식 풀기	50 %
(iii) 숲속에 있는 원숭이의 수 구하기	10 %

4 과자 틀의 긴 변의 길이를 x cm라 하면 오른쪽 그림에 $\overline{BC} = (2x+2) \text{ cm}$ 이고, $\overline{AD} = \overline{BC}$ 이므로 과자 틀의 짧은 변의 길이는



$$\frac{2x+2}{4} = \frac{1}{2}x + \frac{1}{2}$$
 (cm)

··· (i)

$$\therefore \overline{AB} = x + \left(\frac{1}{2}x + \frac{1}{2}\right) = \frac{3}{2}x + \frac{1}{2}(cm)$$

이때
$$(2x+2)\left(\frac{3}{2}x+\frac{1}{2}\right)=96$$
이므로 ... (ii)

 $3x^2+4x-95=0$

(3x+19)(x-5)=0

$$\therefore x = -\frac{19}{3}$$
 또는 $x = 5$ ··· (iii)

그런데 x>0이므로 x=5

따라서 과자 틀의 긴 변의 길이는 5 cm이다 ... (iv)

채점 기준	배점
(i) 과자 틀의 긴 변, 짧은 변의 길이를 문자를 사용하여 나 타내기	30 %
(ii) 이차방정식 세우기	20 %
(iii) 이차방정식 풀기	30 %
(iv) 과자 틀의 긴 변의 길이 구하기	20 %

이차함수와 그 그래프

P. 38~39

- 1 $k \neq 2$ 2 -5

- 1단계 주어진 함수의 식을 $y=ax^2+bx+c$ 의 꼴로 정리하면 y=(kx-1)(x+3)-2x(x-3)+6 $=kx^2+3kx-x-3-2x^2+6x+6$ $=(k-2)x^2+(3k+5)x+3$... (i)
 - (x^2) 이 함수가 이차함수이려면 (x^2) 계수) $\neq 0$ 이어야 하므 구

$$k-2\neq 0$$
 $\therefore k\neq 2$

		•		(ii)
--	--	---	--	------

채점 기준	배점
(i) 주어진 함수의 식 정리하기	50%
(ii) <i>k</i> 의 조건 구하기	50%

2 1단계 이차함수 $y=ax^2$ 의 그래프가 점 (-2, -2)를 지나

$$-2=a\times(-2)^2$$
 $\therefore a=-\frac{1}{2}$ \cdots (i)

2단계 즉, $y = -\frac{1}{2}x^2$ 의 그래프가 점 (3, b)를 지나므로

$$b = -\frac{1}{2} \times 3^2 = -\frac{9}{2}$$
 ... (ii)

$$\therefore a + b = -\frac{1}{2} + \left(-\frac{9}{2}\right) = -5 \qquad \cdots \text{ (iii)}$$

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) <i>b</i> 의 값 구하기	40 %
(iii) $a+b$ 의 값 구하기	20 %

- **3** (단계) 이차함수 $y=ax^2$ 의 그래프를 x축의 방향으로 -2만 큼, y축의 방향으로 1만큼 평행이동한 그래프의 식은 $y=a(x+2)^2+1$... (i)
 - **2**단계 이 그래프가 점 (-1, 3)을 지나므로 $3=a(-1+2)^2+1$, 3=a+1 : a=2... (ii)

채점 기준	배점
(i) 평행이동한 그래프의 식 구하기	50 %
(ii) a의 값 구하기	50%

4 꼭짓점의 좌표가 (3.4)이므로 $y=a(x-3)^2+4$ 에서 p=3, q=4··· (i) 이 그래프가 점 (0, -2)를 지나므로

$$-2=a(0-3)^2+4$$
 : $a=-\frac{2}{3}$... (ii)

$$\therefore a+p-q=-\frac{2}{3}+3-4=-\frac{5}{3}$$

··· (iii)

채점 기준	배점
(i) p, q의 값 구하기	40 %
(ii) a의 값 구하기	40 %
(iii) $a+p-q$ 의 값 구하기	20 %

2 단계 스스로 해결하기

P. 40~42

- **1** 12 **2** 2
- 3 (1) ㄹ, ㅁ, ㅂ (2) ㄷ (3) ㄴ과 ㅁ (4) ㄱ, ㄴ, ㄷ
- **4** $y = -\frac{2}{3}x^2$
- **5** (1) B(-4, -4), C(4, -4) (2) 18 **6** -6
- 7 $\frac{3}{4}$ 8 0 9 -2
- **10** (1) $y=3(x-1)^2-7$ (2) 20 **11** $-\frac{1}{2}$, $\frac{2}{3}$
- 12 제1. 2사분면

1
$$f(1) = -\frac{1}{2} \times 1^2 + 3 \times 1 - 1 = \frac{3}{2}$$
 ... (i)

$$f(-2) = -\frac{1}{2} \times (-2)^2 + 3 \times (-2) - 1 = -9$$
 ... (ii)

$$\therefore 2f(1) - f(-2) = 2 \times \frac{3}{2} - (-9) = 12$$
 ... (iii)

채점 기준	배점
(i) f(1)의 값 구하기	40 %
$\overline{\mathrm{(ii)}f(-2)}$ 의 값 구하기	40 %
(iii) $2f(1)-f(-2)$ 의 값 구하기	20 %

2 이차함수 $y = \frac{1}{2}x^2$ 의 그래프와 x축에 서로 대칭인 그래프의

식으
$$y = -\frac{1}{2}x^2$$
 ... (i)

이 그래프가 점 (k, -2)를 지나므로

$$-2 = -\frac{1}{2}k^2, k^2 = 4$$
 $\therefore k = \pm 2$

그런데 k는 양수이므로 k=2

... (ii)

채점 기준	배점
$\mathrm{(i)}x$ 축에 서로 대칭인 그래프의 식 구하기	50 %
(ii) k의 값 구하기	50 %

- **3** (1) (x^2 의 계수)>0이면 그래프가 아래로 볼록하므로 ㄹ, ㅁ,
 - (2) x^2 의 계수의 절댓값이 작을수록 그래프의 폭이 넓어진다. x^2 의 계수의 절댓값을 각각 구하면

ㄱ.
$$10$$
 ㄴ. $\frac{7}{2}$ ㄷ. $\frac{1}{4}$ ㄹ. 1 ㅁ. $\frac{7}{2}$ ㅂ. $\frac{15}{2}$ 따라서 폭이 가장 넓은 것은 ㄷ이다 ····(ii)

- (3) x^2 의 계수의 절댓값이 같고 부호가 반대이면 x축에 서로 대칭이므로 L과 D이다. ... (iii)
- (4) $(x^2$ 의 계수)<0이면 x>0에서 x의 값이 증가할 때 y의 값 은 감소하므로 ㄱ, ㄴ, ㄷ이다. ···· (iv)

채점 기준	배점
(i) 아래로 볼록한 그래프 찾기	25 %
(ii) 폭이 가장 넓은 그래프 찾기	25 %
(iii) x 축에 서로 대칭인 그래프끼리 짝짓기	25 %
(iv) $x>$ 0에서 x 의 값이 증가할 때, y 의 값은 감소하는 그 래프 찾기	25 %

4 꼭짓점이 원점이므로 이차함수의 식을 $y=ax^2$ 으로 놓자.

... (i)

... (ii)

이 그래프가 점 (3, -6)을 지나므로

$$-6 = a \times 3^2 \qquad \therefore a = -\frac{2}{3}$$

따라서 구하는 이차함수의 식은
$$y=-\frac{2}{3}x^2$$
 ··· (iii)

채점 기준	배점
(i) 이차함수의 식을 $y=ax^2$ 으로 놓기	30 %
(ii) a의 값 구하기	50%
(iii) 이차함수의 식 구하기	20 %

5 (1) 이차함수 $y=ax^2$ 의 그래프가 점 A(-2, -1)을 지나므로

$$-1 = a \times (-2)^2 \qquad \therefore a = -\frac{1}{4}$$

두 점 B, C의 y좌표가 -4이므로

$$y = -\frac{1}{4}x^2$$
에 $y = -4$ 를 대입하면

$$-4 = -\frac{1}{4}x^2$$
, $x^2 = 16$ $\therefore x = \pm 4$

$$B(-4, -4), C(4, -4)$$
 ... (ii)

(2) 사다리꼴 ABCD는 윗변의 길이가 \overline{AD} =4, 아랫변의 길이가 \overline{BC} =8, 높이가 3이므로

$$\Box ABCD = \frac{1}{2} \times (4+8) \times 3 = 18 \qquad \cdots \text{(iii)}$$

채점 기준	배점
(i) a의 값 구하기	20 %
(ii) 두 점 B, C의 좌표 구하기	40 %
(iii) 사다리꼴 ABCD의 넓이 구하기	40 %

6 이차함수 $y = -2x^2$ 의 그래프를 y축의 방향으로 a만큼 평행 이동한 그래프의 식은

$$y = -2x^2 + a$$
 ··· (i)

이 그래프가 점 (1, -8)을 지나므로

 $-8 = -2 \times 1^2 + a$

$$\therefore a = -6$$
 \cdots (ii)

채점 기준	배점
(i) 평행이동한 그래프의 식 구하기	40 %
(ii) <i>a</i> 의 값 구하기	60 %

f 꼭짓점의 좌표가 (-2,0)이므로 이차함수의 식을 $f(x) = a(x+2)^2$ 으로 놓자. \cdots (i)

이 그래프가 점 (0,3)을 지나므로

 $3=a(0+2)^2$

$$\therefore a = \frac{3}{4} \qquad \cdots (ii)$$

따라서 $f(x) = \frac{3}{4}(x+2)^2$ 이므로

$$f(-3) = \frac{3}{4}(-3+2)^2 = \frac{3}{4}$$
 ... (iii)

채점 기준	배점
(i) 이차함수의 식을 $y=a(x-p)^2$ 의 꼴로 놓기	30 %
(ii) 상수 <i>a</i> 의 값 구하기	30 %
(iii) f(-3)의 값 구하기	40 %

8 이차함수 $y=ax^2$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -3만큼 평행이동한 그래프의 식은

$$y = a(x-2)^2 - 3$$
 ... (i)

이 식이 $y = -(x+b)^2 - c$ 와 같아야 하므로

$$a=-1, -2=b, -3=-c$$

따라서
$$a=-1$$
, $b=-2$, $c=3$ 이므로 ··· (ii)

$$a+b+c=-1+(-2)+3=0$$
 ... (iii)

채점 기준	배점
(i) 평행이동한 그래프의 식 구하기	40 %
(ii) a, b, c의 값 구하기	40 %
(iii) $a+b+c$ 의 값 구하기	20 %

9 이차함수 $y = -\frac{1}{2}x^2 - 1$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 2만큼 평행이동한 그래프의 식은

$$y = -\frac{1}{2}x^2 - 1$$
에 x 대신 $x - a$, y 대신 $y - 2$ 를 대입하면

$$y-2=-\frac{1}{2}(x-a)^2-1$$

$$\therefore y = -\frac{1}{2}(x-a)^2 + 1 \qquad \cdots (i)$$

이 그래프가 점 (2, -7)을 지나므로

$$-7 = -\frac{1}{2}(2-a)^2 + 1$$

$$\frac{1}{2}(2-a)^2=8$$

$$(2-a)^2 = 16$$

 $2-a = \pm 4$

 $\therefore a = -2 \stackrel{\leftarrow}{\text{}} = 6$

그런데 꼭짓점의 좌표가 (a, 1)이고, 제2사분면 위에 있으므로 a < 0이다.

$$\therefore a = -2$$
 \cdots (ii)

채점 기준	배점
(i) 평행이동한 그래프의 식 구하기	30 %
(ii) a의 값 구하기	70 %

- **10** (1) 꼭짓점의 좌표가 (1, -7)이므로 이차함수의 식을 $y=a(x-1)^2-7로 놓자$
 - 이 그래프가 점 (-1, 5)를 지나므로

$$5=a(-1-1)^2-7, 4a=12$$
 $\therefore a=3$

$$y=3(x-1)^2-7$$

(2) 이차함수 $y=3(x-1)^2-7$ 의 그래프가 점 (4, k)를 지나 ㅁㄹ

$$k=3\times(4-1)^2-7=20$$
 ... (ii)

채점 기준	배점
(i) 이차함수의 식을 $y = a(x-p)^2 + q$ 의 꼴로 나타내기	60 %
(ii) k의 값 구하기	40 %

- **11** 꼭짓점의 좌표가 $(p, 2p^2-p)$ 이고, ... (i)
 - 이 점이 이차함수 $y = -4x^2 + 2$ 의 그래프 위에 있으므로

$$2p^2 - p = -4p^2 + 2$$

... (ii)

$$6p^2-p-2=0$$
, $(2p+1)(3p-2)=0$

$$\therefore p = -\frac{1}{2} \stackrel{\square}{=} \stackrel{\square}{=} \frac{2}{3}$$

... (iii)

채점 기준	배점
(i) 꼭짓점의 좌표 구하기	20 %
(ii) p에 관한 식 세우기	30 %
(iii) <i>p</i> 의 값 구하기	50 %

12 주어진 그래프의 모양이 위로 볼록하므로 a < 0꼭짓점 (p, q)가 제1사분면 위에 있으므로

... (i)

 $y=p(x-q)^2-a$ 에서

p>0이므로 그래프는 아래로 볼록하고,

q>0, -a>0이므로 꼭짓점 (q, -a)는 제1사분면 위에 있다.

따라서 $y=p(x-q)^2-a$ 의 그래프는 오 른쪽 그림과 같으므로 제1, 2사분면을 지 ... (ii) 난다.

채점 기준	배점
(i) a, p, q의 부호 판별하기	40 %
(ii) $y=p(x-q)^2-a$ 의 그래프가 지나는 사분면 구하기	60 %

한 1 도전하기

P. 43

1 9

3 $\frac{27}{2}$ m(또는 13.5 m)

1 점 B의 x좌표를 a(a>0)로 놓으면

A(
$$-a$$
, a^2), B(a , a^2), C(a , $-\frac{1}{3}a^2$), D($-a$, $-\frac{1}{3}a^2$)

이때
$$\overline{AB} = 2a$$
, $\overline{BC} = a^2 - \left(-\frac{1}{3}a^2\right) = \frac{4}{3}a^2$ 이고,

$$\overline{AB} = \overline{BC}$$
이므로 $2a = \frac{4}{3}a^2$

$$2a^2-3a=0$$
, $a(2a-3)=0$

$$\therefore a=0$$
 또는 $a=\frac{3}{2}$

그런데
$$a > 0$$
이므로 $a = \frac{3}{2}$

... (ii)

따라서 정사각형 ADCB의 한 변의 길이는

$$\overline{AB} = 2a = 2 \times \frac{3}{2} = 3$$
이므로

$$\Box ADCB = 3 \times 3 = 9$$

··· (iii)

채점 기준	배점
(i) 점 B의 x 좌표를 a 로 놓았을 때, 네 점 A, B, C, D의 좌표를 a 에 대하여 나타내기	30 %
(ii) a의 값 구하기	50%
(iii) □ADCB의 넓이 구하기	20 %

2 점 A의 x좌표를 a(a>0)로 놓으면

AB=2이므로

A(a, 2a²), B(a+2,
$$\frac{1}{2}$$
(a+2)²) ... (i)

이때 두 점 A, B의 y좌표가 k로 같으므로

$$2a^2 = \frac{1}{2}(a+2)^2$$

$$3a^2-4a-4=0$$

$$(3a+2)(a-2)=0$$

$$\therefore a = -\frac{2}{3} \, \text{EL} \, a = 2$$

그런데
$$a>0$$
이므로 $a=2$ ··· (ii)

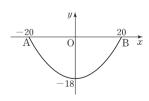
$$k = 2a^2 = 2 \times 2^2 = 8$$

... (iii)

채점 기준	배점
(i) 점 A 의 x 좌표를 a 로 놓았을 때, 두 점 A , B 의 좌표를 a 에 대하여 나타내기	30 %
(ii) a의 값 구하기	40 %
(iii) <i>k</i> 의 값 구하기	30 %

3 | 예시 답안 |

호수의 수면을 x축, 지점 O를 원점으로 하여 호수의 단면인 포물선을 좌표평면 위에 나타 내면 오른쪽 그림과 같다. ... (i)



이때 꼭짓점의 좌표가 (0, -18)이므로 이차함수의 식을 $y = ax^2 - 18$ 로 놓자.

이 그래프가 점 (20, 0)을 지나므로

$$0 = a \times 20^2 - 18$$
 $\therefore a = \frac{9}{200}$

$$\therefore y = \frac{9}{200}x^2 - 18 \qquad \cdots \text{(ii)}$$

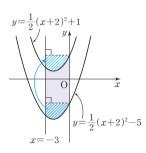
위의 식에 x=10을 대입하면

$$y = \frac{9}{200} \times 10^2 - 18 = -\frac{27}{2}$$

따라서 지점 O에서 B의 방향으로 $10\,\mathrm{m}$ 만큼 떨어진 지점에서 의 수심은 $\frac{27}{2}\,\mathrm{m}$ (또는 $13.5\,\mathrm{m}$)이다. \cdots (iii)

채점 기준	배점
(i) 호수의 단면인 포물선을 좌표평면 위에 나타내기	20 %
(ii) 이차함수의 식 구하기	40 %
(iii) 수심 구하기	40 %

4 오른쪽 그림과 같이 이차함수 $y = \frac{1}{2}(x+2)^2 + 1$ 의 그래프 는 $y = \frac{1}{2}(x+2)^2 - 5$ 의 그래 프를 y축의 방향으로 6만큼 평행이동한 것과 같으므로 빗금 친 부분의 넓이는 서로 같다.



따라서 색칠한 부분의 넓이는 가로의 길이가 3, 세로의 길이 가 6인 직사각형의 넓이와 같으므로 \cdots (i)

(색칠한 부분의 넓이)=3×6=18

... (ii)

채점 기준	배점
(i) 색칠한 부분과 넓이가 같은 사각형에 대하여 설명하기	60 %
(ii) 색칠한 부분의 넓이 구하기	40 %

$oldsymbol{\mathsf{VI}}$ 이차함수 $y{=}ax^2{+}bx{+}c$ 의 그래프

1 단계 보고 때가 하기

P. 46~47

- **1** a=2, b=8, c=11 **2** 8 **3** -7
- 4 195 m. 6초
- - 2단계 이 그래프가 점 (-1, 5)를 지나므로 $5=a(-1+2)^2+3$ $\therefore a=2$ \cdots (ii)
 - 3단계 $y=2(x+2)^2+3=2x^2+8x+11$ 이므로 b=8, c=11 ... (iii)

채점 기준	배점
(i) 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 놓기	30 %
(ii) a의 값 구하기	30 %
(iii) b, c의 값 구하기	40 %

- 2 157 $y=x^2+2x-3=(x+1)^2-4$ A(-1, -4) ...(i)
 - 2단계 $y=x^2+2x-3$ 에 y=0을 대입하면 $x^2+2x-3=0$ (x+3)(x-1)=0 $\therefore x=-3$ 또는 x=1 \therefore B(-3, 0), C(1, 0) \cdots (ii)
 - 3단계 $\triangle ABC = \frac{1}{2} \times 4 \times 4 = 8$... (iii)

채점 기준	배점
(i) 점 A의 좌표 구하기	30 %
(ii) 두 점 B, C의 좌표 구하기	40 %
(iii) △ABC의 넓이 구하기	30 %

- 3 1일계 x=3에서 최솟값이 -1이므로 꼭짓점의 좌표는 (3,-1) 즉, 이차함수의 식을 $y=a(x-3)^2-1$ 로 놓자. \cdots (i)
 - 2단계 이 그래프가 점 (1,7)을 지나므로 $7=a(1-3)^2-1$ $\therefore a=2$

즉, $y=2(x-3)^2-1=2x^2-12x+17$ 이므로 b=-12, c=17

3단계 : $ab+c=2\times(-12)+17=-7$ ··· (iii)

채점 기준	배점
(i) 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 놓기	40 %
(ii) a, b, c의 값 구하기	40 %
(iii) $ab+c$ 의 값 구하기	20 %

... (ii)

... (i) 4 $y=-5x^2+60x+15=-5(x-6)^2+195$ 즉. x = 6에서 최댓값이 195이다. 따라서 로켓의 최고 높이는 195m이고, 최고 높이에 도달할 때까지 걸린 시간은 6초이다 ... (ii)

채점 기준	배점
(i) 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 나타내기	40 %
(ii) 최고 높이와 최고 높이에 도달할 때까지 걸린 시간 구하기	60 %

2 단계 스스로 해결하기

P 48~50

1 (-2,7) **2** $(1)(k,k^2+k)$ (2)-1

3 17

... (iii)

... (ii)

4 (1) A(1, 3), B(0, 1) (2) $\frac{1}{2}$ **5** -4**6** $y=2x^2-x+2$ **7** 18

8 4 **9** -1

10 (1) $m = -8k^2 + 4k$ (2) $\frac{1}{2}$

11 -49, -7과 7

12 121 cm²

1 이차함수 $y = -2x^2 + ax - 1$ 의 그래프가 점 (-1, 5)를 지나

$$5=-2-a-1$$
 $\therefore a=-8$ \cdots (i)

$$\therefore y = -2x^2 - 8x - 1 = -2(x+2)^2 + 7 \qquad \cdots \text{ (ii)}$$

채점 기준	배점
(i) a의 값 구하기	40 %
(ii) 이차함수의 식을 $y=a(x-p)^2+q$ 의 꼴로 나타내기	40 %
(iii) 꼭짓점의 좌표 구하기	20 %

2 (1) $y = -x^2 + 2kx + k$ $=-(x^2-2kx+k^2-k^2)+k$ $=-(x-k)^2+k^2+k$... (i)

이므로 꼭짓점의 좌표는 (k, k^2+k)

(2) 꼭짓점이 x축 위에 있으면 y좌표가 0이므로 $k^2+k=0, k(k+1)=0$: k=0 $\pm \frac{1}{2}$ k=-1그런데 $k \neq 0$ 이므로 k = -1... (iii)

채점 기준	배점
(i) 이차함수의 식을 $y = a(x-p)^2 + q$ 의 꼴로 나타내기	30 %
(ii) 꼭짓점의 좌표를 k 를 사용하여 나타내기	20 %
(iii) k의 값 구하기	50 %

3 $y=2x^2+14x+12$ 에 y=0을 대입하면 $2x^2+14x+12=0$ $x^2+7x+6=0$, (x+6)(x+1)=0 $\therefore x = -6 \pm x = -1$ 그런데 p>q이므로 p=-1, q=-6··· (i) 한편 $y=2x^2+14x+12$ 에 x=0을 대입하면 y=12이므로 ... (jj)

$$\therefore p-q+r=-1-(-6)+12=17$$
 ... (iii)

채점 기준	배점
(i) p, q의 값 구하기	60 %
(ii) r의 값 구하기	30 %
(iii) $p-q+r$ 의 값 구하기	10%

4 (1) $y = -2x^2 + 4x + 1 = -2(x-1)^2 + 3$ 에서 A(1, 3)

 $y = -2x^2 + 4x + 1$ 에 x = 0을 대입하면 y = 1이므로

$$B(0, 1)$$
 ···· (ii)

... (i)

(2)
$$\triangle ABO = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$
 ... (iii)

채점 기준	배점
(i) 점 A의 좌표 구하기	30 %
(ii) 점 B의 좌표 구하기	30 %
(iii) △ABO의 넓이 구하기	40 %

5 $y = -3x^2 + 12x - 5 = -3(x-2)^2 + 7$... (i) 이 식에 x 대신 x-m, y 대신 y-n을 대입하면 $y-n=-3(x-m-2)^2+7$

$$y = -3\{x - (m+2)\}^2 + 7 + n$$
 ... (ii)

이 그래프가 $y = -3x^2 + 5$ 의 그래프와 완전히 포개어지므로 m+2=0, 7+n=5 : m=-2, n=-2... (iii)

$$m+n=-2+(-2)=-4$$
 ... (iv)

채점 기준	배점
(i) 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 나타내기	20 %
(ii) 평행이동한 그래프의 식 구하기	30 %
(iii) <i>m</i> , <i>n</i> 의 값 구하기	30 %
(iv) $m+n$ 의 값 구하기	20 %

6 구하는 이차함수의 식을 $y=ax^2+bx+c$ 로 놓자. $y=ax^2+bx+c$ 의 그래프가 점 (0, 2)를 지나므로 c=2... (i) 이때 $y=ax^2+bx+2$ 의 그래프가 두 점 (1, 3), (-1, 5)를 지나므로

3 = a + b + 2 : a + b = 1... (7)

5 = a - b + 2 : a - b = 3

... (L)

①, ①을 연립하여 풀면

a=2, b=-1... (ii)

따라서 구하는 이차함수의 식은

 $y = 2x^2 - x + 2$ ··· (iii)

채점 기준	배점
(i) c의 값 구하기	20 %
(ii) a, b의 값 구하기	40 %
(iii) 이차함수의 식 구하기	40 %

7 $y=-x^2-6x+1=-(x+3)^2+10$ 즉 x=-3에서 최댓값은 10이므로 M = 10... (i) $y=2x^2-8x=2(x-2)^2-8$ 즉. x=2에서 최솟값은 -8이므로 m = -8... (ii) M - m = 10 - (-8) = 18··· (iii)

채점 기준	배점
$(\mathrm{i})M$ 의 값 구하기	40 %
(ii) <i>m</i> 의 값 구하기	40 %
(iii) $M-m$ 의 값 구하기	20 %

8 $y = -4x^2 + 16x + k - 4$ $=-4(x^2-4x+4-4)+k-4$ $=-4(x-2)^2+k+12$... (i) 즉, x=2에서 최댓값은 k+12이다. 그런데 최댓값이 16이므로 k+12=16 $\therefore k=4$... (ii)

채점 기준	배점
$\overline{\mathrm{(i)}}$ 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 나타내기	30 %
(ii) k의 값 구하기	70%

9 (x)에서 이차함수 $y = -x^2$ 의 그래프와 모양이 같으므로 a=-1... (i) (내)에서 꼭짓점의 x좌표는 -2이고, 대)에서 꼭짓점의 y좌표는 8이므로 꼭짓점의 좌표는 (-2, 8)이다. ... (ii) 따라서 $y = -(x+2)^2 + 8 = -x^2 - 4x + 4$ 이므로 b = -4, c = 4··· (iii) $\therefore a-b-c=-1-(-4)-4=-1$... (iv)

채점 기준	배점
(i) a의 값 구하기	20 %
(ii) 꼭짓점의 좌표 구하기	30 %
(iii) b, c의 값 구하기	30 %
$\overline{\mathrm{(iv)}a\!-\!b\!-\!c}$ 의 값 구하기	20 %

10 (1) $y = 2x^2 - 8kx + 4k$ $=2(x^2-4kx+4k^2-4k^2)+4k$ $=2(x-2k)^2-8k^2+4k$... (i) 즉, x=2k에서 최솟값은 $-8k^2+4k$ 이므로 $m = -8k^2 + 4k$... (ii) (2) $m = -8k^2 + 4k$ $= -8\left(k^2 - \frac{1}{2}k + \frac{1}{16} - \frac{1}{16}\right)$ $=-8\left(k-\frac{1}{4}\right)^2+\frac{1}{2}$

따라서 $k=\frac{1}{4}$ 에서 최댓값은	$\frac{1}{2}$ 이다.	$\cdots (iv)$
-----------------------------	-------------------	---------------

··· (iii)

채점 기준	배점
(i) 이차함수의 식을 $y \! = \! a(x \! - \! p)^2 \! + \! q$ 의 꼴로 나타내기	20 %
(ii) m 을 k 에 관한 식으로 나타내기	30 %
(ii) (ii) 의 식을 $m=a(k-p)^2+q$ 의 꼴로 나타내기	20 %
(iv) <i>m</i> 의 최댓값 구하기	30 %

11 한 수를 x라 하면 다른 한 수는 x+14이므로 두 수의 곱을 y라 하면

$$y=x(x+14)=x^2+14x$$
 ... (i)
= $(x+7)^2-49$

즉. x = -7에서 최솟값은 -49이다.

따라서 두 수의 곱의 최솟값은 -49이고. ... (ii)

그때의 두 수는 -7과 -7+14=7이다. ··· (iii)

채점 기준	배점
(i) 두 수의 곱에 대한 식 세우기	40 %
(ii) 두 수의 곱의 최솟값 구하기	40 %
(iii) 두 수 구하기	20 %

12 새로운 직사각형의 가로의 길이는 (14-x)cm, 세로의 길이는 (8+x)cm이므로 ... (i)

이 직사각형의 넓이를 $y \text{ cm}^2$ 라 하면

$$y = (14-x)(8+x) = -x^2+6x+112$$
 ... (ii)
= $-(x-3)^2+121$

즉. x=3에서 최댓값은 121이다.

따라서 새로운 직사각형의 넓이의 최댓값은 121 cm²이다.

··· (iii)

채점 기준	배점
(i) 새로운 직사각형의 가로, 세로의 길이를 각각 x 에 관한 식으로 나타내기	20 %
(ii) 새로운 직사각형의 넓이에 대한 식 세우기	30 %
(iii) 새로운 직사각형의 넓이의 최댓값 구하기	50 %

P. 51

1 $y=x^2-3x-4$ 에 y=0을 대입하면 $x^2-3x-4=0$, (x+1)(x-4)=0 $\therefore x = -1 \pm x = 4$ A(-1, 0), B(4, 0) $y=x^2-3x-4=\left(x-\frac{3}{2}\right)^2-\frac{25}{4}$ $C(\frac{3}{2}, -\frac{25}{4})$ $y=x^2-3x-4$ 에 x=0을 대입하면 y=-4이므로 D(0, -4)... (i) 원점 O에 대하여

$$\triangle OAD = \frac{1}{2} \times 1 \times 4 = 2$$
 ... (ii)

$$\triangle ODC = \frac{1}{2} \times 4 \times \frac{3}{2} = 3 \quad \cdots$$
 (iii)

$$\triangle OCB = \frac{1}{2} \times 4 \times \frac{25}{4} = \frac{25}{2} \cdots (iv)$$

 $= \triangle OAD + \triangle ODC + \triangle OCB$ $= 2 + 3 + \frac{25}{2}$

$$=\frac{35}{2} \qquad \cdots (v)$$

채점 기준	배점
(i) 네 점 A, B, C, D의 좌표 구하기	40 %
(ii) △OAD의 넓이 구하기	15%
(iii) △ODC의 넓이 구하기	15 %
(iv) △OCB의 넓이 구하기	15%
(v) □ADCB의 넓이 구하기	15 %

2 x=2에서 최솟값이 -3이므로 꼭짓점의 좌표는 (2,-3)

즉, 이차함수의 식을 $y=a(x-2)^2-3$ 으로 놓자. \cdots (i) 이때 이 이차함수는 최솟값을 가지므로

$$a>0$$
 ···· (ii)

또 그래프가 모든 사분면을 지나므로 y축과의 교점이 x축보 다 아래쪽에 있어야 한다.

 $y=a(x-2)^2-3$ 에 x=0을 대입하면 y=4a-3이므로

4a - 3 < 0

$$\therefore a < \frac{3}{4} \qquad \cdots \bigcirc \qquad \qquad \cdots \text{ (iii)}$$

따라서
$$\bigcirc$$
, \bigcirc 에서 $0 < a < \frac{3}{4}$... (iv)

채점 기준	배점
(i) 이차함수의 식을 $y\!=\!a(x\!-\!p)^2\!+\!q$ 의 꼴로 놓기	20 %
(ii) 최솟값을 가지기 위한 a 의 값의 조건 설명하기	30 %
(iii) 그래프가 모든 사분면을 지나기 위한 a 의 값의 조건 설명하기	30 %
(iv) <i>a</i> 의 값의 범위 구하기	20 %

3 상품의 가격을 *x*원 내리면 상품의 가격은 (200-*x*)원, 하루 판매량은 (200+2*x*)개이다. ... (i)

이 상품의 하루 매출액을 *y*원이라 하면

$$y = (200 - x)(200 + 2x)$$
 ... (ii)

 $=-2x^2+200x+40000$

 $=-2(x-50)^2+45000$

즉, x=50에서 최댓값은 45000이다.

따라서 이 상품의 하루 매출액이 최대가 될 때의 상품 한 개 의 가격은

채점 기준	배점
(i) 상품의 가격과 하루 판매량을 x 에 관한 식으로 나타내기	20 %
(ii) 하루 매출액에 대한 식 세우기	30 %
(iii) 하루 매출액이 최대가 될 때의 상품 한 개의 가격 구하기	50%

4 점 P의 좌표를 (a, −a+4)라 하면

$$\overline{PR} = a, \overline{PQ} = -a + 4$$
 ... (i)

직사각형 OQPR의 넓이를 y라 하면

$$y=a(-a+4)$$
 ··· (ii)

 $=-a^2+4a$

$$=-(a-2)^2+4 \qquad \cdots \text{ (iii)}$$

즉, a=2에서 최댓값은 4이다.

따라서 직사각형 OQPR의 넓이의 최댓값은 4이다. ··· (iv)

채점 기준	배점
(i) 점 P 의 좌표를 이용하여 $\overline{\mathrm{PR}},$ $\overline{\mathrm{PQ}}$ 의 길이 나타내기	30 %
(ii) 직사각형 OQPR의 넓이를 식으로 나타내기	20 %
(iii) (ii) 의 식을 $y=a(x-p)^2+q$ 의 꼴로 나타내기	30 %
(iv) 직사각형 OQPR의 넓이의 최댓값 구하기	20 %

